An Investigation of Motivational Dysfunctions in a Rat Model Of

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of Motivational Dysfunctions in a Rat Model Of University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 7-1-2020 An Investigation of Motivational Dysfunctions in a Rat Model of Effort-Related Choice Behavior: Behavioral and Neurochemical Evidence for Possible Novel Pharmacological Treatments Renee A. Rotolo University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Rotolo, Renee A., "An Investigation of Motivational Dysfunctions in a Rat Model of Effort-Related Choice Behavior: Behavioral and Neurochemical Evidence for Possible Novel Pharmacological Treatments" (2020). Doctoral Dissertations. 2575. https://opencommons.uconn.edu/dissertations/2575 An Investigation of Motivational Dysfunctions in a Rat Model of Effort-Related Choice Behavior: Behavioral and Neurochemical Evidence for Possible Novel Pharmacological Treatments Renee A. Rotolo, Ph.D. University of Connecticut, 2020 Motivational symptoms such as fatigue, anergia, and amotivation are seen in depression, Parkinson’s disease, schizophrenia, and other disorders. These symptoms are often left untreated by the most frequently prescribed antidepressants, which typically block serotonin transport. Considerable evidence implicates brain dopamine (DA) in the regulation of behavioral activation and effort-related aspects of motivation. Animal studies of effort-based choice are being used to provide formal models of motivational dysfunctions in humans. Drugs that block DA transport (DAT) are able to reverse the effort-related effects of the vesicular monoamine transport inhibitor tetrabenazine, a drug that blocks DA storage and depletes DA. Many of the existing DAT inhibitor drugs are either classic DA blockers such as cocaine, or drugs that also stimulate release of DA. These drugs can produce a number of undesirable side effects, including psychotic symptoms and abuse liability. Thus, there is a need to develop and characterize novel atypical DAT inhibitors that are relatively selective and have unique binding profiles. The completed studies discussed here focus on the behavioral and neurochemical characterization of several recently synthesized atypical DAT inhibitors, with the aim of identifying a novel family of drugs that may be useful for the treatment of motivational dysfunctions in humans, and the development of physiological markers of the selection of high-effort instrumental behavior. In recent years, human imaging and neurophysiological studies have had sought to identify the neural processes involved in motivation, psychomotor retardation, anergia, and lassitude in Renee Rotolo, University of Connecticut, 2020 depression and other disorders. Human studies have suggested that there is frontal electroencephalography (EEG) asymmetry in depressed patients, but physiological correlates of effort-related motivational dysfunction have not been identified in animals. To complement the investigation of effort-related impairments using pharmacological approaches, the final experiment involved the measurement of frontal cortex EEG activity of animals under pharmacological manipulation of DA transmission. Ultimately, the development of a physiological marker of effort-related dysfunction in a preclinical model may be critical for identifying the brain circuits involved in regulating these behaviors that can be readily translated to human studies. Together, results from these experiments may contribute to the identification of novel treatment options for motivational dysfunctions. An Investigation of Motivational Dysfunctions in a Rat Model of Effort-Related Choice Behavior: Behavioral and Neurochemical Evidence for Possible Novel Pharmacological Treatments Renee A. Rotolo B.S., Quinnipiac University, 2013 M.S., Quinnipiac University, 2015 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2020 Copyright by Renee Aidan Rotolo 2020 i APPROVAL PAGE Doctor of Philosophy Dissertation An Investigation of Motivational Dysfunctions in a Rat Model of Effort-Related Choice Behavior: Behavioral and Neurochemical Evidence for Possible Novel Pharmacological Treatments Presented by Renee Aidan Rotolo, B.S., M.S. Major Advisor ___________________________________________________________ John D. Salamone Associate Advisor ________________________________________________________ Etan Markus Associate Advisor ________________________________________________________ James Chrobak University of Connecticut 2020 ii ACKNOWLEDGEMENTS I would like to