ÖMG Conference 2019 Program and Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

ÖMG Conference 2019 Program and Book of Abstracts www.oemg.ac.at/Tagungen/2019 ÖMG Conference 2019 University of Applied Sciences Vorarlberg © Popp Hackner / Vorarlberg Tourismus September 16 — 20, 2019 University of Applied Sciences Vorarlberg CAMPUS V, Hochschulstrasse 1, 6850 Dornbirn, Austria Program and Book of Abstracts www.fhv.at, [email protected] ÖMG-Conference 2019 ÖMG-Conference University of Applied Sciences Vorarlberg, Dornbirn September 16–20, 2019 Program and Book of Abstracts Contents Welcome 9 Sponsor and Cooperation Partners 11 Conference Opening 13 General Information 15 Conference Location . 15 Conference and Registration Desk . 15 Registration . 15 Information for Speakers . 16 Internet Access during the Conference . 16 Lunch and Dinner . 16 Coffee Breaks . 17 Getting there and around . 18 Information about the Conference Venue Dornbirn . 19 Information about the University of Applied Sciences Vorarlberg . 19 Floor Plans . 20 Conference Organization and Committees 21 Program Committee . 21 Local Organizing Committee . 21 Organizers of Minisymposia . 22 Sections Coordinators . 22 LehrerInnen-Tag . 23 Hochschul-Tag . 23 Meetings and Public Program 25 General Assembly, ÖMG . 25 1 2 Contents Public Lecture . 25 Side Events 27 LehrerInnen-Tag 2019 . 27 Hochschul-Tag 2019 . 27 Social Program 29 Reception . 29 Conference Dinner . 29 Excursion . 30 Public Lecture . 30 Program Overview and Detailed Program of Minisymposia and Sections 33 Program Overview . 34 Timetables Monday, September 16 . 36 Timetables Tuesday, September 17 . 38 Timetable Wednesday, September 18 . 41 Timetables Thursday, September 19 . 41 ABSTRACTS 43 Plenary Speakers 45 Efstathia Bura: Sufficient Dimension Reduction in high dimensional re- gression and classification ...................... 46 Fritz Gesztesy: The Birman sequence of integral inequalities and some of its refinements ............................. 46 Marlis Hochbruck: On leapfrog-Chebyshev schemes ............ 47 Josef Hofbauer: Permanence of biological systems ............. 47 Özlem Imamoglu: Binary quadratic forms, quadratic fields and Modular forms ................................. 48 Helmut Pottmann: Discrete geometric structures motivated by architecture and computational design ....................... 48 Wilhelm Schlag: On no-return theorems in nonlinear dispersive PDEs .. 49 Susanna Terracini: Spiralling and other solutions in limiting profiles of competition-diffusion systems ..................... 50 Christopher Frei: Average bounds for the `-torsion in class groups of num- ber fields ................................ 51 M1: Industrial and Applied Mathematics 53 Christoph Erath: Efficient solving of a time-dependent interface problem . 54 Contents 3 Klaus Frick: Using extended Kalman Filters for solving non-linear inverse problems ................................ 55 Richard Kowar: Iterative methods for PAT in dissipative media ...... 55 Gerhard Zangerl: Full field inversion in photoacoustic tomography with variable sound speed ......................... 56 Barbara Kaltenbacher: Parameter identification and uncertainty quantifi- cation in stochastic state space models and its application to texture analysis ................................ 57 Lukas Neumann: Block coordinate descent method for ill-posed problems 57 Michael Liebrecht: Process Model for the Industrial Plate Leveling Oper- ation with Special Emphasis on Online Control ........... 58 Dimitri Rothermel: Nonlinear inverse heat transfer problems in modelling the cooling process of heavy plates .................. 58 Philip Sellars: Graph Based Methods for Hyperspectral Image Classification 59 Johannes Schwab: Regularizing Networks for Solving Inverse Problems . 59 Andreas Maier: Known Operator Learning – An Approach to unite Physics, Signal Processing, and Machine Learning ......... 60 M2: Mathematical Finance in the age of Machine Learning 61 Juan-Pablo Ortega: Dynamic and Control Theoretical Aspects of Reservoir Computing ............................... 62 Lyudmila Grigoryeva: Forecasting of Realized (Co)Variances with Reser- voir Computing ............................ 63 Lukas Gonon: Error Bounds for Random Recurrent Neural Networks and General Reservoir Computing Systems ................ 