Tail Class I Molecules Through Their Cytoplasmic Surface Display of a Wide Range of HLA EBV BILF1 Evolved to Downregulate Cell

Total Page:16

File Type:pdf, Size:1020Kb

Tail Class I Molecules Through Their Cytoplasmic Surface Display of a Wide Range of HLA EBV BILF1 Evolved to Downregulate Cell EBV BILF1 Evolved To Downregulate Cell Surface Display of a Wide Range of HLA Class I Molecules through Their Cytoplasmic Tail This information is current as of October 1, 2021. Bryan D. Griffin, Anna M. Gram, Arend Mulder, Daphne Van Leeuwen, Frans H. J. Claas, Fred Wang, Maaike E. Ressing and Emmanuel Wiertz J Immunol 2013; 190:1672-1684; Prepublished online 11 January 2013; Downloaded from doi: 10.4049/jimmunol.1102462 http://www.jimmunol.org/content/190/4/1672 Supplementary http://www.jimmunol.org/content/suppl/2013/01/14/jimmunol.110246 http://www.jimmunol.org/ Material 2.DC1 References This article cites 63 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/190/4/1672.full#ref-list-1 Why The JI? Submit online. by guest on October 1, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology EBV BILF1 Evolved To Downregulate Cell Surface Display of a Wide Range of HLA Class I Molecules through Their Cytoplasmic Tail Bryan D. Griffin,*,†,1 Anna M. Gram,*,1 Arend Mulder,‡ Daphne Van Leeuwen,† Frans H. J. Claas,‡ Fred Wang,x Maaike E. Ressing,*,†,2 and Emmanuel Wiertz*,†,2 Coevolution of herpesviruses and their hosts has driven the development of both host antiviral mechanisms to detect and eliminate infected cells and viral ploys to escape immune surveillance. Among the immune-evasion strategies used by the lymphocryptovirus (g1-herpesvirus) EBV is the downregulation of surface HLA class I expression by the virally encoded G protein–coupled receptor BILF1, thereby impeding presentation of viral Ags and cytotoxic T cell recognition of the infected cell. In this study, we show EBV BILF1 to be expressed early in the viral lytic cycle. BILF1 targets a broad range of HLA class I molecules, including multiple HLA- A and -B types and HLA-E. In contrast, HLA-C was only marginally affected. We advance the mechanistic understanding of the Downloaded from process by showing that the cytoplasmic C-terminal tail of EBV BILF1 is required for reducing surface HLA class I expression. Susceptibility to BILF1-mediated downregulation, in turn, is conferred by specific residues in the intracellular tail of the HLA class I H chain. Finally, we explore the evolution of BILF1 within the lymphocryptovirus genus. Although the homolog of BILF1 encoded by the lymphocryptovirus infecting Old World rhesus primates shares the ability of EBV to downregulate cell surface HLA class I expression, this function is not possessed by New World marmoset lymphocryptovirus BILF1. Therefore, this study furthers our knowledge of the evolution of immunoevasive functions by the lymphocryptovirus genus of herpesviruses. The Journal of Immu- http://www.jimmunol.org/ nology, 2013, 190: 1672–1684. ymphocryptoviruses (LCVs) are a genus of the g-her- individuals (5). This is partly due to the ability of EBV, like all pesvirus subfamily whose members are only found in herpesviruses, to enter a state of latency in which protein ex- L primates (1). The LCV targeting humans, EBV, is carried pression is minimized, thereby limiting viral Ag display by the by .90% of adults worldwide (2, 3). Although infection is usually infected cell. Yet, for EBV to spread to a new host, it must pro- asymptomatic, primary encounter with the virus can present as duce infectious virions by entering the replicative, or lytic, phase of its life cycle. In this phase, .80 EBV-encoded proteins are infectious mononucleosis. EBV infection is also strongly associ- by guest on October 1, 2021 ated with tumors of lymphoid and epithelial origin, reflecting the expressed in a temporal cascade, with initial production of im- tropism of the virus for B cells and epithelial cells and its potential mediate early (IE) transactivators triggering induction of early for oncogenic transformation (4). genes, including enzymes required for viral replication (2). This Despite the activation of a robust host T cell response upon is followed by expression of late genes encoding virion structural primary infection and the capacity for a memory T cell response components. Thus, the lytic phase creates ample viral Ags for thereafter, the virus persists for life even in immunocompetent proteasomal processing and HLA class I cell surface presentation, which can then recruit memory CD8+ T cells capable of elimi- nating the infected cell. However, millions of years of coevolution *Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX with their hosts have seen herpesviruses acquire active immune- Utrecht, The