3 the Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime

Total Page:16

File Type:pdf, Size:1020Kb

3 the Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime 3 The Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime OBARA Takahiro The Earth's magnetosphere is formed by the plasma flow from the Sun; i.e. solar wind. This solar wind particle can enter the magnetosphere through non-MHD processes and pro- duces specific regions of plasma. This is due to the convection motion seen in the magne- tosphere. An enhancement of the magnetospheric convection causes storms and sub- storms in the magnetosphere. Highly energetic particles can be produced through very effi- cient acceleration processes during the storms. In this paper we describe the fundamental physics of the magnetosphere, aiming a transition of researches to the Space Weather fore- cast. Keywords Magnetosphere, Plasma, Magnetospheric convection, Storms and substorms, Ener- getic particles 1 Outline of the Formation of the in the southern hemisphere. Magnetosphere and the Mag- There is an influx of solar wind plasma netospheric Plasma Structure particles in the lobe region. The area of the lobe near the magnetopause is referred to as The magnetosphere is a distinct region in the mantle. The magnetic field intensity is space surrounding the Earth, and its structure low near the equatorial plane, where the north- has been the subject of numerous detailed ern and southern lobes meet. Hot plasma satellite observations. Fig.1 shows a represen- accumulates in this region, referred to as the tation of this structure, with the upper front plasma sheet. Characteristic plasma regimes quarter removed to show the interior. The are present near the Earth, with plasma with Earth is at the center, and the solar wind flows higher energies relative to the plasma sheet. from left to right. The front (dayside) of the These regimes surrounding the Earth form the magnetosphere is compressed, while the ring current that causes magnetic storms; these nightside is stretched, forming the tail of the regimes also form the Van Allen radiation magnetosphere (magnetotail). First let us belts. Near the Earth, upward diffused ionos- define the names of the magnetospheric com- pheric plasma forms the plasmasphere. The ponents. The magnetosphere is the region plasmasphere has a clear external boundary inside the magnetopause. The wide structure referred to as the plasmapause. on the north and south sides of the equatorial The plasma regimes studied in this paper plane is referred to as the lobe. Here, the consist of: (1) the boundary layer, featuring magnetic field lines extending from the polar particles resembling those in the solar wind; regions of the Earth are stretched toward the (2) the plasma sheet, consisting of medium- nightside. The magnetic field lines are earth- energy particles (several keV); (3) the inner ward in the northern hemisphere and tailward magnetosphere, consisting of high-energy par- OBARA Takahiro 61 ticles (> 10 keV); and (4) the plasmasphere, regions of the solar wind, and thus, a shock consisting of cold plasma. When grouped structure is formed. Such shocks, on the exte- according to plasma origin, (1), (2), and (3) rior of magnetopause, have been confirmed are plasmas originating in the solar wind, and through satellite observations. These shocks generally, particles nearer the Earth have high- are referred to as the bow shock, due to the er energies. In contrast, (4) is plasma originat- overall structure's similarity to waves created ing from the Earth. These regimes are not by the bows of ships. completely isolated from each other; they The magnetosheath is the region between coexist and interact. the bow shock and the magnetopause. The The followings are the terms used in this plasma in this region has properties similar to paper in the explanation of magnetospheric those of the solar wind plasma, but in this physics. As seen from the Earth, the magne- region the plasma is heated upon crossing the tosphere on the sunward side is referred to as bow shock. The plasma flow inside the mag- the dayside magnetosphere, and the opposite netosheath is slightly slower than the solar side is referred to as the nightside magneto- wind velocity, and on the whole, this flow is sphere. Similarly, we will use the terms deflected along the magnetopause surface. "dawn" and "dusk" sectors. Fig.1 shows the Simulations have been conducted on the direc- magnetosphere as seen from the dusk sector. tion of the solar wind magnetic field in the The characteristic feature of the nightside magnetosheath based on gas-dynamic theory magnetosphere is the tail, which is elongated and on MHD (magnetohydrodynamics), and over a great distance; this structure is referred the models have been found to be consistent to as the magnetotail. with observations. 