Auroral Streamer and Its Role in Driving Wave-Like Pre-Onset Aurora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ejecta Event Associated with a Two&Hyphen;Step Geomagnetic Storm
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11104, doi:10.1029/2006JA011893, 2006 A two-ejecta event associated with a two-step geomagnetic storm C. J. Farrugia,1 V. K. Jordanova,1,2 M. F. Thomsen,2 G. Lu,3 S. W. H. Cowley,4 and K. W. Ogilvie5 Received 2 June 2006; revised 1 September 2006; accepted 12 September 2006; published 16 November 2006. [1] A new view on how large disturbances in the magnetosphere may be prolonged and intensified further emerges from a recently discovered interplanetary process: the collision/merger of interplanetary (IP) coronal mass ejections (ICMEs; ejecta) within 1 AU. As shown in a recent pilot study, the merging process changes IP parameters dramatically with respect to values in isolated ejecta. The resulting geoeffects of the coalesced (‘‘complex’’) ejecta reflect a superposition of IP triggers which may result in, for example, two-step, major geomagnetic storms. In a case study, we isolate the effects on ring current enhancement when two coalescing ejecta reached Earth on 31 March 2001. The magnetosphere ‘‘senses’’ the presence of the two ejecta and responds with a reactivation of the ring current soon after it started to recover from the passage of the first ejection, giving rise to a double-dip (DD) great storm (each min Dst < À250 nT). A drift-loss global kinetic model of ring current buildup shows that in this case the major factor determining the intensity of the storm activity is the very high (up to 10 cmÀ3) plasma sheet density. The plasma sheet density, in turn, is found to correlate well with the very high solar wind density, suggesting the compression of the leading ejecta as the source of the hot, superdense plasma sheet in this case. -
Mechanisms of Formation of Multiple Current Sheets in the Heliospheric Plasma Sheet
EGU2020-3945 https://doi.org/10.5194/egusphere-egu2020-3945 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Mechanisms of formation of multiple current sheets in the heliospheric plasma sheet Evgeniy Maiewski1, Helmi Malova2,3, Roman Kislov3,4, Victor Popov5, Anatoly Petrukovich3, and Lev Zelenyi3 1National Research University”Higher School of Economics”, Moscow, Russian Federation ([email protected]) 2Scobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ([email protected]) 3Space Research Institute of the Russian Academy of Science, Moscow, Russia 4Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow, Russia 5Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia When spacecraft cross the heliospheric plasma sheet (HPS) that separates large-scale magnetic sectors of the opposite direction in the solar wind, multiple rapid fluctuations of a sign of the radial magnetic field component are observed very often, indicating the presence of multiple current sheets occurring within the HPS. Possible mechanisms of formation of these structures in the solar wind are proposed. Taking into accout that the streamer belt in the solar corona is believed to be the main source of the slow solar wind in the heliosphere, we suggest that the effect of the multi-layered HPS is determined by the extension of many streamer-belt-borne thin current sheets oriented along the neutral line of the interplanetary magnetic field. Within the framework of a proposed MHD model, self-consistent distributions of the key solar wind characteristics which depend on streamer propreties are investigated. -
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E. -
Evidence for Magnetic Reconnection Along the Dawn Flank
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Accelerated flows at Jupiter’s magnetopause: 10.1002/2016GL072187 Evidence for magnetic reconnection Special Section: along the dawn flank Early Results: Juno at Jupiter R. W. Ebert1 , F. Allegrini1,2 , F. Bagenal3 , S. J. Bolton1 , J. E. P. Connerney4, G. Clark5 , G. A. DiBraccio4,6 , D. J. Gershman4 , W. S. Kurth7 , S. Levin8 , P. Louarn9, B. H. Mauk5 , Key Points: 10,11,1 12,1 1 13 1,2 • Observations at Jupiter’s dawn D. J. McComas , M. Reno , J. R. Szalay , M. F. Thomsen , P. Valek , magnetopause by Juno revealed S. Weidner11, and R. J. Wilson3 accelerated ion flows and large magnetic shear angles at 1Southwest Research Institute, San Antonio, Texas, USA, 2Department of Physics and Astronomy, University of Texas at San several crossings