63 Thomas Krabichler: Deep ALM ....................... 64 Anastasis Kratsios: Universal Approximation Theorems .......... 64 Hanna Wutte: Randomized shallow neural networks and their use in un- derstanding gradient descent ..................... 65 Christa Cuchiero: Modeling rough covariance processes ......... 65 Wahid Khosrawi: A Neural Network Approach to Local Stochastic Volatil- ity Calibration ............................. 66 Josef Teichmann: Learning stochastic dynamics by random signatures with applications to mathematical Finance .............. 67 Sara Svaluto-Ferro: Infinite dimensional polynomial jump-diffusions ... 67 Stefan Rigger: Interacting Particle Systems, Default Cascades and the M1-topology .............................. 67 M3: Parallel and Distributed Optimization and Simulation 69 Hayk Shoukourian: Predicting the efficiency of LRZ’s cooling infrastruc- ture using machine learning ..................... 70 4 Contents Philipp Gschwandtner: Towards Multi-objective, Region-based Auto- tuning for Parallel Programs ..................... 70 Thomas Feilhauer: Optimization with the Distributed Execution Framework 71 Klaus Rheinberger: Analyzing Autonomous Demand Side Algorithms with Parallel Computation Frameworks .................. 72 M4: Spectral Theory 73 Thomas Kappeler: On the integrability of the Benjamin-Ono equation with periodic boundary conditions ..................... 74 Alexander Sakhnovich: Discrete Dirac systems: spectral and scattering theories and Verblunsky-type coefficients ............... 74 Aleksey Kostenko: On the absolutely continuous spectrum of generalized indefinite strings ............................ 75 Roland Donninger: Strichartz estimates for the one-dimensional wave equation ................................ 75 Georgi Raikov: Threshold Singularities of the Spectral Shift Function for Geometric Perturbations of a Magnetic Hamiltonian ........ 75 Johanna Michor: Rarefaction and shock waves for the Toda equation ... 76 Mateusz Piorkowski: Riemann-Hilbert approach to asymptotic analysis . 76 Rúben Sousa: Product formulas and convolutions for solutions of Sturm- Liouville equations .......................... 77 Ziping Rao: Optimal Blowup Stability for the Energy Critical Wave Equation 78 M5: Inverse Problems for Partial Differential Equations 79 Markus Haltmeier: NETT: Solving Inverse Problems with Deep Neural Networks ............................... 80 Daniel Obmann: Sparse synthesis regularization using deep neural networks 80 Ronny Ramlau: Singular Value Decomposition for Atmospheric Tomography 80 William Rundell: Determining nonlinear terms in a reaction-diffusion system 81 Frank Hettlich: Identification and Design of EM-Chiral Scattering Obstacles 82 Alexey Agaltsov: Uniqueness and reconstruction in a passive inverse problem of helioseismology ...................... 82 Anne Wald: Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging ................ 83 Gwenael Mercier: On convergence of Total Variation regularized inverse problems ................................ 84 Iwona Piotrowska-Kurczewski: Generalized tolerance regularization ... 85 Francisco Romero Hinrichsen: Dynamical super-resolution with applica- tions to Ultrafast ultrasound imaging ................. 86 Rebecca Klein: Regularizing sequential subspace optimization for the identification of the stored energy of a hyperelastic structure .... 86 Contents 5 Sarah Eberle: Solving the inverse problem of linear elasticity with mono- tonicity methods ............................ 87 M6: Enumerative and Algebraic Combinatorics 89 Wenjie Fang: The Steep-Bounce Zeta Map in Parabolic Cataland ..... 90 Alexander R. Miller: Some results on characters of symmetric groups .. 90 Michael Schlosser: A weight-dependent inversion statistic and Catalan numbers ................................ 91 Manuel Kauers: Making Many More Matrix Multiplication Methods ... 92 Benedikt Stufler: Local convergence of random planar graphs ...... 92 Emma Yu Jin: Exact and asymptotic enumeration of ascent sequences and Fishburn matrices ........................... 93 S01: Logic, Set Theory, and Theoretical Computer Science 95 Marlene Koelbing: Distributivity of forcing notions ............ 96 Johannes Philipp Schürz: Strong measure zero sets on 2k ......... 96 Jonathan Schilhan: The tower spectrum .................. 