2.2 Magnetopause Region When the supersonic plasma flow from the sun (solar wind) collides with the geomagnetic Bow Plasma Shock Interplanetary Lobe Mantle field, its front (dayside) region is compressed, Magnetic Field (IMF) and a clear boundary is formed. The solar Plasma Sheet wind dynamic pressure and the magnetospher- Plasmasphere Ring Current ic magnetic pressure are balanced at this Solar plane, which is referred to as the magne- Wind Magnetopause topause. The distance from the center of the Magnetosheath Earth to the magnetopause is approximately Fig.1 Structure of the Earth's magneto- 11 Re (Radius of Earth). When the solar wind sphere dynamic pressure increases, the magnetopause comes closer to the Earth. To conduct a 3-D simulation of the magne- 2 Influx of Solar Wind Particles topause, it is necessary to estimate the precise and External Plasma Regimes pressure distribution in the solar wind. The solar wind essentially circumvents the Earth. 2.1 Magnetosheath Particles Detailed estimations were made of the stress The solar wind is a supersonic flow. The perpendicular and parallel to the magne- Earth moves through the solar wind plasma at topause surface, and the results of these esti- supersonic speeds, in a system moving within mations are shown in Fig.2. Two interesting the solar wind. The effects of deceleration structures can be observed to the north and and compression of the solar wind as it col- south. All magnetic field lines converge at a lides with the magnetosphere cannot be trans- single point, where the magnetic field intensi- mitted at sonic velocities to the upstream ty is zero. This neutral point is referred to as 62 Journal of the Communications Research Laboratory Vol.49 No.3 2002 the cusp. The cusp is important in driving the solar wind particles. In this manner, large magnetospheric convection, as will be dis- amounts of both momentum and magnetic cussed in detail in a later section. field flux accumulate in the nightside magne- tosphere. How do the reconnections of the magnetic field lines occur? Fig.4 shows a pair of mag- netic field lines in the reverse directions posi- tioned above and below a plane perpendicular to the page (a magnetic neutral plane). When they are pushed closer to each other, a current is generated at the boundary, in accordance with Ampere's law. This current is referred to as a neutral sheet current. If conductivity is assumed to be infinite, then a barrier of stronger current is created as the magnetic Fig.2 The 3-D structure of the magne- topause. Solid and dashed lines repre- field lines approach each other, and the field sent magnetic field lines and magne- lines remain isolated. However, if resistance topause currents, respectively. (Midgely, 1963) is created somewhere on the neutral plane, then the energy of the magnetic field is con- The magnetosphere is a region usually sumed at that point. Magnetic field lines near shielded from solar wind particles. Most of the point migrate toward this point to compen- the solar wind particles are deflected away sate for the energy loss. In Fig.4(c), X repre- from the Earth, but during a southward solar wind magnetic field, there is a large injection of energy into the magnetosphere. This theory Magnetic met with wide attention when it was first pro- Field Lines Neutral Sheet Current posed by Dungy (1963). As shown in Fig.3, Neutral Sheet when the solar wind magnetic field is oriented southward, reconnection of the magnetic field lines occurs in the dayside magnetopause. A terrestrial magnetic field line that has been connected to a solar wind magnetic field line becomes open and migrates downstream (to the nightside). The momentum of the solar wind enters the magnetosphere along with Point Point Fig.3 In the dayside magnetopause, the magnetic field lines are reconnected to interplanetary magnetic field (IMF) Fig.4 Schematic diagram of reconnection lines. Magnetic field lines migrate of magnetic field lines along the lines numbered 1-8 OBARA Takahiro 63 sents the point at which magnetic field lines has revealed that the region of electron injec- converge and are reconnected. Fig.4(d) shows tion is located near the equatorial region the new pair of magnetic field lines resulting (reconnection region of magnetic field lines) from the reconnection. in the dayside magnetosphere. Satellites crossing the cusp in the south- 2.3 Cusp Particles north direction have observed ions drifting The high-latitude region of the dayside toward high-latitude regions as they precipi- magnetosphere features a characteristic mag- tate. This phenomenon, where ions with netic field configuration. This structure, lower precipitation energies drift to higher lat- called the cusp, is located at the boundary itudes, can be explained by the presence of between the closed magnetic field lines on the tailward convection in the polar cap (region dayside and the magnetic field lines that surrounded by auroras). reconnect with the solar wind magnetic field and stream toward the tail. There is direct 2.4 Mantle Particles downward injection of solar wind plasma As shown in Fig.5, the magnetosheath toward the Earth at the cusp region (solid plasma penetrates into the lobes and creates a black region in Fig.5(a)).