Netherlands; †Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ‡Department of Immunohaema- evasion mechanisms to thwart this host response and permit suf- tology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, ficient time for the lytically infected cell to generate new virus The Netherlands; and xDepartment of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 particles (6–8). In the case of EBV, several such immune-evasion strategies 1B.D.G. and A.M.G. contributed equally to this work. target the HLA class I Ag-processing and -presentation pathways 2M.E.R. and E.W. contributed equally to this work. (9). The EBV host shutoff protein BGLF5 degrades mRNA, thus Received for publication September 6, 2011. Accepted for publication December 11, 2012. obstructing synthesis of new HLA class I molecules (10, 11). Meanwhile, BNLF2a blocks entry of proteasome-generated pep- This work was supported by Dutch Cancer Foundation Grant UL 2005-3259 (to B.D.G. and E.W.), Netherlands Organisation of Scientific Research Vidi Grant 917.76.330 (to tides into the endoplasmic reticulum (ER) and subsequent loading M.E.R.), and National Institutes of Health Grant CA068051 (to F.W.). onto HLA class I molecules by inhibiting the heterodimeric TAP Address correspondence and reprint requests to Prof. Emmanuel Wiertz, Department complex (12, 13). TAP transport is also hindered by the viral che- of Medical Microbiology G04.614, University Medical Center Utrecht, P.O. Box mokine homolog, vIL-10, which reduces expression of the TAP1 85500, 3508 GA Utrecht, The Netherlands. E-mail address: [email protected] subunit (14). Another manner in which EBV can downregulate cell The online version of this article contains supplemental material. surface HLA class I expression and inhibit T cell recognition of Abbreviations used in this article: ER, endoplasmic reticulum; GPCR, G protein– coupled receptor; HC, H chain; IE, immediate early; IRES, internal ribosome entry infected cells is through BILF1, a viral G protein–coupled receptor site; LCV, lymphocryptovirus; NGFR, nerve growth factor receptor; PAA, phospho- (vGPCR) (15, 16). noacetic acid; trNGFR, truncated nerve growth factor receptor; vGPCR, viral G Several poxviruses and herpesviruses encode G protein–coupled protein–coupled receptor; wt, wild type. receptors (GPCRs) that were most likely pirated from their host Copyright Ó 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00 by retrotransposition (17–19). vGPCRs serve many functions, www.jimmunol.org/cgi/doi/10.4049/jimmunol.1102462 The Journal of Immunology 1673 including the scavenging of host chemokines (20), cell-to-cell ad- R.J. Lebbink, University Medical Center Utrecht, The Netherlands). The hesion (21), and the reprogramming of intracellular signaling net- pSicoR-EGFP backbone vector (Addgene) was altered by removing the U6 works to promote efficient viral replication (22). BILF1 is expressed promoter and replacing the CMV-EGFP cassette with the human EF1A promoter driving expression of the Zeocin resistance gene and the gene of during the EBV lytic cycle and was first identified as a potential interest. Zeocin and HLA-B8 genes were fused together by a self-cleaving vGPCR by the presence of seven membrane-spanning domains and 2A peptide derived from the porcine teschovirus-1 (P2A). The P2A peptide (limited) homology with known herpesviral GPCRs (23–25). Al- allows expression of both proteins from a single transcript. HLA-B8wt was though it displays both structural and functional similarities to amplified by PCR from the bidirectional lentiviral vector mentioned above; the cytoplasmic tail mutants were generated by using reverse primers that chemokine receptors, EBV BILF1 modulates intracellular signaling encoded the mutations. pathways constitutively as an orphan receptor (24, 25). Restriction digests and sequence analysis verified the integrity of all gene Initial immune-evasion ability was ascribed to EBV BILF1 sequences. because it reduced phosphorylation of the dsRNA-dependent Cell lines protein kinase R (24). It was also found to heterodimerize with + human chemokine receptors (26). In the case of CXCR4, this The AKBM cell line is an EBV Burkitt’s lymphoma B cell line (Akata) results in impairment of ligand-induced receptor signaling (27). stably transfected with the pHEBO-BMRF1p-rCD2-GFP reporter plasmid (30). AKBM cells were maintained in RPMI 1640 medium (Invitrogen) Finally, EBV BILF1 decreases cell-surface levels of HLA class I supplemented with 10% FBS (PAA Laboratories, Pasching, Austria), 2 (15). This can be achieved by BILF1-mediated acceleration mM L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, and 0.3 of endocytosis and subsequent lysosomal degradation of HLA class mg/ml hygromycin B.
