On Antihyperon-Hyperon Production in Antiproton-Proton Collisions with the PANDA Experiment

Total Page:16

File Type:pdf, Size:1020Kb

On Antihyperon-Hyperon Production in Antiproton-Proton Collisions with the PANDA Experiment On Antihyperon-Hyperon Production in Antiproton-Proton Collisions with the PANDA Experiment A Thesis submitted for the degree of Master of Science in Engineering Physics Catarina E. Sahlberg Department of Nuclear and Particle Physics Uppsala University March 2007 2 Abstract The PANDA project is an international particle physics collaboration, aimed at investigating unsolved questions regarding the strong interaction. This will be done through the construction of a state-of-the-art particle detector, to allow detection of particles produced in antiproton-proton annihilation in experiments planned to be preformed at the future FAIR research centre in Darmstadt, Germany. The aim of this work is to contribute to the development of a software for simulations of reactions in the PANDA experiment. An event generator for the reaction pp → ΛΛ → pπ+pπ− was created, with regard to spin observables and target properties. Experimental information for the differential cross sec- tion of the pp → ΛΛ reaction, Λ/Λ-polarisation and Λ-Λ spin correlation was considered. ii Contents 1 Introduction 1 2 Theoretical Background 3 2.1 Introduction . 3 2.2 Matter Particles . 3 2.2.1 Quarks . 3 2.2.2 Leptons . 4 2.3 Forces and Force Carriers . 4 2.4 Hadrons . 6 2.4.1 The Quark Model . 6 2.4.2 Hadrons within the Quark Model . 6 2.4.3 Exotic Hadrons . 9 2.5 Open Questions . 9 2.5.1 Confinement . 9 2.5.2 The Origin of Mass . 9 2.6 Symmetries . 10 2.6.1 Parity . 10 2.6.2 Charge conjugation . 10 2.6.3 Time Reversal . 11 2.6.4 G-parity . 11 2.6.5 Broken Symmetries . 11 2.7 Note on the Units . 12 3 The PANDA Project 13 3.1 Introduction . 13 3.2 Physical Motivation . 14 3.3 FAIR . 14 3.4 Detector . 15 3.4.1 Interaction Region . 15 3.4.2 Target Spectrometer . 16 3.4.3 Forward Spectrometer . 17 3.5 Software . 18 4 The pp → ΛΛ → pπ+pπ− Reaction 19 4.1 The pp System . 19 4.2 The pp → ΛΛ Reaction . 20 4.2.1 Coordinate System . 21 4.2.2 Production Kinematics . 22 iii 4.2.3 Spin Observables . 24 4.2.4 Symmetries . 27 4.2.5 Cross Section . 28 4.3 Decay of Λ . 30 4.3.1 The Λ → pπ− Decay Channel . 31 4.3.2 Angular Distribution . 32 5 Simulations 35 5.1 Introduction . 35 5.2 Event Generation . 35 5.2.1 Extended Target . 36 5.2.2 Decay Vertices . 37 5.2.3 Differential Cross Section . 41 5.2.4 Polarisation . 42 5.2.5 Spin Correlations . 48 5.3 Reconstruction . 51 5.3.1 Extended Target . 51 5.3.2 Momentum of Λ from Opening Angles . 51 5.3.3 Production Angle of Λ.................... 56 6 Conclusion and Outlook 61 6.1 Summary and Conclusion . 61 6.2 Outlook . 62 A Statistics 69 A.1 The Method of Moments . 69 A.2 Weighting . 70 A.3 Random Number Generation . 70 A.3.1 Transformation Method . 70 A.3.2 Rejection Method . 71 B Relativistic Kinematics 73 B.1 Four-vectors . 73 B.2 Reference Frames . 74 B.3 Lorentz Transformation . 74 B.4 Mandelstam Variables . 75 B.4.1 Invariant Mass . 76 B.4.2 Four-momentum Transfer . 76 C Momentum in two-body decay 79 iv Chapter 1 Introduction In 1947, during an experiment studying the interactions of cosmic rays, G. Rochester and C. Butler discovered a new type of particle. The particle had a surprisingly long life time, approximately 13 orders of magnitude longer than what had been expected. This property of the particle along with the fact that it decayed via the weak interaction although being produced through the strong interaction, puzzled scientists. In the following years Rochester and Butler found other particles which showed similar such strange properties. These particle were assigned a property dubbed strangeness, and the particles were later to be referred to as ’strange particles’. [1] The discovery of the strange particles caused great excitement at the time, since they indicated the existence of a new form of matter which was completely unexpected at the time.[2] With this and other contemporary discoveries, the notion of a ’particle zoo’ was created, which referred to the multitude of new particles that were being discovered.