Recommended publications
  • Pressure Balance at the Magnetopause: Experimental Studies
    Pressure balance at the magnetopause: Experimental studies A. V. Suvorova1,2 and A. V. Dmitriev3,2 1Center for Space and Remote Sensing Research, National Central University, Jhongli, Taiwan 2Skobeltsyn Institute of Nuclear Physics Moscow State University, Moscow, Russia 3Institute of Space Sciences, National Central University, Chung-Li, Taiwan Abstract The pressure balance at the magnetopause is formed by magnetic field and plasma in the magnetosheath, on one side, and inside the magnetosphere, on the other side. In the approach of dipole earth’s magnetic field configuration and gas-dynamics solar wind flowing around the magnetosphere, the pressure balance predicts that the magnetopause distance R depends on solar wind dynamic pressure Pd as a power low R ~ Pdα, where the exponent α=-1/6. In the real magnetosphere the magnetic filed is contributed by additional sources: Chapman-Ferraro current system, field-aligned currents, tail current, and storm-time ring current. Net contribution of those sources depends on particular magnetospheric region and varies with solar wind conditions and geomagnetic activity. As a result, the parameters of pressure balance, including power index α, depend on both the local position at the magnetopause and geomagnetic activity. In addition, the pressure balance can be affected by a non-linear transfer of the solar wind energy to the magnetosheath, especially for quasi-radial regime of the subsolar bow shock formation proper for the interplanetary magnetic field vector aligned with the solar wind plasma flow. A review of previous results The pressure balance states that the pressure of the flowing around solar wind plasma is balanced at the magnetopause by the pressure inside the magnetosphere [e.g.
    [Show full text]
  • Marina Galand
    Thermosphere - Ionosphere - Magnetosphere Coupling! Canada M. Galand (1), I.C.F. Müller-Wodarg (1), L. Moore (2), M. Mendillo (2), S. Miller (3) , L.C. Ray (1) (1) Department of Physics, Imperial College London, London, U.K. (2) Center for Space Physics, Boston University, Boston, MA, USA (3) Department of Physics and Astronomy, University College London, U.K. 1." Energy crisis at giant planets Credit: NASA/JPL/Space Science Institute 2." TIM coupling Cassini/ISS (false color) 3." Modeling of IT system 4." Comparison with observaons Cassini/UVIS 5." Outstanding quesAons (Pryor et al., 2011) SATURN JUPITER (Gladstone et al., 2007) Cassini/UVIS [UVIS team] Cassini/VIMS (IR) Credit: J. Clarke (BU), NASA [VIMS team/JPL, NASA, ESA] 1. SETTING THE SCENE: THE ENERGY CRISIS AT THE GIANT PLANETS THERMAL PROFILE Exosphere (EARTH) Texo 500 km Key transiLon region Thermosphere between the space environment and the lower atmosphere Ionosphere 85 km Mesosphere 50 km Stratosphere ~ 15 km Troposphere SOLAR ENERGY DEPOSITION IN THE UPPER ATMOSPHERE Solar photons ion, e- Neutral Suprathermal electrons B ion, e- Thermal e- Ionospheric Thermosphere Ne, Nion e- heang Te P, H * + Airglow Neutral atmospheric Exothermic reacAons heang IS THE SUN THE MAIN ENERGY SOURCE OF PLANERATY THERMOSPHERES? W Main energy source: UV solar radiaon Main energy source? EartH Outer planets CO2 atmospHeres Exospheric temperature (K) [aer Mendillo et al., 2002] ENERGY CRISIS AT THE GIANT PLANETS Observed values at low to mid-latudes solsce equinox Modeled values (Sun only) [Aer
    [Show full text]
  • A Future Mars Environment for Science and Exploration
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1.