Recommended publications
  • Teschen Disease (Teschovirus Encephalomyelitis) Eradication in Czechoslovakia: a Historical Report
    Historical Report Veterinarni Medicina, 54, 2009 (11): 550–560 Teschen disease (Teschovirus encephalomyelitis) eradication in Czechoslovakia: a historical report V. Kouba* Prague, Czech Republic ABSTRACT: Teschen disease (previously also known as Klobouk’s disease), actually called Teschovirus encepha- lomyelitis, is a virulent fatal viral disease of swine, characterized by severe neurological disorders of encephalomy- elitis. It was initially discovered in the Teschen district of North-Eastern Moravia. During the 1940s and 1950s it caused serious losses to the pig production industry in Europe. The most critical situation at that time, however, was in the former Czechoslovakia. A nationally organized eradication programme started in 1952. That year the reported number of new cases of Teschen disease reached 137 396, i.e., an incidence rate of 2 794 per 100 000 pigs, in 14 801 villages with 65 597 affected farms, i.e., 4.43 affected farms per village and 2.10 diseased pigs per affected farm. The average territorial density of new cases was 1.07 per km2. For etiological diagnosis histological investigation of the central nervous system, isolation of virus and seroneutralization were used. Preventive meas- ures consisted in feeding pigs with sterilized waste food and in ring vaccination. Eradication measures took the form of the timely detection and reporting of new cases, isolating outbreak areas, and the slaughter of intrafocal pigs followed by sanitation measures. Diseased pigs were usually destroyed in rendering facilities. The carcasses of other intrafocal pigs were treated as conditionally comestible, i.e., only after sterilization. During the years 1952–1965 from a reported 537 480 specifically diseased pigs 36 558 died; i.e., Teschen disease mortality rate was 6.80% while other intrafocal pigs (88.12%) were urgently slaughtered.
    [Show full text]
  • AAVLD Plenary Session Saturday, Oct 20, 2007 Ponderosa B
    AAVLD Plenary Session Saturday, Oct 20, 2007 Ponderosa B “Past, present and future of veterinary laboratory medicine” Moderator: Grant Maxie 07:30 AM Welcome - Grant Maxie, President-Elect, AAVLD David Steffen, Vice-President, AAVLD 07:35 AM The evolution of the AAVLD - Robert Crandell, Larry Morehouse, Vaughn Seaton 08:15 AM Veterinary diagnostic toxicology: from spots to peaks to fragments and beyond (or why does diagnostic toxicology cause economic heartburn for laboratory directors?) - Robert Poppenga, Mike Filigenzi, Elizabeth Tor, Linda Aston, Larry Melton, Birgit Puschner 08:45 AM Microspheres and the evolution of testing platforms - Susan Wong 09:15 AM BREAK 09:45 AM A production management (client’s) perspective on diagnostics - Dale Grotelueschen 10:15 AM AAVLD survey of pet food-induced nephrotoxicity in North America, April to June, 2007 - Wilson Rumbeiha, Dalen Agnew, Grant Maxie, Michael Scott, Brent Hoff, Barbara Powers 10:45 AM Ecosystem health, agriculture, and diagnostic laboratories: challenges and opportunities - Thomas Besser 11:15 AM House of Delegates Virology Scientific Session Saturday, October 20, 2007 Bonanza A Moderators: Kyoung-Jin Yoon, Kristy Lynn Pabilonia 1:00 PM Further improvement and validation of MagMAX-96 AI/ND viral RNA isolation kit for efficient removal of RT-PCR inhibitors from cloacal swabs and tissues for rapid diagnosis of avian influenza virus by real-time reverse transcription PCR - Amaresh Das, Erica Spackman, Mary J. Pantin-Jackwood, David E. Swayne, David Suarez 1:15 PM Development of
    [Show full text]
  • A Field and Laboratory Investigation of Viral Diseases of Swine in the Republic of Haiti
