A Festschrift in Honor of Barry Simon's 60Th Birthday Quantum Field Theory, Statistical Mechanics, and Nonrelatmstic Quantum Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
286365111.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors PROOF OF THE STRONG SCOTT CONJECTURE FOR CHANDRASEKHAR ATOMS RUPERT L. FRANK, KONSTANTIN MERZ, HEINZ SIEDENTOP, AND BARRY SIMON Dedicated to Yakov Sinai on the occasion of his 85th birthday. Abstract. We consider a large neutral atom of atomic number Z, taking rel- ativistic effects into account by assuming the dispersion relation pc2p2 + c4. We study the behavior of the one-particle ground state density on the length scale Z−1 in the limit Z; c ! 1 keeping Z=c fixed and find that the spher- ically averaged density as well as all individual angular momentum densities separately converge to the relativistic hydrogenic ones. This proves the gen- eralization of the strong Scott conjecture for relativistic atoms and shows, in particular, that relativistic effects occur close to the nucleus. Along the way we prove upper bounds on the relativistic hydrogenic density. 1. Introduction 1.1. Some results on large Z-atoms. The asymptotic behavior of the ground state energy and the ground state density of atoms with large atomic number Z have been studied in detail in non-relativistic quantum mechanics. Soon after the advent of quantum mechanics it became clear that the non- relativistic quantum multi-particle problem is not analytically solvable and of in- creasing challenge with large particle number. This problem was addressed by Thomas [51] and Fermi [11, 12] by developing what was called the statistical model of the atom. The model is described by the so-called Thomas{Fermi functional (Lenz [28]) Z ZZ TF 3 5=3 Z 1 ρ(x)ρ(y) (1) EZ (ρ) := 10 γTFρ(x) − ρ(x) dx + dx dy ; 3 jxj 2 3 3 jx − yj R R ×R | {z } =:D[ρ] 2 2=3 where γTF = (6π =q) is a positive constant depending on the number q of spin states per electron, i.e., physically 2. -
Arxiv:1903.00779V1 [Math.SP] 2 Mar 2019 O Clrsh¨Dne Prtr ( Schr¨Odinger Operators Scalar for Rn O P29177
THE INVERSE APPROACH TO DIRAC-TYPE SYSTEMS BASED ON THE A-FUNCTION CONCEPT FRITZ GESZTESY AND ALEXANDER SAKHNOVICH Abstract. The principal objective in this paper is a new inverse approach to general Dirac-type systems of the form ′ y (x,z)= i(zJ + JV (x))y(x,z) (x ≥ 0), ⊤ where y = (y1,...,ym) and (for m1, m2 ∈ N) Im1 0m1×m2 0m1 v J = , V = ∗ , m1 + m2 =: m, 0m2×m1 −Im2 v 0m2 m ×m for v ∈ C1([0, ∞)) 1 2 , modeled after B. Simon’s 1999 inverse approach to half-line Schr¨odinger operators. In particular, we derive the A-equation associated to this Dirac-type system in the (z-independent) form x ∂ ∂ ∗ A(x,ℓ)= A(x,ℓ)+ A(x − t, ℓ)A(0,ℓ) A(t, ℓ) dt (x ≥ 0,ℓ ≥ 0). ∂ℓ ∂x ˆ0 Given the fundamental positivity condition ST > 0 in (1.14) (cf. (1.13) for details), we prove that this integro-differential equation for A( · , · ) is uniquely solvable for initial conditions 1 m ×m A( · , 0) = A( · ) ∈ C ([0, ∞)) 2 1 , m ×m and the corresponding potential coefficient v ∈ C1([0, ∞)) 1 2 can be recovered from A( · , · ) via ∗ v(ℓ) = −iA(0,ℓ) (ℓ ≥ 0). Contents 1. Introduction 1 2. Preliminaries 6 3. The A-Function for Dirac-Type Systems: Part I 7 4. The A-Function for Dirac-Type Systems: Part II 9 5. The A-Equation for Dirac-Type Systems 13 6. The Inverse Approach 15 arXiv:1903.00779v1 [math.SP] 2 Mar 2019 Appendix A. Various Results in Support of Step 2 in the Proof of Theorem 5.1 19 References 29 1. -
Scientific Report for 2012