97 Lorenz Halbeisen: Formen des Auswahlaxioms in der Ringtheorie .... 97 Victor Torres-Pérez: Diamonds, games and cardinal invariants ...... 97 Moritz Müller: Automating Resolution is NP-Hard ............ 98 Salome Schumacher: The relation between two weak choice principles .. 98 Vera Fischer: Independence and almost disjointness ............ 99 Wolfgang Wohofsky: Cardinal characteristics and the Borel Conjecture . 100 S02: Algebra, Discrete Mathematics 101 Alois Panholzer: Label-quantities in trees and mappings ......... 102 Daniel Krenn: Optimal Multi-Pivot Quicksort and its Asymptotic Analysis 102 Michael Wibmer: Galois groups of differential equations ......... 102 Andreas Zastrow: Some observations on Archipelago-Groups ....... 103 S03: Number Theory 105 Kevin Destagnol: Counting points of given degree and bounded height via the height zeta function ........................ 106 Nick Rome: On Serre’s Problem for Conics ................ 106 Christopher Frei: Arithmetic progressions
Recommended publications
  • Arxiv:1903.00779V1 [Math.SP] 2 Mar 2019 O Clrsh¨Dne Prtr ( Schr¨Odinger Operators Scalar for Rn O P29177
    THE INVERSE APPROACH TO DIRAC-TYPE SYSTEMS BASED ON THE A-FUNCTION CONCEPT FRITZ GESZTESY AND ALEXANDER SAKHNOVICH Abstract. The principal objective in this paper is a new inverse approach to general Dirac-type systems of the form ′ y (x,z)= i(zJ + JV (x))y(x,z) (x ≥ 0), ⊤ where y = (y1,...,ym) and (for m1, m2 ∈ N) Im1 0m1×m2 0m1 v J = , V = ∗ , m1 + m2 =: m, 0m2×m1 −Im2 v 0m2 m ×m for v ∈ C1([0, ∞)) 1 2 , modeled after B. Simon’s 1999 inverse approach to half-line Schr¨odinger operators. In particular, we derive the A-equation associated to this Dirac-type system in the (z-independent) form x ∂ ∂ ∗ A(x,ℓ)= A(x,ℓ)+ A(x − t, ℓ)A(0,ℓ) A(t, ℓ) dt (x ≥ 0,ℓ ≥ 0). ∂ℓ ∂x ˆ0 Given the fundamental positivity condition ST > 0 in (1.14) (cf. (1.13) for details), we prove that this integro-differential equation for A( · , · ) is uniquely solvable for initial conditions 1 m ×m A( · , 0) = A( · ) ∈ C ([0, ∞)) 2 1 , m ×m and the corresponding potential coefficient v ∈ C1([0, ∞)) 1 2 can be recovered from A( · , · ) via ∗ v(ℓ) = −iA(0,ℓ) (ℓ ≥ 0). Contents 1. Introduction 1 2. Preliminaries 6 3. The A-Function for Dirac-Type Systems: Part I 7 4. The A-Function for Dirac-Type Systems: Part II 9 5. The A-Equation for Dirac-Type Systems 13 6. The Inverse Approach 15 arXiv:1903.00779v1 [math.SP] 2 Mar 2019 Appendix A. Various Results in Support of Step 2 in the Proof of Theorem 5.1 19 References 29 1.
    [Show full text]
  • Scientific Report for 2012
    Scientific Report for 2012 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - University of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Joachim Schwermer, Jakob Yngvason. Supported by the Austrian Federal Ministry of Science and Research (BMWF) via the University of Vienna. Contents Preface 3 The Institute and its Mission . 3 Scientific activities in 2012 . 4 The ESI in 2012 . 7 Scientific Reports 9 Main Research Programmes . 9 Automorphic Forms: Arithmetic and Geometry . 9 K-theory and Quantum Fields . 14 The Interaction of Geometry and Representation Theory. Exploring new frontiers. 18 Modern Methods of Time-Frequency Analysis II . 22 Workshops Organized Outside the Main Programmes . 32 Operator Related Function Theory . 32 Higher Spin Gravity . 34 Computational Inverse Problems . 35 Periodic Orbits in Dynamical Systems . 37 EMS-IAMP Summer School on Quantum Chaos . 39 Golod-Shafarevich Groups and Algebras, and the Rank Gradient . 41 Recent Developments in the Mathematical Analysis of Large Systems . 44 9th Vienna Central European Seminar on Particle Physics and Quantum Field Theory: Dark Matter, Dark Energy, Black Holes and Quantum Aspects of the Universe . 46 Dynamics of General Relativity: Black Holes and Asymptotics . 47 Research in Teams . 49 Bruno Nachtergaele et al: Disordered Oscillator Systems . 49 Alexander Fel'shtyn et al: Twisted Conjugacy Classes in Discrete Groups . 50 Erez Lapid et al: Whittaker Periods of Automorphic Forms . 53 Dale Cutkosky et al: Resolution of Surface Singularities in Positive Characteristic . 55 Senior Research Fellows Programme . 57 James Cogdell: L-functions and Functoriality . 57 Detlev Buchholz: Fundamentals and Highlights of Algebraic Quantum Field Theory .