    Original research Peer reviewed A field and laboratory investigation of viral diseases of swine in the Republic of Haiti Rodney Jacques-Simon, DVM; Max Millien, DVM; J. Keith Flanagan, DVM; John Shaw, PhD; Paula Morales, MS; Julio Pinto, DVM, PhD; David Pyburn, DVM; Wendy Gonzalez, DVM; Angel Ventura, DVM; Thierry Lefrancois, DVM, PhD; Jennifer Pradel, DVM, MS, PhD; Sabrina Swenson, DVM, PhD; Melinda Jenkins-Moore; Dawn Toms; Matthew Erdman, DVM, PhD; Linda Cox, MS; Alexa J. Bracht; Andrew Fabian; Fawzi M. Mohamed, BVSc, MS, PhD; Karen Moran; Emily O’Hearn; Consuelo Carrillo, DVM, PhD; Gregory Mayr, PhD; William White, BVSc, MPH; Samia Metwally, DVM, PhD; Michael T. McIntosh, PhD; Mingyi Deng, DVM, MS, PhD Summary porcine teschovirus type 1 (PTV-1) and por- PRRSV, and SIV, are present in the Haitian Objective: To confirm the prevalence of cine circovirus type 2 (PCV-2), respectively. swine population. Additionally, 7.3%, 11.9%, and 22.0% of teschovirus encephalomyelitis in multiple Implications: Due to the close proximity sera were positive for antibodies to porcine regions in Haiti and to identify other viral of the Hispaniola to Puerto Rico, a territory reproductive and respiratory syndrome virus agents present in the swine population. of the United States, and the large number (PRRSV) and swine influenza virus (SIV) of direct flights from the Hispaniola to the Materials and methods: A field investiga- H3N2 and H1N1, respectively. Among the United States, the risk of introducing the tion was conducted on 35 swine premises 54 sera positive for antibodies to PTV-1, viral diseases mentioned in this paper into located in 10 regions.
    [Show full text]
  • Emerging Porcine Adenovirus Padv-SVN1 and Other Enteric Viruses in Samples of Industrialized Meat By-Products
    Ciência Rural,Emerging Santa Porcine Maria, adenovirus v.50:12, PAdV-SVN1 e20180931, and other2020 enteric viruses in samples of http://doi.org/10.1590/0103-8478cr20180931industrialized meat by-products. 1 ISSNe 1678-4596 MICROBIOLOGY Emerging Porcine adenovirus PAdV-SVN1 and other enteric viruses in samples of industrialized meat by-products Fernanda Gil de Souza1* Artur Fogaça Lima1 Viviane Girardi1 Thalles Guillem Machado1 Victória Brandalise1 Micheli Filippi1 Andréia Henzel1 Paula Rodrigues de Almeida1 Caroline Rigotto1 Fernando Rosado Spilki1 1Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, 93352-000, Novo Hamburgo, RS, Brasil. E-mail: [email protected]. *Corresponding author. ABSTRACT: Foodborne diseases are often related to consumption of contaminated food or water. Viral agents are important sources of contamination and frequently reported in food of animal origin. The goal of this study was to detect emerging enteric viruses in samples of industrialized foods of animal origin collected in establishments from southern of Brazil. In the analyzed samples, no Hepatitis E virus (HEV) genome was detected. However, 21.8% (21/96) of the samples were positive for Rotavirus (RVA) and 61.4% (59/96) for Adenovirus (AdV), including Human adenovirus-C (HAdV-C), Porcine adenovirus-3 (PAdV-3) and new type of porcine adenovirus PAdV-SVN1. In the present research, PAdV-SVN1 was detected in foods for the first time. The presence of these viruses may be related to poor hygiene in sites of food preparation, production or during handling. Key words: PAdV-SVN1, RV, gastroenteritis. Detecção de adenovírus suíno PAdV-SVN1 emergente e outros vírus entéricos em amostras de subprodutos de carne industrializados RESUMO: As doenças transmitidas por alimentos são frequentemente descritas e relacionadas ao consumo de alimentos ou água contaminados, sendo alguns agentes virais importantes fontes de contaminação e frequentemente encontrados em alimentos de origem animal.