Scientific Report for 2012 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - University of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Joachim Schwermer, Jakob Yngvason. Supported by the Austrian Federal Ministry of Science and Research (BMWF) via the University of Vienna. Contents Preface 3 The Institute and its Mission . 3 Scientific activities in 2012 . 4 The ESI in 2012 . 7 Scientific Reports 9 Main Research Programmes . 9 Automorphic Forms: Arithmetic and Geometry . 9 K-theory and Quantum Fields . 14 The Interaction of Geometry and Representation Theory. Exploring new frontiers. 18 Modern Methods of Time-Frequency Analysis II . 22 Workshops Organized Outside the Main Programmes . 32 Operator Related Function Theory . 32 Higher Spin Gravity . 34 Computational Inverse Problems . 35 Periodic Orbits in Dynamical Systems . 37 EMS-IAMP Summer School on Quantum Chaos . 39 Golod-Shafarevich Groups and Algebras, and the Rank Gradient . 41 Recent Developments in the Mathematical Analysis of Large Systems . 44 9th Vienna Central European Seminar on Particle Physics and Quantum Field Theory: Dark Matter, Dark Energy, Black Holes and Quantum Aspects of the Universe . 46 Dynamics of General Relativity: Black Holes and Asymptotics . 47 Research in Teams . 49 Bruno Nachtergaele et al: Disordered Oscillator Systems . 49 Alexander Fel'shtyn et al: Twisted Conjugacy Classes in Discrete Groups . 50 Erez Lapid et al: Whittaker Periods of Automorphic Forms . 53 Dale Cutkosky et al: Resolution of Surface Singularities in Positive Characteristic . 55 Senior Research Fellows Programme . 57 James Cogdell: L-functions and Functoriality . 57 Detlev Buchholz: Fundamentals and Highlights of Algebraic Quantum Field Theory . -
A New Approach to Inverse Spectral Theory, II. General Real Potentials
Annals of Mathematics, 152 (2000), 593–643 A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure∗ By Fritz Gesztesy and Barry Simon Abstract We continue the study of the A-amplitude associated to a half-line d2 2 Schr¨odinger operator, 2 + q in L ((0, b)), b . A is related to the Weyl- − dx ≤∞ Titchmarsh m-function via m( κ2)= κ a A(α)e 2ακ dα+O(e (2a ε)κ) for − − − 0 − − − all ε> 0. We discuss five issues here. First,R we extend the theory to general q in L1((0, a)) for all a, including q’s which are limit circle at infinity. Second, we prove the following relation between the A-amplitude and the spectral measure 1 ρ: A(α) = 2 ∞ λ− 2 sin(2α√λ) dρ(λ) (since the integral is divergent, this − −∞ formula has toR be properly interpreted). Third, we provide a Laplace trans- form representation for m without error term in the case b < . Fourth, we ∞ discuss m-functions associated to other boundary conditions than the Dirichlet boundary conditions associated to the principal Weyl-Titchmarsh m-function. Finally, we discuss some examples where one can compute A exactly. 1. Introduction In this paper we will consider Schr¨odinger operators d2 (1.1) + q −dx2 in L2((0, b)) for 0 <b< or b = and real-valued locally integrable q. arXiv:math/9809182v2 [math.SP] 1 Sep 2000 ∞ ∞ There are essentially four distinct cases. ∗This material is based upon work supported by the National Science Foundation under Grant No. -
Notices of the American Mathematical Society
OF THE 1994 AMS Election Special Section page 7 4 7 Fields Medals and Nevanlinna Prize Awarded at ICM-94 page 763 SEPTEMBER 1994, VOLUME 41, NUMBER 7 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe· January 1994 issue of the Notices on page 43. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 895 t October 28-29, 1994 Stillwater, Oklahoma Expired October 896 t November 11-13, 1994 Richmond, Virginia Expired October 897 * January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 3 January 898 * March 4-5, 1995 Hartford, Connecticut December 1 March 899 * March 17-18, 1995 Orlando, Florida December 1 March 900 * March 24-25, -