thank my advisor Dr. John Salamone for his unwavering guidance, support, and reassurance, and for many fun conversations as a member of the team in his lab at UConn. I would also like to acknowledge Dr. Mercè Correa, Dr. Etan Markus, Dr. James Chrobak, and Dr. Gregory Sartor for their support and feedback as my committee members, mentors, and friends. I would like to thank my fellow graduate students, Rose Presby, Jen-Hau Yang, Naixin Ren, and Emma Zorda for their advice, assistance, and camaraderie. A very special thanks goes to Dr. Adrienne Betz, for sparking my love of neuroscience, for introducing me to John, and for remaining an advisor and close friend. Thank you to my friends, family, and husband for their encouraging words, and for keeping me on my toes by constantly asking what my research is about. Thank you to all of the Salamone Lab undergraduates, the animal care staff, and the rats, without whom this work would not be possible. Finally, I would like to thank our collaborators and funding sources: Acadia Pharmaceuticals BlackThorn Therapeutics Chronos Therapeutics Connecticut Institute for Brain and Cognitive Sciences Gert Lubec Laboratory Lundbeck Pharmaceuticals National Institute of Mental Health (NIMH) NIMH R01MH121359; NIMH R03MH112984 University of Connecticut Psychological Sciences Undergraduate Grants University of Connecticut Research Foundation Grants to JD Salamone University of Connecticut Summer Undergraduate Research Fund iii TABLE OF CONTENTS Chapter 1: Background Role of Dopamine (DA) in Motivated Behaviors…………………………………………1 Motivational Aspects of Depression……………………………………………………....2 Pharmacological Models of Fatigue and Anergia in Rats………………………………....3 Classical vs. Atypical Dopamine Transport Inhibitors…………………………………….4 Development of Physiological Measures of Effort-Related Aspects of Motivation……... 6 Present Work………………………………………………………………………………8 Chapter 2: Evaluation of the effort-related effects of chronic administration of the DA D2 receptor antagonist haloperidol via subcutaneous minipumps. Introduction………………………………………………………………………………10 Materials and Methods…………………………………………………………………...12 Results……………………………………………………………………………………15 Figures……………………………………………………………………………………18 Chapter 3: The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Introduction………………………………………………………………………………21 Materials and Methods…………………………………………………………………...24 Results……………………………………………………………………………………30 Figures……………………………………………………………………………………33 Chapter 4: Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Introduction………………………………………………………………………………38 Materials and Methods…………………………………………………………………...41 Results……………………………………………………………………………………48 Figures……………………………………………………………………………………51 Chapter 5: An assessment of the atypical DA transport inhibitor CT-005404 for its ability to reverse the effort-related effects of tetrabenazine, to reverse the effort-related effects of the pro-inflammatory cytokine IL-1β, and to increase progressive ratio responding. Introduction………………………………………………………………………………57 Materials and Methods…………………………………………………………………...60 Results……………………………………………………………………………………67 Figures……………………………………………………………………………………70 iv Chapter 6: Effort-related effects of altering lever pressing ratio requirements, and of tetrabenazine administration, on progressive ratio work output. Introduction………………………………………………………………………………77 Materials and Methods…………………………………………………………………...81 Results……………………………………………………………………………………84 Figures……………………………………………………………………………………86 Chapter 7: Exploration of frontal cortex electrophysiology in freely moving untrained rats: effects of TBZ. Introduction………………………………………………………………………………90 Materials and Methods…………………………………………………………………...94 Results……………………………………………………………………………………97 Figures……………………………………………………………………………………98 Chapter 8: Discussion Summary of Results…………………………………………………………………….101 Chapter 2 Discussion……………………………………………………………….…..103 Chapter 3 Discussion…………………………………………………………….……..108 Chapter 4 Discussion…………………………………………………………….……..114 Chapter 5 Discussion……………………………………………………………….…..118 Chapter 6 Discussion…………………………………………………………….……..122 Chapter 7 Discussion……………………………………………………………….…..125 General Discussion and Conclusions…………………………………………….……..128 Summary of Appendices……………………………………………………………………...133 Appendix 1: Investigation of SSRI-induced fatigue in effort-related choice tasks, and of several selective serotonin receptor antagonists as potential treatment strategies. Introduction……………………………………………………………………………..134 Materials and Methods………………………………………………………………….136 Results…………………………………………………………………………………..137 Discussion………………………………………………………………………………141