[1] In 1964 Gell-Mann postulated the exis- tence of quarks to organize these particles, which lay the foundation of modern particle physics. Today, particle physics is one of the most active and expanding fields of physics. It sets out to explain the universal principles that govern even every- day phenomena by studies of the most elementary levels of the universe. The goal of particle physics is to gain understanding of the building blocks of matter and the forces between these that makes them stay together. To address ques- tions regarding these issues, particle physicists seek to create experiments that might show properties of the elementary interactions, by isolating and identify- ing reactions between elementary particles. Although experiments studying naturally occurring particles for instance in cosmic rays, similar to the experiments of Rochester and Butler, are still performed, most of the particle physics experiments today are made in large accelerator facilities. Here a beam of particles is created, and then sent to collide with another beam of particles or a slab of some material. The reactions between the beam particles and the colliding particles are then carefully detected and analysed. All of these experiments rely on sophisticated detectors that employ a range of advanced technologies to measure and record particle properties. In Germany, a new particle accelerator facility called FAIR (Facility for Antiproton and Ion Research) is being built that will be able to produce beams of antiprotons with higher intensities and energy resolutions than ever before. 1 It will be suited for a number of experiments, of which the PANDA experiment is one of the most prominent. The PANDA project is focused on developing a state-of-the-art particle detector to be used in the accelerator to study the properties of the force that enables the production of strange particles, the strong force. It will make use of a beam of antiprotons accelerated to high momenta, colliding with an internal target of protons. The aim of this Diploma thesis is to make a contribution to the development of a computer framework for simulations of the reactions thought to take place at the PANDA detector. This work has focused on the production of the light- est antihyperon-hyperon pair decaying to a proton-pion and an antiproton-pion pair, i.e. the reaction pp → ΛΛ → pπ+pπ− – where the Λ particle happens to be the second of the strange particles discovered by Rochester and Butler. The work includes the construction of an event generator for this reaction, with particles produced according to distributions based on experimentally deter- mined differential cross sections, polarisations and spin correlations. Regard has also been taken to the properties of the two main target types envisioned for PANDA. Although the work is limited to the discussion of Λ particle pro- duction and decay, the methods presented here should be possible to implement on other production and decay channels as well. This report starts with giving a brief introduction to particle physics in Chapter 2, to make the reader up to date with the theoretical background of the PANDA project. This chapter also treats some of the unresolved questions that explains the importance of the project. The project itself is described in the following chapter. Chapter 4 discusses the theory specific to the simulations that have been investigated and the work with the simulations is described in Chapter 5. The report is finished with a short conclusion and outlook. In the appendices some awkward but relevant theory and derivations are presented. 2 Chapter 2 Theoretical Background This chapter discusses the general theoretical background for the work. It gives a brief introduction to the Standard Model of particle physics (Section 2.1), and thereafter a description of the different parts of this theory: fundamental particles (Section 2.2), force carriers (Section 2.3) and non-elementary particles (Section 2.4). This is completed with a discussion of some of the complications with the Standard Model and some remaining question within the field of hadron physics (Section 2.5). The chapter is ended with a discussion of symmetries in quantum mechanics (Section 2.6) and a note on the units used in this work (Section 2.7). 2.1 Introduction The so-called Standard Model of Particles and Forces is a quantum field theory that describes all the current knowledge about particle physics. It describes the fundamental particles, of which all matter is composed, and the interaction be- tween these. The Standard Model includes 12 fundamental matter particles and their antiparticles, 12 force carrying particles that are responsible for the inter- action between the matter particles, as well as a number of thus far unobserved particles that has been predicted based on the theory. 2.2 Matter Particles The fundamental particles that make up the matter of the world can be orga- nized in two groups, the quarks and the leptons. These are both fermions1 of spin 1/2 and, as far as we know point-like. 2.2.1 Quarks There are six known quarks, ordered in three different categories, or generations, depending on their mass and charge properties (see Table 2.1). The first gen- eration of quarks consists of the light up (u) and down (d) quarks, the second generation of the strange (s) and the charm (c) quark, and the third generation of the heavy bottom (b) and top (t) quarks.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Introduction to Particle Physics