On a Paley-Wiener Theorem for the Zs-Akns Scattering Transform
University of Kentucky UKnowledge Theses and Dissertations--Mathematics Mathematics 2013 ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING TRANSFORM Ryan D. Walker University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Walker, Ryan D., "ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING TRANSFORM" (2013). Theses and Dissertations--Mathematics. 9. https://uknowledge.uky.edu/math_etds/9 This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work. -
On the Evolution of Scattering Data Under Perturbations of the Toda Lattice
ON THE EVOLUTION OF SCATTERING DATA UNDER PERTURBATIONS OF THE TODA LATTICE DENIZ BILMAN AND IRINA NENCIU Abstract. We present the results of an analytical and numerical study of the long-time behavior for certain Fermi-Pasta-Ulam (FPU) lattices viewed as perturbations of the completely integrable Toda lattice. Our main tools are the direct and inverse scattering transforms for doubly-infinite Jacobi matrices, which are well-known to linearize the Toda flow. We focus in particular on the evolution of the associated scattering data under the perturbed vs. the unperturbed equations. We find that the eigenvalues present initially in the scattering data converge to new, slightly perturbed eigenvalues under the perturbed dynamics of the lattice equation. To these eigenvalues correspond solitary waves that emerge from the solitons in the initial data. We also find that new eigenvalues emerge from the continuous spectrum as the lattice system is let to evolve under the perturbed dynamics. 1. Introduction The purpose of this work is to numerically investigate the long time behavior of solutions to certain perturbations of the completely integrable Toda lattice. In its wider context, this prob- lem lies within a set of fundamental questions concerning the qualitative features of solutions to nonlinear Hamiltonian partial differential or difference equations (PDEs or P∆Es, respectively). It is well known that in these types of equations several different phenomena can appear over long times, among them blow-up, scattering to the free evolution, or the emergence of stable nonlinear structures, such as solitary waves and breather solutions. A detailed description of any such phe- nomenon often depends on the precise structure of the equation in question. -
November 10, 2019 CURRICULUM VITAE Barry Simon IBM Professor
November 10, 2019 CURRICULUM VITAE Barry Simon IBM Professor of Mathematics and Theoretical Physics California Institute of Technology Pasadena, CA 91125 DATE OF BIRTH: April 16, 1946 EDUCATION A.B., summa cum laude, Harvard College, 1966 Ph.D. (Physics), Princeton University, 1970 POSITIONS AND TEACHING EXPERIENCE ◦ 1969/70 { Instructor, Department of Mathematics, Princeton ◦ 1970/72 { Assistant Professor, Departments of Mathematics and Physics, Princeton ◦ 1972/76 { Associate Professor, Departments of Mathematics and Physics, Princeton ◦ 1972/73 { On leave as Visiting Professor at IHES, Bures-sur-Yvette, France and the ETH, Zurich, Switzerland ◦ 1976/81 { Professor, Departments of Mathematics and Physics, Prince- ton ◦ 1976/77 { On leave as Visiting Professor at Department of Physics, Yeshiva University, NYC ◦ 1980/81 { On leave as a Sherman Fairchild Distinguished Visiting Scholar at California Institute of Technology ◦ 1981/ { Professor of Mathematics and Theoretical