    [Show full text]
  • A New Approach to Inverse Spectral Theory, II. General Real Potentials
    Annals of Mathematics, 152 (2000), 593–643 A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure∗ By Fritz Gesztesy and Barry Simon Abstract We continue the study of the A-amplitude associated to a half-line d2 2 Schr¨odinger operator, 2 + q in L ((0, b)), b . A is related to the Weyl- − dx ≤∞ Titchmarsh m-function via m( κ2)= κ a A(α)e 2ακ dα+O(e (2a ε)κ) for − − − 0 − − − all ε> 0. We discuss five issues here. First,R we extend the theory to general q in L1((0, a)) for all a, including q’s which are limit circle at infinity. Second, we prove the following relation between the A-amplitude and the spectral measure 1 ρ: A(α) = 2 ∞ λ− 2 sin(2α√λ) dρ(λ) (since the integral is divergent, this − −∞ formula has toR be properly interpreted). Third, we provide a Laplace trans- form representation for m without error term in the case b < . Fourth, we ∞ discuss m-functions associated to other boundary conditions than the Dirichlet boundary conditions associated to the principal Weyl-Titchmarsh m-function. Finally, we discuss some examples where one can compute A exactly. 1. Introduction In this paper we will consider Schr¨odinger operators d2 (1.1) + q −dx2 in L2((0, b)) for 0 <b< or b = and real-valued locally integrable q. arXiv:math/9809182v2 [math.SP] 1 Sep 2000 ∞ ∞ There are essentially four distinct cases. ∗This material is based upon work supported by the National Science Foundation under Grant No.
    [Show full text]
  • Notices of the American Mathematical Society
    OF THE 1994 AMS Election Special Section page 7 4 7 Fields Medals and Nevanlinna Prize Awarded at ICM-94 page 763 SEPTEMBER 1994, VOLUME 41, NUMBER 7 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe· January 1994 issue of the Notices on page 43. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 895 t October 28-29, 1994 Stillwater, Oklahoma Expired October 896 t November 11-13, 1994 Richmond, Virginia Expired October 897 * January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 3 January 898 * March 4-5, 1995 Hartford, Connecticut December 1 March 899 * March 17-18, 1995 Orlando, Florida December 1 March 900 * March 24-25,
    [Show full text]
  • Dispersive Estimates for Schrödinger Equations and Applications
    Dispersive Estimates for Schr¨odingerEquations and Applications Gerald Teschl Faculty of Mathematics University of Vienna A-1090 Vienna [email protected] http://www.mat.univie.ac.at/~gerald/ Summer School "Analysis and Mathematical Physics" Mexico, May 2017 Gerald Teschl (University of Vienna) Dispersive Estimates Mexico, 2017 1 / 94 References References I. Egorova and E. Kopylova, and G.T., Dispersion estimates for one-dimensional discrete Schr¨odingerand wave equations, J. Spectr. Theory 5, 663{696 (2015). D. Hundertmark, M. Meyries, L. Machinek, and R. Schnaubelt, Operator Semigroups and Dispersive Estimates, Lecture Notes, 2013. H. Kielh¨ofer, Bifurcation Theory, 2nd ed., Springer, New York, 2012. G.T., Ordinary Differential Equations and Dynamical Systems, Amer. Math. Soc., Providence RI, 2012. G.T., Mathematical Methods in Quantum Mechanics; With Applications to Schr¨odinger Operators, 2nd ed., Amer. Math. Soc., Providence RI, 2014. G.T., Topics in Real and Functional Analysis, Lecture Notes 2017. All my books/lecture notes are downloadable from my webpage. Research supported by the Austrian Science Fund (FWF) under Grant No. Y330. Gerald Teschl (University of Vienna) Dispersive Estimates Mexico, 2017 2 / 94 Linear constant coefficient ODEs We begin by looking at the autonomous linear first-order system x_(t) = Ax(t); x(0) = x0; where A is a given n by n matrix. Then a straightforward calculation shows that the solution is given by x(t) = exp(tA)x0; where the exponential function is defined by the usual power series 1 X tj exp(tA) = Aj ; j! j=0 which converges by comparison with the real-valued exponential function since 1 1 X tj X jtjj k Aj k ≤ kAkj = exp(jtjkAk): j! j! j=0 j=0 Gerald Teschl (University of Vienna) Dispersive Estimates Mexico, 2017 3 / 94 Linear constant coefficient ODEs One of the basic questions concerning the solution is the long-time behavior: Does the solutions remain bounded for all times (stability) or does it even converge to zero (asymptotic stability)? This question is usually answered by determining the spectrum (i.e.