    SFB 676 – Projekt B2 Introduction to Particle Physics Christian Sander (Universität Hamburg) DESY Summer Student Lectures – Hamburg – 20th July '11 Outline ● Introduction ● History: From Democrit to Thomson ● The Standard Model ● Gauge Invariance ● The Higgs Mechanism ● Symmetries … Break ● Shortcomings of the Standard Model ● Physics Beyond the Standard Model ● Recent Results from the LHC ● Outlook Disclaimer: Very personal selection of topics and for sure many important things are left out! 20th July '11 Introduction to Particle Physics 2 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 233 … für Chester war das nur ein Weg das Geld für das eigentlich theoretische Zeugs aufzubringen, was ihn interessierte … die Erforschung Dunkler Materie, …ähm… Quantenpartikel, Neutrinos, Gluonen, Mesonen und Quarks. Subatomare Teilchen Die Geheimnisse des Universums! Theoretisch gesehen sind sie sogar die Bausteine der Wirklichkeit ! Aber niemand weiß, ob sie wirklich existieren !? 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 234 The First Particle Physicist? By convention ['nomos'] sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void. Democrit, * ~460 BC, †~360 BC in Abdera Hypothesis: ● Atoms have same constituents ● Atoms different in shape (assumption: geometrical shapes) ● Iron atoms are solid and strong with hooks that lock them into a solid ● Water atoms are smooth and slippery ● Salt atoms, because of their taste, are sharp and pointed ● Air atoms are light and whirling, pervading all other materials 20th July '11 Introduction to Particle Physics 5 Corpuscular Theory of Light Light consist out of particles (Newton et al.) ↕ Light is a wave (Huygens et al.) ● Mainly because of Newtons prestige, the corpuscle theory was widely accepted (more than 100 years) Sir Isaac Newton ● Failing to describe interference, diffraction, and *1643, †1727 polarization (e.g.
    [Show full text]
  • Exploring the Spectrum of QCD Using a Space-Time Lattice
    ExploringExploring thethe spectrumspectrum ofof QCDQCD usingusing aa spacespace--timetime latticelattice Colin Morningstar (Carnegie Mellon University) New Theoretical Tools for Nucleon Resonance Analysis Argonne National Laboratory August 31, 2005 August 31, 2005 Exploring spectrum (C. Morningstar) 1 OutlineOutline z spectroscopy is a powerful tool for distilling key degrees of freedom z calculating spectrum of QCD Æ introduction of space-time lattice spectrum determination requires extraction of excited-state energies discuss how to extract excited-state energies from Monte Carlo estimates of correlation functions in Euclidean lattice field theory z applications: Yang-Mills glueballs heavy-quark hybrid mesons baryon and meson spectrum (work in progress) August 31, 2005 Exploring spectrum (C. Morningstar) 2 MonteMonte CarloCarlo methodmethod withwith spacespace--timetime latticelattice z introduction of space-time lattice allows Monte Carlo evaluation of path integrals needed to extract spectrum from QCD Lagrangian LQCD Lagrangian of hadron spectrum, QCD structure, transitions z tool to search for better ways of calculating in gauge theories what dominates the path integrals? (instantons, center vortices,…) construction of effective field theory of glue? (strings,…) August 31, 2005 Exploring spectrum (C. Morningstar) 3 EnergiesEnergies fromfrom correlationcorrelation functionsfunctions z stationary state energies can be extracted from asymptotic decay rate of temporal correlations of the fields (in the imaginary time formalism) Ht −Ht z evolution in Heisenberg picture φ ( t ) = e φ ( 0 ) e ( H = Hamiltonian) z spectral representation of a simple correlation function assume transfer matrix, ignore temporal boundary conditions focus only on one time ordering insert complete set of 0 φφ(te) (0) 0 = ∑ 0 Htφ(0) e−Ht nnφ(0) 0 energy eigenstates n (discrete and continuous) 2 −−()EEnn00t −−()EEt ==∑∑neφ(0) 0 Ane nn z extract A 1 and E 1 − E 0 as t → ∞ (assuming 0 φ ( 0 ) 0 = 0 and 1 φ ( 0 ) 0 ≠ 0) August 31, 2005 Exploring spectrum (C.