Physics, California Institute of Technology ◦ 1984/ { IBM Professor of Mathematics and Theoretical Physics, Cali- fornia Institute of Technology ◦ 2016/ { IBM Professor of Mathematics and Theoretical Physics, Emer- itus, California Institute of Technology HONORARY DEGREES ◦ D.Sc.h.c., Technion-Israel Institute of Technology, 1999 ◦ Honorary Fellow, University of Wales Swansea, 2006 1 ◦ D.h.c., Ludwig-Maximilians-Universit¨atM¨unchen, 2014 HONORS ◦ 1965 Putnam Competition Winner (top five group) ◦ Sloan Foundation Fellow, 1972{76 ◦ Medal of International Academy of Atomic and Molecular Science, 1981 ◦ Fellow, American Physical Society, 1981 ◦ Stampacchia Prize, 1982 ◦ Guggenheim Fellowship, 1988{1989 ◦ Corresponding Member, Austrian Academy of Sciences, 1990 ◦ Fellow, American Academy of Arts and Sciences, 2005 ◦ Poincar´ePrize, 2012 ◦ Fellow, American Math. Society, 2013 ◦ Simons Foundation Fellowship in Mathematics, 2013 ◦ Jew in the City Orthodox Allstars, 2014 (previous honoraries include Joe Lieberman and Jack Lew) ◦ Bolyai Prize of the Hungarian Academy of Sciences, 2015 ◦ American Math. -
Real Analysis a Comprehensive Course in Analysis, Part 1
Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Real Analysis A Comprehensive Course in Analysis, Part 1 http://dx.doi.org/10.1090/simon/001 Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 26-01, 28-01, 42-01, 46-01; Secondary 33-01, 35-01, 41-01, 52-01, 54-01, 60-01. For additional information and updates on this book, visit www.ams.org/bookpages/simon Library of Congress Cataloging-in-Publication Data Simon, Barry, 1946– Real analysis / Barry Simon. pages cm. — (A comprehensive course in analysis ; part 1) Includes bibliographical references and indexes. ISBN 978-1-4704-1099-5 (alk. paper) 1. Mathematical analysis—Textbooks. I. Title. QA300.S53 2015 515.8—dc23 2014047381 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. -
Meetings of the MAA Ken Ross and Jim Tattersall
Meetings of the MAA Ken Ross and Jim Tattersall MEETINGS 1915-1928 “A Call for a Meeting to Organize a New National Mathematical Association” was DisseminateD to subscribers of the American Mathematical Monthly and other interesteD parties. A subsequent petition to the BoarD of EDitors of the Monthly containeD the names of 446 proponents of forming the association. The first meeting of the Association consisteD of organizational Discussions helD on December 30 and December 31, 1915, on the Ohio State University campus. 104 future members attendeD. A three-hour meeting of the “committee of the whole” on December 30 consiDereD tentative Drafts of the MAA constitution which was aDopteD the morning of December 31, with Details left to a committee. The constitution was publisheD in the January 1916 issue of The American Mathematical Monthly, official journal of The Mathematical Association of America. Following the business meeting, L. C. Karpinski gave an hour aDDress on “The Story of Algebra.” The Charter membership included 52 institutions and 1045 inDiviDuals, incluDing six members from China, two from EnglanD, anD one each from InDia, Italy, South Africa, anD Turkey. Except for the very first summer meeting in September 1916, at the Massachusetts Institute of Technology (M.I.T.) in CambriDge, Massachusetts, all national summer anD winter meetings discussed in this article were helD jointly with the AMS anD many were joint with the AAAS (American Association for the Advancement of Science) as well. That year the school haD been relocateD from the Back Bay area of Boston to a mile-long strip along the CambriDge siDe of the Charles River. -