    [Show full text]
  • Arenaviridae Astroviridae Filoviridae Flaviviridae Hantaviridae
    Hantaviridae 0.7 Filoviridae 0.6 Picornaviridae 0.3 Wenling red spikefish hantavirus Rhinovirus C Ahab virus * Possum enterovirus * Aronnax virus * * Wenling minipizza batfish hantavirus Wenling filefish filovirus Norway rat hunnivirus * Wenling yellow goosefish hantavirus Starbuck virus * * Porcine teschovirus European mole nova virus Human Marburg marburgvirus Mosavirus Asturias virus * * * Tortoise picornavirus Egyptian fruit bat Marburg marburgvirus Banded bullfrog picornavirus * Spanish mole uluguru virus Human Sudan ebolavirus * Black spectacled toad picornavirus * Kilimanjaro virus * * * Crab-eating macaque reston ebolavirus Equine rhinitis A virus Imjin virus * Foot and mouth disease virus Dode virus * Angolan free-tailed bat bombali ebolavirus * * Human cosavirus E Seoul orthohantavirus Little free-tailed bat bombali ebolavirus * African bat icavirus A Tigray hantavirus Human Zaire ebolavirus * Saffold virus * Human choclo virus *Little collared fruit bat ebolavirus Peleg virus * Eastern red scorpionfish picornavirus * Reed vole hantavirus Human bundibugyo ebolavirus * * Isla vista hantavirus * Seal picornavirus Human Tai forest ebolavirus Chicken orivirus Paramyxoviridae 0.4 * Duck picornavirus Hepadnaviridae 0.4 Bildad virus Ned virus Tiger rockfish hepatitis B virus Western African lungfish picornavirus * Pacific spadenose shark paramyxovirus * European eel hepatitis B virus Bluegill picornavirus Nemo virus * Carp picornavirus * African cichlid hepatitis B virus Triplecross lizardfish paramyxovirus * * Fathead minnow picornavirus
    [Show full text]
  • Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis
    Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary Ákos Boros, Mihály Albert, Péter Pankovics, Hunor Bíró, Patricia A. Pesavento, Tung Gia Phan, Eric Delwart, Gábor Reuter A large, highly prolific swine farm in Hungary had a 2-year nervous system (CNS) involvement were reported re- history of neurologic disease among newly weaned (25- to cently in mink, human, bovine, ovine, and swine hosts 35-day-old) pigs, with clinical signs of posterior paraplegia (the latter in certain cases of AII type congenital tremors) and a high mortality rate. Affected pigs that were necropsied (5,6,12–14). Most neuroinvasive astroviruses belong to had encephalomyelitis and neural necrosis. Porcine astrovi- the Virginia/Human-Mink-Ovine (VA/HMO) phyloge- rus type 3 was identified by reverse transcription PCR and in netic clade and cluster with enteric astroviruses identi- situ hybridization in brain and spinal cord samples in 6 ani- mals from this farm. Among tissues tested by quantitative RT- fied from asymptomatic or diarrheic humans and animals PCR, the highest viral loads were detected in brain stem and (15,16). Recent research shows that pigs harbor one of the spinal cord. Similar porcine astrovirus type 3 was also detect- highest astrovirus diversities among mammals examined ed in archived brain and spinal cord samples from another 2 (3,15,20). Porcine astroviruses (PoAstVs) were identified geographically distant farms. Viral RNA was predominantly mainly from diarrheic fecal specimens, less commonly restricted to neurons, particularly in the brain stem, cerebel- from respiratory specimens, although the etiologic role of lum (Purkinje cells), and cervical spinal cord.
    [Show full text]
  • High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice
    High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice Jin Hee Kim1,2, Sang-Rok Lee3,4, Li-Hua Li2,6, Hye-Jeong Park1,3, Jeong-Hoh Park1, Kwang Youl Lee5, Myeong-Kyu Kim7, Boo Ahn Shin2*, Seok-Yong Choi1* 1 Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea, 2 Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea, 3 Department of Biology, Chosun University, Gwangju, Republic of Korea, 4 Research Institute of Kim and Jung Co. Ltd., Hwasun, Republic of Korea, 5 College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea, 6 Department of Pathogen Biology, Hainan Medical University, Haikou, People’s Republic of China, 7 Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea Abstract When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES) has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i) there are no publicly available cloning vectors harboring a 2A peptide gene and (ii) comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts.