Antonio, San Antonio, Texas, USA, 3Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, • Case studies of two magnetopause 4 5 crossings showed evidence of Colorado, USA, Goddard Space Flight Center, Greenbelt, Maryland, USA, The Johns Hopkins University Applied Physics 6 7 rotational discontinuities and an Laboratory, Laurel, Maryland, USA, Universities Space Research Association, Columbia, Maryland, USA, Department of open magnetopause Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA, 8Jet Propulsion Laboratory, Pasadena, California, USA, • Compelling evidence for magnetic 9Institut de Recherche en Astrophysique et Planétologie, Toulouse, France, 10Department of Astrophysical Sciences, ’ reconnection -
Classical Models of Magnetic Reconnection
CLASSICAL MODELS OF MAGNETIC RECONNECTION YUNQI SUN, 2019.4.26 TUTOR: XUENING BAI CONTENTS • Introductions to magnetic reconnection • Sweet-Parker Model: a classical perspective • Petschek’s Model: a faster reconnection • Summary INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. • A magnetic reconnection process in solar flares: https:// en.wikipedia.org/wiki/ File:SDO_Observes_a_Reconnection_Event.ogv • Tokamak experiments INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Earth Magnetospheres • accretion disks • Plusars & Magnetars reconnection region¤t sheet (ANATOLY SPITKOVSKY, 2006) INTRODUCTION: WHAT IS MAGNETIC RECONNECTION? • Characteristics • change the magnetic topology (further relaxation can release more energy) • generate an electric field which accelerates particles parallel to magnetic field • dissipate magnetic energy (direct heating) • accelerate plasma, i.e. convert magnetic energy into kinetic energy INTRODUCTION: A SHORT HISTORY • In 1946, Giovanelli suggested reconnection as a mechanism for particle acceleration in solar flares. • 1957-58, Sweet and Parker developed the first quantitive model, currently known as Sweet-Parker model. • 1961 Dungey investigated the interaction between a dipole (magnetosphere) and the surrounding (interplanetary) magnetic field which included reconnection. • 1964 Petschek proposed another model in order to overcome the slow reconnection rate of the Sweet-Parker model. • … SWEET-PARKERS MODEL: A CLASSICAL PERSPECTIVE incoming plasma • Magnetic reconnection with velocity vR happens when two plasma coming closer to each other, and the magnetic field lines are able to rearrange their outflow plasma structure, bringing the plasma inside the reconnection region reconnection region outside by the electric field. -
The Magnetosphere-Ionosphere Observatory (MIO)
1 The Magnetosphere-Ionosphere Observatory (MIO) …a mission concept to answer the question “What Drives Auroral Arcs” ♥ Get inside the aurora in the magnetosphere ♥ Know you’re inside the aurora ♥ Measure critical gradients writeup by: Joe Borovsky Los Alamos National Laboratory [email protected] (505)667-8368 updated April 4, 2002 Abstract: The MIO mission concept involves a tight swarm of satellites in geosynchronous orbit that are magnetically connected to a ground-based observatory, with a satellite-based electron beam establishing the precise connection to the ionosphere. The aspect of this mission that enables it to solve the outstanding auroral problem is “being in the right place at the right time – and knowing it”. Each of the many auroral-arc-generator mechanisms that have been hypothesized has a characteristic gradient in the magnetosphere as its fingerprint. The MIO mission is focused on (1) getting inside the auroral generator in the magnetosphere, (2) knowing you are inside, and (3) measuring critical gradients inside the generator. The decisive gradient measurements are performed in the magnetosphere with satellite separations of 100’s of km. The magnetic footpoint of the swarm is marked in the ionosphere with an electron gun firing into the loss cone from one satellite. The beamspot is detected from the ground optically and/or by HF radar, and ground-based auroral imagers and radar provide the auroral context of the satellite swarm. With the satellites in geosynchronous orbit, a single ground observatory can spot the beam image and monitor the aurora, with full-time conjunctions between the satellites and the aurora. -
Dust Clouds and Plasmoids in Saturn's Magnetosphere