    [Show full text]
  • Observations of Solar Wind Penetration Into the Earth's Magnetosphere: the Plasma Mantle
    ENNIO R. SANCHEZ, CHING-I. MENG, and PATRICK T. NEWELL OBSERVATIONS OF SOLAR WIND PENETRATION INTO THE EARTH'S MAGNETOSPHERE: THE PLASMA MANTLE The large database provided by the continuous coverage of the Defense Meteorological Satellite Pro­ gram polar orbiting satellites constitutes an important source of information on particle precipitation in the ionosphere. This information can be used to monitor and map the Earth's magnetosphere (the cavity around the Earth that forms as the stream of particles and magnetic field ejected from the Sun, known as the solar wind, encounters the Earth's magnetic field) and for a large variety of statistical studies of its morphology and dynamics. The boundary between the magnetosphere and the solar wind is pre­ sumably open in some places and at some times, thus allowing the direct entry of solar-wind plasma into the magnetosphere through a boundary layer known as the plasma mantle. The preliminary results of a statistical study of the plasma-mantle precipitation in the ionosphere are presented. The first quan­ titative mapping of the ionospheric region where the plasma-mantle particles precipitate is obtained. INTRODUCTION Polar orbiting satellites are very useful platforms for studying the properties of the environment surrounding the Earth at distances well above the ionosphere. This article focuses on a description of the enormous poten­ tial of those platforms, especially when they are com­ bined with other means of measurement, such as ground-based stations and other satellites. We describe in some detail the first results of the kind of study for which the polar orbiting satellites are ideal instruments.
    [Show full text]
  • Ejecta Event Associated with a Two&Hyphen;Step Geomagnetic Storm
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11104, doi:10.1029/2006JA011893, 2006 A two-ejecta event associated with a two-step geomagnetic storm C. J. Farrugia,1 V. K. Jordanova,1,2 M. F. Thomsen,2 G. Lu,3 S. W. H. Cowley,4 and K. W. Ogilvie5 Received 2 June 2006; revised 1 September 2006; accepted 12 September 2006; published 16 November 2006. [1] A new view on how large disturbances in the magnetosphere may be prolonged and intensified further emerges from a recently discovered interplanetary process: the collision/merger of interplanetary (IP) coronal mass ejections (ICMEs; ejecta) within 1 AU. As shown in a recent pilot study, the merging process changes IP parameters dramatically with respect to values in isolated ejecta. The resulting geoeffects of the coalesced (‘‘complex’’) ejecta reflect a superposition of IP triggers which may result in, for example, two-step, major geomagnetic storms. In a case study, we isolate the effects on ring current enhancement when two coalescing ejecta reached Earth on 31 March 2001. The magnetosphere ‘‘senses’’ the presence of the two ejecta and responds with a reactivation of the ring current soon after it started to recover from the passage of the first ejection, giving rise to a double-dip (DD) great storm (each min Dst < À250 nT). A drift-loss global kinetic model of ring current buildup shows that in this case the major factor determining the intensity of the storm activity is the very high (up to 10 cmÀ3) plasma sheet density. The plasma sheet density, in turn, is found to correlate well with the very high solar wind density, suggesting the compression of the leading ejecta as the source of the hot, superdense plasma sheet in this case.
    [Show full text]
  • Diffuse Electron Precipitation in Magnetosphere-Ionosphere- Thermosphere Coupling
    EGU21-6342 https://doi.org/10.5194/egusphere-egu21-6342 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Diffuse electron precipitation in magnetosphere-ionosphere- thermosphere coupling Dong Lin1, Wenbin Wang1, Viacheslav Merkin2, Kevin Pham1, Shanshan Bao3, Kareem Sorathia2, Frank Toffoletto3, Xueling Shi1,4, Oppenheim Meers5, George Khazanov6, Adam Michael2, John Lyon7, Jeffrey Garretson2, and Brian Anderson2 1High Altitude Observatory, National Center for Atmospheric Research, Boulder CO, United States of America 2Applied Physics Laboratory, Johns Hopkins University, Laurel MD, USA 3Department of Physics and Astronomy, Rice University, Houston TX, USA 4Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg VA, USA 5Astronomy Department, Boston University, Boston MA, USA 6Goddard Space Flight Center, NASA, Greenbelt MD, USA 7Department of Physics and Astronomy, Dartmouth College, Hanover NH, USA Auroral precipitation plays an important role in magnetosphere-ionosphere-thermosphere (MIT) coupling by enhancing ionospheric ionization and conductivity at high latitudes. Diffuse electron precipitation refers to scattered electrons from the plasma sheet that are lost in the ionosphere. Diffuse precipitation makes the largest contribution to the total precipitation energy flux and is expected to have substantial impacts on the ionospheric conductance and affect the electrodynamic coupling between the magnetosphere and ionosphere-thermosphere.