    [Show full text]
  • Transient Retrovirus-Based CRISPR/Cas9 All-In-One Particles for Efficient, Targeted Gene Knockout
    Original Article Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout Yvonne Knopp,1 Franziska K. Geis,1 Dirk Heckl,2 Stefan Horn,3 Thomas Neumann,1 Johannes Kuehle,1 Janine Meyer,1 Boris Fehse,3 Christopher Baum,1,4 Michael Morgan,1 Johann Meyer,1 Axel Schambach,1,5 and Melanie Galla1 1Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; 2Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany; 3Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; 4Presidential Office, Hannover Medical School, Hannover 30625, Germany; 5Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA The recently discovered CRISPR/Cas9 system is widely used in otide-long protospacer, which is complementary to the target DNA basic research and is a useful tool for disease modeling and gene sequence and responsible for precise guidance of Cas9 to the locus. editing therapies. However, long-term expression of DNA- However, ultimate target DNA cleavage is only initiated if a proto- modifying enzymes can be associated with cytotoxicity and is spacer adjacent motif (PAM) is located next to the target sequence. particularly unwanted in clinical gene editing strategies. CRISPR/Cas9 has become a prominent tool in the field of genetic Because current transient expression methods may still suffer engineering, with the most commonly used representative derived from cytotoxicity and/or low efficiency, we developed non-inte- from Streptococcus pyogenes (Sp).5 To enable CRISPR/Cas9-based grating retrovirus-based CRISPR/Cas9 all-in-one particles for genome editing in eukaryotic cells, the SpCas9 coding sequence targeted gene knockout.
    [Show full text]
  • <I>Porcine Teschovirus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Other Publications in Zoonotics and Wildlife Disease Wildlife Disease and Zoonotics 2012 Diagnosis of Porcine teschovirus encephalomyelitis in the Republic of Haiti Ming Y. Deng U.S. Department of Agriculture, [email protected] Max Millien Ministry of Agriculture Rodney Jacques-Simon Ministry of Agriculture J. Keith Flanagan Institute of International Cooperation in Agriculture Alexa J. Bracht U.S. Department of Agriculture See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub Part of the Veterinary Infectious Diseases Commons Deng, Ming Y.; Millien, Max; Jacques-Simon, Rodney; Flanagan, J. Keith; Bracht, Alexa J.; Corrillo, Consuelo; Barrette, Roger W.; Fabian, Andrew; Mohamed, Fawzi; Moran, Karen; Rowland, Jessica; Swenson, Sabrina L.; Jenkins-Moore, Melinda; Koster, Leo; Thomsen, Bruce V.; Mayr, Gregory; Pyburn, Dave; Morales, Paula; Shaw, John; Burrage, Thomas; White, William; McIntosh, Michael T.; and Metwally, Samia, "Diagnosis of Porcine teschovirus encephalomyelitis in the Republic of Haiti" (2012). Other Publications in Zoonotics and Wildlife Disease. 159. https://digitalcommons.unl.edu/zoonoticspub/159 This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ming Y. Deng, Max Millien, Rodney Jacques-Simon, J. Keith Flanagan, Alexa J. Bracht, Consuelo Corrillo, Roger W. Barrette, Andrew Fabian, Fawzi Mohamed, Karen Moran, Jessica Rowland, Sabrina L. Swenson, Melinda Jenkins-Moore, Leo Koster, Bruce V.