    [Show full text]
  • SCIENTIFIC REPORT for the YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 1999 Vienna, ESI-Report 1999 March 1, 2000 Supported by Federal Ministry of Science and Transport, Austria ESI–Report 1999 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2000 Honorary President: Walter Thirring, Tel. +43-1-3172047-15. President: Jakob Yngvason: +43-1-31367-3406. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Doris Garscha, Ursula Sagmeister. Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents Statement on Austria’s current political situation . 2 General remarks . 2 Winter School in Geometry and Physics . 2 ESI - Workshop Geometrical Aspects of Spectral Theory . 3 PROGRAMS IN 1999 . 4 Functional Analysis . 4 Nonequilibrium Statistical Mechanics . 7 Holonomy Groups in Differential Geometry . 9 Complex Analysis . 10 Applications of Integrability . 11 Continuation of programs from 1998 and earlier . 12 Guests via Director’s shares . 13 List of Preprints . 14 List of seminars and colloquia outside of conferences . 25 List of all visitors in the year 1999 .
    [Show full text]
  • Curriculum Vitae
    Isaac B. Michael Curriculum Vitae Education 2019 Ph.D. in Mathematics, Baylor University, Waco, TX. Advisor: Fritz Gesztesy Co-Advisor: Lance Littlejohn Thesis: On Birman–Hardy–Rellich-type Inequalities 2015 M.S. in Mathematics, Baylor University, Waco, TX. 4.0 GPA 2013 B.S. in Mathematics, Tarleton State University, Stephenville, TX. 3.3 GPA; 3.9 Institutional GPA 8-12 Math Teaching Certification Research Interests Primary Analysis (Real, Complex, and Functional), Differential Equations (Ordi- nary and Partial), Spectral Theory, Operator Theory Secondary Deterministic Dynamical Systems, Semigroups, Functional Calculus, Calculus of Variations, Lie Theory Publications and Preprints [1] Net Regular Signed Trees, with M. Sepanski, Australasian Journal of Combinatorics 66(2), 192-204 (2016). [2] On Birman’s Sequence of Hardy–Rellich-Type Inequalities, with F. Gesztesy, L. Littlejohn, and R. Wellman, Journal of Differential Equations 264(4), 2761-2801 (2018). [3] Radial and Logarithmic Refinements of Hardy’s Inequality, with F. Gesztesy, L. Littlejohn, and M. M. H. Pang, Algebra i Analiz, 30(3), 55–65 (2018) (Russian), St. Petersburg Math. J., St. 30, 429–436 (2019) (English). Louisiana State University – Department of Mathematics H (254) 366-6861 • B [email protected] Í math.lsu.edu/∼imichael 1/9 [4] On Weighted Hardy-Type Inequalities, with C. Y. Chuah, F. Gesztesy, L. Littlejohn, T. Mei, and M. M. H. Pang, Math. Ineq. & App. 23(2), 625-646 (2020). [5] A Sequence of Weighted Birman–Hardy–Rellich-type Inequalities with Loga- rithmic Refinements, with F. Gesztesy, L. Littlejohn, and M. M. H. Pang (submitted for publication). [6] Optimality of Constants in Weighted Birman–Hardy–Rellich Inequalities with Logarithmic Refinements, with F.