Dust clouds and plasmoids in Saturn’s Magnetosphere as seen with four Cassini instruments Emil Khalisi1 Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D–69117 Heidelberg, Germany Abstract We revisit the evidence for a ”dust cloud” observed by the Cassini space- craft at Saturn in 2006. The data of four instruments are simultaneously compared to interpret the signatures of a coherent swarm of dust that would have remained near the equatorial plane for as long as six weeks. The con- spicuous pattern, as seen in the dust counters of the Cosmic Dust Analyser (CDA), clearly repeats on three consecutive revolutions of the spacecraft. That particular cloud is estimated to about 1.36 Saturnian radii in size, and probably broadening. We also present a reconnection event from the magnetic field data (MAG) that leave behind several plasmoids like those reported from the Voyager flybys in the early 1980s. That magnetic bubbles happened at the dawn side of Saturn’s magnetosphere. At their nascency, the magnetic field showed a switchover of its alignment, disruption of flux tubes and a recovery on a time scale of about 30 days. However, we cannot rule out that different events might have taken place. Empirical evidence is shown at another occasion when a plasmoid was carrying a cloud of tiny dust particles such that a connection between plasmoids and coherent dust clouds is probable. Keywords: Dust clouds, Saturn, Cassini mission, Cosmic Dust Analyser, arXiv:1702.01579v1 [astro-ph.EP] 6 Feb 2017 Magnetosphere URL: DOI: http://dx.doi.org/10.1016/j.asr.2016.12.030 (Emil Khalisi) 1Corresponding author: [email protected] Preprint accepted by Advances in Space Research [JASR13029] 7th February 2017 1. -
Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence
atmosphere Case Report Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence Yue Yu 1,2, Zuzheng Chen 1,2,* and Fang Chen 1,2 1 School of Space and Environment, Beihang University, Beijing 100089, China; [email protected] (Y.Y.); [email protected] (F.C.) 2 Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100089, China * Correspondence: [email protected] Received: 12 June 2020; Accepted: 2 August 2020; Published: 7 August 2020 Abstract: We present a coordinated observation with the Magnetospheric Multiscale (MMS) mission, located in the Earth’s magnetotail plasma sheet, and the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission, located in the solar wind, in order to understand the formation mechanism of the cold and dense plasma sheet (CDPS). MMS detected two CDPSs composed of two ion populations with different energies, where the energy of the cold ion population is the same as that of the solar wind measured by ARTEMIS. This feature directly indicates that the CDPSs are caused by the solar wind entry. In addition, He+ was observed 3 3 in the CDPSs. The plasma density in these two CDPSs are ~1.8 cm− and ~10 cm− , respectively, roughly 4–30 times the average value of a plasma sheet. We performed a cross-correlation analysis on the ion density of the CDPS and the solar wind, and we found that it takes 3.7–5.9 h for the solar wind to enter the plasma sheet. -
Local Time Extent of Magnetopause Reconnection X-Lines Using Space-Ground Coordination
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 1 Local time extent of magnetopause reconnection X-lines using space-ground coordination 2 3 Ying Zou12, Brian M. Walsh3, Yukitoshi Nishimura45, Vassilis Angelopoulos6, J. 4 Michael Ruohoniemi7, Kathryn A. McWilliams8, Nozomu Nishitani9 5 6 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 7 USA 8 2. Cooperative Programs for the Advancement of Earth System Science, University Corporation 9 for Atmospheric Research, Boulder, Colorado, USA 10 3. Department of Mechanical Engineering and Center for Space Physics, Boston University, 11 Boston, Massachusetts, USA 12 4. Department of Electrical and Computer Engineering and Center for Space Sciences, Boston 13 University, Boston, Massachusetts, USA 14 5. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 15 California, USA 16 6. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, 17 California, USA 18 7. The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 19 Virginia, USA 20 8. Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, 21 Saskatchewan, Canada 22 9. Center for International Collaborative Research, Institute for Space-Earth Environmental 23 Research, Nagoya University, Nagoya, Japan 1 Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-63 Manuscript under review for journal Ann. Geophys. Discussion started: 3 July 2018 c Author(s) 2018. CC BY 4.0 License. 24 Corresponding author: Ying Zou 25 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts, 26 USA 27 2. -
Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence
Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Loureiro, Nuno F., and Stanislav Boldyrev. “Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence.” Physical Review Letters 118, no. 24 (June 16, 2017). As Published http://dx.doi.org/10.1103/PhysRevLett.118.245101 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/110205 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 245101 (2017) PHYSICAL REVIEW LETTERS 16 JUNE 2017 Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence Nuno F. Loureiro1 and Stanislav Boldyrev2,3 1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Department of Physics, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA 3Space Science Institute, Boulder, Colorado 80301, USA (Received 21 December 2016; revised manuscript received 17 April 2017; published 16 June 2017) The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheetlike structures at small scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale −4=7 λ ∼ LSL , where SL is the outer-scale (L) Lundquist number and λ is the smallest of the field- perpendicular eddy dimensions. -
3 the Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime
3 The Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime OBARA Takahiro The Earth's magnetosphere is formed by the plasma flow from the Sun; i.e. solar wind. This solar wind particle can enter the magnetosphere through non-MHD processes and pro- duces specific regions of plasma. This is due to the convection motion seen in the magne- tosphere. An enhancement of the magnetospheric convection causes storms and sub- storms in the magnetosphere. Highly energetic particles can be produced through very effi- cient acceleration processes during the storms. In this paper we describe the fundamental physics of the magnetosphere, aiming a transition of researches to the Space Weather fore- cast. Keywords Magnetosphere, Plasma, Magnetospheric convection, Storms and substorms, Ener- getic particles 1 Outline of the Formation of the in the southern hemisphere. Magnetosphere and the Mag- There is an influx of solar wind plasma netospheric Plasma Structure particles in the lobe region. The area of the lobe near the magnetopause is referred to as The magnetosphere is a distinct region in the mantle. The magnetic field intensity is space surrounding the Earth, and its structure low near the equatorial plane, where the north- has been the subject of numerous detailed ern and southern lobes meet. Hot plasma satellite observations. Fig.1 shows a represen- accumulates in this region, referred to as the tation of this structure, with the upper front plasma sheet. Characteristic plasma regimes quarter removed to show the interior. The are present near the Earth, with plasma with Earth is at the center, and the solar wind flows higher energies relative to the plasma sheet. -
Magnetosphere Coupling by Magnetic Reconnection
Cold ions of ionospheric origin in Solar wind – magnetosphere coupling S. Toledo-Redondo1, M. André2, Yu. V. Khotyaintsev2, B. Lavraud3, A. Vaivads2, D. B. Graham2, W. Li2, D. Perrone1, S. Fuselier4,5, D. Gershman6, N. Aunai5, J. Dargent3,7, B. Giles6, O. LeContel7, P.-A. Lindqvist8, R. E. Ergun9, C. T. Russell10, and J. L. Burch4 (1) ESAC/ESA, Madrid, Spain (6) NASA Goddard Space Flight Center, Greenbelt, Maryland (2) Swedish Institute of Space Physics (IRF), Uppsala, Sweden (7) Laboratoire de Physique des Plasmas, Paris, France (3) Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France (8) Royal Institute of Technology (KTH), Stockholm, Sweden (4) Southwest Research Institute (SWRI), San Antonio, Texas (9) Laboratory of Atmospheric and Space Physics (LASP), Boulder, Colorado (5) University of Texas, San Antonio, Texas (10) University of California, Los Angeles, California. ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 1 Introduction: magnetic reconnection in plasmas t<0 t=0 t>0 Magnetic reconnection in plasmas changes the topology of the magnetic fields, relaxing them and transferring the energy resulting into the particles (acceleration and heating). Interconnects different plasma regions, allowing the exchange of mass and energy between them. ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 2 Magnetic reconnection simulation Full Particle-In-Cell simulation, Dargent+, JGR (2016) ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 3 Ubiquity of magnetic reconnection Uzdensky+,