    [Show full text]
  • Mechanisms of Formation of Multiple Current Sheets in the Heliospheric Plasma Sheet
    EGU2020-3945 https://doi.org/10.5194/egusphere-egu2020-3945 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Mechanisms of formation of multiple current sheets in the heliospheric plasma sheet Evgeniy Maiewski1, Helmi Malova2,3, Roman Kislov3,4, Victor Popov5, Anatoly Petrukovich3, and Lev Zelenyi3 1National Research University”Higher School of Economics”, Moscow, Russian Federation ([email protected]) 2Scobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ([email protected]) 3Space Research Institute of the Russian Academy of Science, Moscow, Russia 4Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow, Russia 5Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia When spacecraft cross the heliospheric plasma sheet (HPS) that separates large-scale magnetic sectors of the opposite direction in the solar wind, multiple rapid fluctuations of a sign of the radial magnetic field component are observed very often, indicating the presence of multiple current sheets occurring within the HPS. Possible mechanisms of formation of these structures in the solar wind are proposed. Taking into accout that the streamer belt in the solar corona is believed to be the main source of the slow solar wind in the heliosphere, we suggest that the effect of the multi-layered HPS is determined by the extension of many streamer-belt-borne thin current sheets oriented along the neutral line of the interplanetary magnetic field. Within the framework of a proposed MHD model, self-consistent distributions of the key solar wind characteristics which depend on streamer propreties are investigated.
    [Show full text]
  • Solar Wind Magnetosphere Coupling
    Solar Wind Magnetosphere Coupling F. Toffoletto, Rice University Figure courtesy T. W. Hill with thanks to R. A. Wolf and T. W. Hill, Rice U. Outline • Introduction • Properties of the Solar Wind Near Earth • The Magnetosheath • The Magnetopause • Basic Physical Processes that control Solar Wind Magnetosphere Coupling – Open and Closed Magnetosphere Processes – Electrodynamic coupling – Mass, Momentum and Energy coupling – The role of the ionosphere • Current Status and Summary QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Introduction • By virtue of our proximity, the Earth’s magnetosphere is the most studied and perhaps best understood magnetosphere – The system is rather complex in its structure and behavior and there are still some basic unresolved questions – Today’s lecture will focus on describing the coupling to the major driver of the magnetosphere - the solar wind, and the ionosphere – Monday’s lecture will look more at the more dynamic (and controversial) aspect of magnetospheric dynamics: storms and substorms The Solar Wind Near the Earth Solar-Wind Properties Observed Near Earth • Solar wind parameters observed by many spacecraft over period 1963-86. From Hapgood et al. (Planet. Space Sci., 39, 410, 1991). Solar Wind Observed Near Earth Values of Solar-Wind Parameters Parameter Minimum Most Maximum Probable Velocity v (km/s) 250 370 2000× Number density n (cm-3) 683 Ram pressure rv2 (nPa)* 328 Magnetic field strength B 0 6 85 (nanoteslas) IMF Bz (nanoteslas) -31 0¤ 27 * 1 nPa = 1 nanoPascal = 10-9 Newtons/m2. Indicates at least one interval with B < 0.1 nT. ¤ Mean value was 0.014 nT, with a standard deviation of 3.3 nT.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • Planetary Magnetospheres
    CLBE001-ESS2E November 9, 2006 17:4 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Magnetospheres Margaret Galland Kivelson University of California Los Angeles, California Fran Bagenal University of Colorado, Boulder Boulder, Colorado CHAPTER 28 1. What is a Magnetosphere? 5. Dynamics 2. Types of Magnetospheres 6. Interaction with Moons 3. Planetary Magnetic Fields 7. Conclusions 4. Magnetospheric Plasmas 1. What is a Magnetosphere? planet’s magnetic field. Moreover, unmagnetized planets in the flowing solar wind carve out cavities whose properties The term magnetosphere was coined by T. Gold in 1959 are sufficiently similar to those of true magnetospheres to al- to describe the region above the ionosphere in which the low us to include them in this discussion. Moons embedded magnetic field of the Earth controls the motions of charged in the flowing plasma of a planetary magnetosphere create particles. The magnetic field traps low-energy plasma and interaction regions resembling those that surround unmag- forms the Van Allen belts, torus-shaped regions in which netized planets. If a moon is sufficiently strongly magne- high-energy ions and electrons (tens of keV and higher) tized, it may carve out a true magnetosphere completely drift around the Earth. The control of charged particles by contained within the magnetosphere of the planet.