    [Show full text]
  • New Publications Offered by the AMS
    newpubs-dec00.qxp 10/18/00 12:45 PM Page 1438 New Publications Offered by the AMS composable Hopf algebras over Coxeter groups; D. Nikshych, Algebra and Algebraic A duality theorem for quantum groupoids; M. Ronco, Primitive elements in a free dendriform algebra; S. Sachse, On operator Geometry representations of Uq(isl(2, R)); P. Schauenburg, Duals and doubles of quantum groupoids (×R-Hopf algebras); M. Takeuchi, Survey of braided Hopf algebras; S. Westreich, Inner and outer actions of pointed Hopf algebras; J.-H. Lu, CONTEMPORARY New Trends in Hopf MATHEMATICS Algebra Theory M. Yan, and Y. Zhu, Quasi-triangular structures on Hopf alge- 267 bras with positive bases. New Trends in Nicolás Andruskiewitsch, Contemporary Mathematics, Volume 267 Hopf Algebra Theory Universidad Nacional de Nicolás Andruskiewitsch December 2000, 356 pages, Softcover, ISBN 0-8218-2126-1, Walter Ricardo Ferrer Santos Hans-Jürgen Schneider Córdoba, Argentina, Walter LC 00-045366, 2000 Mathematics Subject Classification: 16W30, Editors Ricardo Ferrer Santos, Centro 16W25, 16W35, 16S40; 16L60, Individual member $45, List THEMAT A IC M A L $75, Institutional member $60, Order code CONM/267N N ΤΡΗΤΟΣ ΜΗ ΕΙΣΙΤΩ A S O C I C R I E de Matemática, Montevideo, E ΑΓΕΩΜΕ T M Y A F OU 88 NDED 18 Uruguay, and Hans-Jürgen American Mathematical Society Schneider, Universität Quantum Linear München, Germany, Editors EMOIRS M of the American Mathematical Society Groups and This volume presents the proceedings from the Colloquium on Volume 149 Number 706 Quantum Groups and Hopf Algebras held in Córdoba Quantum Linear Groups Representations of (Argentina) in 1999.
    [Show full text]
  • Perturbations of Periodic Sturm-Liouville Operators
    Technische Universität Ilmenau Institut für Mathematik Preprint No. M 21/04 Perturbations of periodic Sturm-Liouville operators Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten Juni 2021 URN: urn:nbn:de:gbv:ilm1-2021200075 Impressum: Hrsg.: Leiter des Instituts für Mathematik Weimarer Straße 25 98693 Ilmenau Tel.: +49 3677 69-3621 Fax: +49 3677 69-3270 https://www.tu-ilmenau.de/mathematik/ PERTURBATIONS OF PERIODIC STURM{LIOUVILLE OPERATORS JUSSI BEHRNDT, PHILIPP SCHMITZ, GERALD TESCHL, AND CARSTEN TRUNK Abstract. We study perturbations of the self-adjoint periodic Sturm{Liouville operator 1 d d A0 = − p0 + q0 r0 dx dx and conclude under L1-assumptions on the differences of the coefficients that the essential spectrum and absolutely continuous spectrum remain the same. If a finite first moment condition holds for the differences of the coefficients, then at most finitely many eigenvalues appear in the spectral gaps. This observation extends a seminal result by Rofe-Beketov from the 1960s. Finally, imposing a second moment condition we show that the band edges are no eigenvalues of the perturbed operator. 1. Introduction Consider a periodic Sturm{Liouville differential expression of the form 1 d d τ0 = − p0 + q0 r0 dx dx R 1 R on , where 1=p0; q0; r0 2 Lloc( ) are real-valued and !-periodic, and r0 > 0, p0 > 0 2 a. e. Let A0 be the corresponding self-adjoint operator in the weighted L -Hilbert 2 space L (R; r0) and recall that the spectrum of A0 is semibounded from below, purely absolutely continuous and consists of (finitely or infinitely many) spectral bands; cf.