    [Show full text]
  • Characterization of Strain PTV-2 USA/IA65463/2014 and Strain PTV-11 USA/IA09592/2013 of Teschovirus A: Experimental Inoculation
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Characterization of strain PTV-2 USA/IA65463/ 2014 and strain PTV-11 USA/IA09592/2013 of Teschovirus A: Experimental inoculation, distribution of nucleic acids and development of Teschovirus encephalomyelitis Franco S. Matias Ferreyra Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Veterinary Medicine Commons, and the Virology Commons Recommended Citation Matias Ferreyra, Franco S., "Characterization of strain PTV-2 USA/IA65463/2014 and strain PTV-11 USA/IA09592/2013 of Teschovirus A: Experimental inoculation, distribution of nucleic acids and development of Teschovirus encephalomyelitis" (2017). Graduate Theses and Dissertations. 15572. https://lib.dr.iastate.edu/etd/15572 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Characterization of strain PTV-2 USA/IA65463/2014 and strain PTV-11 USA/IA09592/2013 of Teschovirus A: Experimental inoculation, distribution of nucleic acids and development of Teschovirus encephalomyelitis by Franco S. Matias Ferreyra A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Preventive Medicine Program of Study Committee: Paulo H. Elias-Arruda, Major Professor Phillip C. Gauger Bailey L. Arruda The student author and the program of study committee are solely responsible for the content of this thesis.
    [Show full text]
  • A Potential Drug Target for Inhibiting Virus Replication
    Old Dominion University ODU Digital Commons Chemistry & Biochemistry Theses & Dissertations Chemistry & Biochemistry Winter 2018 Structure of the Picornavirus Replication Platform: A Potential Drug Target for Inhibiting Virus Replication Meghan Suzanne Warden Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/chemistry_etds Part of the Biochemistry Commons, Chemistry Commons, Epidemiology Commons, and the Physiology Commons Recommended Citation Warden, Meghan S.. "Structure of the Picornavirus Replication Platform: A Potential Drug Target for Inhibiting Virus Replication" (2018). Doctor of Philosophy (PhD), Dissertation, Chemistry & Biochemistry, Old Dominion University, DOI: 10.25777/wyvk-8b21 https://digitalcommons.odu.edu/chemistry_etds/22 This Dissertation is brought to you for free and open access by the Chemistry & Biochemistry at ODU Digital Commons. It has been accepted for inclusion in Chemistry & Biochemistry Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. STRUCTURE OF THE PICORNAVIRUS REPLICATION PLATFORM: A POTENTIAL DRUG TARGET FOR INHIBITING VIRUS REPLICATION by Meghan Suzanne Warden B.S. May 2011, Lambuth University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY CHEMISTRY OLD DOMINION UNIVERSITY December 2018 Approved by: Steven M. Pascal (Director) Lesley H. Greene (Member) Hameeda Sultana (Member) James W. Lee (Member) John B. Cooper (Member) ABSTRACT STRUCTURE OF THE PICORNAVIRUS REPLICATION PLATFORM: A POTENTIAL DRUG TARGET FOR INHIBITING VIRUS REPLICATION Meghan Suzanne Warden Old Dominion University, 2018 Director: Dr. Steven M. Pascal Picornaviruses are small, positive-stranded RNA viruses, divided into twelve different genera.
    [Show full text]
  • Pathogen Host Interactions: Proteomics of Influenza NEP During Infection Reveals an Antagonistic Role in the Formation of Tight Junctions
    Pathogen host interactions: proteomics of Influenza NEP during infection reveals an antagonistic role in the formation of tight junctions Garrett Robert Poshusta A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: John Aitchison, Chair Wilhelmus Hol Kenneth Stuart Program Authorized to Offer Degree: Biochemistry ©Copyright 2015 Garrett Robert Poshusta University of Washington Abstract Pathogen host interactions: proteomics of Influenza NEP during infection reveals an antagonistic role in the formation of tight junctions Garrett Robert Poshusta Chair of the Supervisory Committee: Affiliate Professor John Aitchison Department of Biochemistry Host-pathogen interaction networks are key to understanding the molecular mechanisms driving disease and can provide new targets for therapeutic intervention. We discovered new host factors interacting with the influenza nuclear export protein (NEP) using an engineered influenza virus expressing NEP with an N-terminal 3xFLAG tag. We collected immunopurification mass spectrometry data for 3xFLAG-NEP during an active infection and during plasmid expression in HEK293T cells. Network analysis of these complementary datasets revealed an enrichment of tight junction proteins in the NEP interactome. Expression of NEP in MDCK cells results in inhibition of tight junction formation as measured by transepithelial electrical resistance and inulin diffusion across the polarized cell monolayer. These findings reveal
    [Show full text]