Statistical Theory of the Atom in Momentum Space
STATISTICAL THEORY OF THE ATOM IN MOMENTUM SPACE dissertation an der fakultat¨ fur¨ mathematik, informatik und statistik der ludwig-maximilians-universitat¨ munchen¨ eingereicht von Verena von Conta am 19.11.2014 1. Gutachter: Prof. Dr. Heinz Siedentop 2. Gutachter: Prof. Dr. Simone Warzel Tag der Disputation: 13.04.2015 Zusammenfassung Im Jahre 1992 fuhrte¨ Englert [3] ein Impuls-Energie-Funktional fur¨ Atome ein und er¨orterte seinen Zusammenhang mit dem Thomas- Fermi-Funktional (Lenz [8]). Wir integrieren dieses Modell in eine ma- thematische Umgebung. Unter unseren Resultaten findet sich ein Be- weis fur¨ die Existenz und Eindeutigkeit einer minimierenden Impuls- dichte fur¨ dieses Impuls-Energie-Funktional; des Weiteren untersuchen wir einige Eigenschaften des Minimierers, darunter auch den Zusam- menhang mit der Euler-Gleichung. Wir verknupfen¨ die Minimierer des Thomas-Fermi-Funktionals mit dem Impuls-Energie-Funktional von Englert durch explizite Transfor- mationen. Wie sich herausstellt, k¨onnen auf diese Weise bekannte Er- gebnisse aus dem Thomas-Fermi-Modell direkt auf das von uns be- trachtete Modell ubertragen¨ werden. Wir erhalten sogar die Aquiva-¨ lenz der beiden Funktionale bezuglich¨ ihrer Minima. Abschließend betrachten wir impulsabh¨angige St¨orungen. Insbeson- dere zeigen wir, dass die atomare Impulsdichte fur¨ große Kernladung in einem bestimmten Sinne gegen den Minimierer des Impuls-Energie- Funktionals konvergiert. Die vorliegende Arbeit basiert auf Zusammenarbeit mit Prof. Dr. Heinz Siedentop. Wesentliche Inhalte werden ebenfalls in einer ge- meinsamen Publikation [27] erscheinen. Abstract In 1992, Englert [3] found a momentum energy functional for atoms and discussed the relation to the Thomas-Fermi functional (Lenz [8]). We place this model in a mathematical setting. -
Curriculum Vitae
Isaac B. Michael Curriculum Vitae Education 2019 Ph.D. in Mathematics, Baylor University, Waco, TX. Advisor: Fritz Gesztesy Co-Advisor: Lance Littlejohn Thesis: On Birman–Hardy–Rellich-type Inequalities 2015 M.S. in Mathematics, Baylor University, Waco, TX. 4.0 GPA 2013 B.S. in Mathematics, Tarleton State University, Stephenville, TX. 3.3 GPA; 3.9 Institutional GPA 8-12 Math Teaching Certification Research Interests Primary Analysis (Real, Complex, and Functional), Differential Equations (Ordi- nary and Partial), Spectral Theory, Operator Theory Secondary Deterministic Dynamical Systems, Semigroups, Functional Calculus, Calculus of Variations, Lie Theory Publications and Preprints [1] Net Regular Signed Trees, with M. Sepanski, Australasian Journal of Combinatorics 66(2), 192-204 (2016). [2] On Birman’s Sequence of Hardy–Rellich-Type Inequalities, with F. Gesztesy, L. Littlejohn, and R. Wellman, Journal of Differential Equations 264(4), 2761-2801 (2018). [3] Radial and Logarithmic Refinements of Hardy’s Inequality, with F. Gesztesy, L. Littlejohn, and M. M. H. Pang, Algebra i Analiz, 30(3), 55–65 (2018) (Russian), St. Petersburg Math. J., St. 30, 429–436 (2019) (English). Louisiana State University – Department of Mathematics H (254) 366-6861 • B [email protected] Í math.lsu.edu/∼imichael 1/9 [4] On Weighted Hardy-Type Inequalities, with C. Y. Chuah, F. Gesztesy, L. Littlejohn, T. Mei, and M. M. H. Pang, Math. Ineq. & App. 23(2), 625-646 (2020). [5] A Sequence of Weighted Birman–Hardy–Rellich-type Inequalities with Loga- rithmic Refinements, with F. Gesztesy, L. Littlejohn, and M. M. H. Pang (submitted for publication). [6] Optimality of Constants in Weighted Birman–Hardy–Rellich Inequalities with Logarithmic Refinements, with F.