    [Show full text]
  • Interactions of Antiprotons with Atoms and Molecules
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1988 INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES Mitio Inokuti Argonne National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Inokuti, Mitio, "INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES" (1988). US Department of Energy Publications. 89. https://digitalcommons.unl.edu/usdoepub/89 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. /'Iud Tracks Radial. Meas., Vol. 16, No. 2/3, pp. 115-123, 1989 0735-245X/89 $3.00 + 0.00 Inl. J. Radial. Appl .. Ins/rum., Part D Pergamon Press pic printed in Great Bntam INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES* Mmo INOKUTI Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. (Received 14 November 1988) Abstract-Antiproton beams of relatively low energies (below hundreds of MeV) have recently become available. The present article discusses the significance of those beams in the contexts of radiation physics and of atomic and molecular physics. Studies on individual collisions of antiprotons with atoms and molecules are valuable for a better understanding of collisions of protons or electrons, a subject with many applications. An antiproton is unique as' a stable, negative heavy particle without electronic structure, and it provides an excellent opportunity to study atomic collision theory.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41.
    [Show full text]
  • ANTIPROTON and NEUTRINO PRODUCTION ACCELERATOR TIMELINE ISSUES Dave Mcginnis August 28, 2005
    ANTIPROTON AND NEUTRINO PRODUCTION ACCELERATOR TIMELINE ISSUES Dave McGinnis August 28, 2005 INTRODUCTION Most of the accelerator operating period is devoted to making antiprotons for the Collider program and accelerating protons for the NUMI program. While stacking antiprotons, the same Main Injector 120 GeV acceleration cycle is used to accelerate protons bound for the antiproton production target and protons bound for the NUMI neutrino production target. This is designated as Mixed-Mode operations. The minimum cycle time is limited by the time it takes to fill the Main Injector with two Booster batches for antiproton production and five Booster batches for neutrino production (7 x 0.067 seconds) and the Main Injector ramp rate (~ 1.5 seconds). As the antiproton stack size grows, the Accumulator stochastic cooling systems slow down which requires the cycle time to be lengthened. The lengthening of the cycle time unfortunately reduces the NUMI neutrino flux. This paper will use a simple antiproton stacking model to explore some of the tradeoffs between antiproton stacking and neutrino production. ACCUMULATOR STACKTAIL SYSTEM After the target, antiprotons are injected into the Debuncher ring where they undergo a bunch rotation and are stochastically pre-cooled for injection into the Accumulator. A fresh beam pulse injected into the Accumulator from the Debuncher is merged with previous beam pulses with the Accumulator StackTail system. This system cools and decelerates the antiprotons until the antiprotons are captured by the core cooling systems as shown in Figure 1. The antiproton flux through the Stacktail system is described by the Fokker –Plank equation ∂ψ ∂φ = − (1) ∂t ∂E where φ the flux of particles passing through the energy E and ψ is the particle density of the beam at energy E.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Baryon and Lepton Number Anomalies in the Standard Model
    Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark.
    [Show full text]
  • Detection of a Hypercharge Axion in ATLAS
    Detection of a Hypercharge Axion in ATLAS a Monte-Carlo Simulation of a Pseudo-Scalar Particle (Hypercharge Axion) with Electroweak Interactions for the ATLAS Detector in the Large Hadron Collider at CERN Erik Elfgren [email protected] December, 2000 Division of Physics Lule˚aUniversity of Technology Lule˚a, SE-971 87, Sweden http://www.luth.se/depts/mt/fy/ Abstract This Master of Science thesis treats the hypercharge axion, which is a hy- pothetical pseudo-scalar particle with electroweak interactions. First, the theoretical context and the motivations for this study are discussed. In short, the hypercharge axion is introduced to explain the dominance of matter over antimatter in the universe and the existence of large-scale magnetic fields. Second, the phenomenological properties are analyzed and the distin- guishing marks are underlined. These are basically the products of photons and Z0swithhightransversemomentaandinvariantmassequaltothatof the axion. Third, the simulation is carried out with two photons producing the axion which decays into Z0s and/or photons. The event simulation is run through the simulator ATLFAST of ATLAS (A Toroidal Large Hadron Col- lider ApparatuS) at CERN. Finally, the characteristics of the axion decay are analyzed and the crite- ria for detection are presented. A study of the background is also included. The result is that for certain values of the axion mass and the mass scale (both in the order of a TeV), the hypercharge axion could be detected in ATLAS. Preface This is a Master of Science thesis at the Lule˚a University of Technology, Sweden. The research has been done at Universit´edeMontr´eal, Canada, under the supervision of Professor Georges Azuelos.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]