    [Show full text]
  • Effects of a Solar Wind Dynamic Pressure Increase in the Magnetosphere and in the Ionosphere
    Ann. Geophys., 28, 1945–1959, 2010 www.ann-geophys.net/28/1945/2010/ Annales doi:10.5194/angeo-28-1945-2010 Geophysicae © Author(s) 2010. CC Attribution 3.0 License. Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere L. Juusola1,2, K. Andréeová3, O. Amm1, K. Kauristie1, S. E. Milan4, M. Palmroth1, and N. Partamies1 1Finnish Meteorological Institute, Helsinki, Finland 2Department of Physics and Technology, University of Bergen, Bergen, Norway 3Department of Physics, University of Helsinki, Helsinki, Finland 4Department of Physics and Astronomy, University of Leicester, Leicester, UK Received: 12 February 2010 – Revised: 20 August 2010 – Accepted: 20 October 2010 – Published: 27 October 2010 Abstract. On 17 July 2005, an earthward bound north-south eral ground-based magnetometer networks (210 MM CPMN, oriented magnetic cloud and its sheath were observed by the CANMOS, CARISMA, GIMA, IMAGE, MACCS, Super- ACE, SoHO, and Wind solar wind monitors. A steplike in- MAG, THEMIS, TGO) were used to obtain information on crease of the solar wind dynamic pressure during northward the ionospheric E ×B drift. Before the pressure increase, a interplanetary magnetic field conditions was related to the configuration typical for the prevailing northward IMF con- leading edge of the sheath. A timing analysis between the ditions was observed at high latitudes. The preliminary sig- three spacecraft revealed that this front was not aligned with nature coincided with a pair of reverse convection vortices, the GSE y-axis, but had a normal (−0.58,0.82,0). Hence, the whereas during the main signature, mainly westward convec- first contact with the magnetosphere occurred on the dawn- tion was observed at all local time sectors.
    [Show full text]
  • Plasmasphere Last Time We Started Talking About
    Plasmasphere Last time we started talking about: Why does the plasmashere corotate? Review hot, cold drifts Discuss Alfven Shielding Layer Put it all together Then introduce Ionosphere subjects Plasma density 100 or 1000 times higher than outer magnetosphere Field Aligned Currents Region 1 (inner) Region 2 (outer) Ijima&Potemera Now, lets put it together • How do we explain Region 1 and Region 2 field aligned currents? • Region 1 is driven by magnetopause charge separation • Region 2 is driven by partial ring current • Next: what about aurora? Partial Ring Current: energetic particles Grad- B drift but don’t make it all the way around the earth Equatorial Plane View Plasmasphere corotates with Earth once a day Equatorial Plane View Plasmasphere corotates with Earth once a day Magnetic activity index Very High Density Moving from magnetosphere to ionosphere • Field aligned currents • Ionosphere structure • Ionosphere currents, What is σ? – 1. below 85 km altitude σ is isotropic – 2. 85 to 150 km (D and E regions) σ is tensor – 3. above 150 km σ is just σ|| • Then: put it all together Three views of ionosphere structure • Electron density • Thermal structure • Ion density and source Free electrons e- Negative ions Ionsopheric currents • J = σ E Ohms Law • We know there are large scale E fields (why), so what is σ in the ionosphere? What is Conductivity? • The scalar conductivity σ is defined as the ratio of the current density to the electric field strength σ = J/E. For a resistive medium this is just the Spitzer conductivity: • To get the components look at • So, σ can have many components: (Another way to derive scalar conductivity) Conductivity when particles gyrate σ becomes a matrix .
    [Show full text]