    [Show full text]
  • Spectral Shift Functions and Some of Their Applications in Mathematical Physics
    Spectral Shift Functions and some of their Applications in Mathematical Physics Fritz Gesztesy (University of Missouri, Columbia, USA) based on collaborations with A. Carey (Canberra), Y. Latushkin (Columbia{MO), K. Makarov (Columbia{MO), D. Potapov (Sydney), F. Sukochev (Sydney), Y. Tomilov (Torun) Quantum Spectra and Transport The Hebrew University of Jerusalem, Israel June 30{July 4, 2013 Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 1 / 29 Outline 1 Krein{Lifshitz SSF 2 SSF Applications 3 Final Thoughts Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 2 / 29 Krein{Lifshitz SSF A short course on the spectral shift function ξ Notation: B(H) denotes the Banach space of all bounded operators on H (a complex, separable Hilbert space). B1(H) denotes the Banach space of all compact operators on H. Bs (H), s ≥ 1, denote the usual Schatten{von Neumann trace ideals. Given two self-adjoint operators H; H0 in H, we assume one of the following (we denote V = [H − H0] whenever dom(H) = dom(H0)): • Trace class assumption: V = [H − H0] 2 B1(H). −1 • Relative trace class: V (H0 − zIH) 2 B1(H). −1 −1 • Resolvent comparable: (H − zIH) − (H0 − zIH) 2 B1(H). Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 3 / 29 Krein{Lifshitz SSF A short course on the spectral shift function ξ The Krein{Lifshitz spectral shift function ξ(λ; H; H0) is a real-valued function on R that satisfies the trace formula: For appropriate functions f , Z 0 trH(f (H) − f (H0)) = f (λ) ξ(λ; H; H0) dλ.
    [Show full text]
  • Lieb-Robinson Bounds for the Toda Lattice
    Lieb-Robinson Bounds for the Toda Lattice Item Type text; Electronic Dissertation Authors Islambekov, Umar Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 18:00:29 Link to Item http://hdl.handle.net/10150/294026 Lieb-Robinson Bounds for the Toda Lattice by Umar Islambekov A Dissertation Submitted to the Faculty of the Department of Mathematics In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In the Graduate College The University of Arizona 2 0 1 3 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the disser- tation prepared by Umar Islambekov entitled Lieb-Robinson Bounds for the Toda Lattice and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: May 9, 2013 Jan Wehr Date: May 9, 2013 Kenneth McLaughlin Date: May 9, 2013 Robert Sims Date: May 9, 2013 Thomas Kennedy Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dis- sertation requirement. Date: May 9, 2013 Robert Sims 3 Statement by Author This dissertation has been submitted in partial fulfillment of re- quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to bor- rowers under rules of the Library.
    [Show full text]
  • Reflectionless Operators: the Deift and Simon Conjectures
    Mathematisches Forschungsinstitut Oberwolfach Report No. 49/2017 DOI: 10.4171/OWR/2017/49 Mini-Workshop: Reflectionless Operators: The Deift and Simon Conjectures Organised by David Damanik, Houston Fritz Gesztesy, Waco Peter Yuditskii, Linz 22 October – 28 October 2017 Abstract. Reflectionless operators in one dimension are particularly amen- able to inverse scattering and are intimately related to integrable systems like KdV and Toda. Recent work has indicated a strong (but not equivalent) relationship between reflectionless operators and almost periodic potentials with absolutely continuous spectrum. This makes the realm of reflectionless operators a natural place to begin addressing Deift’s conjecture on integrable flows with almost periodic initial conditions and Simon’s conjecture on gems of spectral theory establishing correspondences between certain coefficient and spectral properties. Mathematics Subject Classification (2010): 35Q53, 35B15, 47B36, 47A55. Introduction by the Organisers This mini-workshop was organized by David Damanik (Rice), Fritz Gesztesy (Bay- lor), and Peter Yuditskii (Linz). The program consisted of 15 lectures on a broad variety of problems related to the Deift and Simon conjectures, including pertur- bation theory, integrable systems, random matrix theory, character-automorphic Hardy spaces, and orthogonal polynomials. This workshop intended to provide a cutting-edge survey of new results for reflectionless operators, especially those results directed towards addressing Deift’s conjecture regarding the almost pe- riodicity of solutions to the KdV equation with almost-periodic initial data and Simon’s conjecture regarding gems of spectral theory establishing a one-to-one cor- respondence between suitable classes of coefficient data and spectral data. This 2944 Oberwolfach Report 49/2017 forum provided a great background for discussions of some of the extant open problems in the field.
    [Show full text]