Recommended publications
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • Experimental Dopamine Reuptake Inhibitors in Parkinson’S Disease: a Review of the Evidence
    Journal of Experimental Pharmacology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Experimental Dopamine Reuptake Inhibitors in Parkinson’s Disease: A Review of the Evidence This article was published in the following Dove Press journal: Journal of Experimental Pharmacology Thomas Müller Abstract: Parkinson’s disease (PD) is the second most chronic neurodegenerative disorder worldwide. Deficit of monoamines, particularly dopamine, causes an individually varying Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, compilation of motor and non-motor features. Constraint of presynaptic uptake extends 13088, Germany monoamine stay in the synaptic cleft. This review discusses possible benefits of dopamine reuptake inhibition for the treatment of PD. Translation of this pharmacologic principle into positive clinical study results failed to date. Past clinical trial designs did not consider a mandatory, concomitant stable inhibition of glial monoamine turnover, i.e. with mono­ amine oxidase B inhibitors. These studies focused on improvement of motor behavior and levodopa associated motor complications, which are fluctuations of motor and non-motor behavior. Future clinical investigations in early, levodopa- and dopamine agonist naïve patients shall also aim on alleviation of non-motor symptoms, like fatigue, apathy or cognitive slowing. Oral levodopa/dopa decarboxylase inhibitor application is inevitably necessary with advance of PD. Monoamine reuptake (MRT) inhibition improves the efficacy of levodopa, the blood brain barrier crossing metabolic precursor of dopamine. The pulsatile brain delivery pattern of orally administered levodopa containing formulations results in synaptic dopamine variability. Ups and downs of dopamine counteract the physiologic principle of continuous neurotransmission, particularly in nigrostriatal, respectively meso­ corticolimbic pathways, both of which regulate motor respectively non-motor behavior.
    [Show full text]
  • WO 2017/145013 Al 31 August 2017 (31.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/145013 Al 31 August 2017 (31.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 498/04 (2006.01) A61K 31/5365 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 519/00 (2006.01) A61P 25/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/IB20 17/050844 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 15 February 2017 (15.02.2017) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (25) Filing Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (26) Publication Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/298,657 23 February 2016 (23.02.2016) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: PFIZER INC. [US/US]; 235 East 42nd Street, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, New York, New York 10017 (US).
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Metabolism and Pharmacokinetics in the Development of New Therapeutics for Cocaine and Opioid Abuse
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse Pradeep Kumar Vuppala University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Vuppala, Pradeep Kumar, "Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse" (2012). Electronic Theses and Dissertations. 731. https://egrove.olemiss.edu/etd/731 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. METABOLISM AND PHARMACOKINETICS IN THE DEVELOPMENT OF NEW THERAPEUTICS FOR COCAINE AND OPIOID ABUSE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Department of Pharmaceutics The University of Mississippi by PRADEEP KUMAR VUPPALA April 2012 Copyright © 2012 by Pradeep Kumar Vuppala All rights reserved ABSTRACT Cocaine and opioid abuse are a major public health concern and the cause of significant morbidity and mortality worldwide. The development of effective medication for cocaine and opioid abuse is necessary to reduce the impact of this issue upon the individual and society. The pharmacologic treatment for drug abuse has been based on one of the following strategies: agonist substitution, antagonist treatment, or symptomatic treatment. This dissertation is focused on the role of metabolism and pharmacokinetics in the development of new pharmacotherapies, CM304 (sigma-1 receptor antagonist), mitragynine and 7-hydroxymitragynine (µ-opioid receptor agonists), for the treatment of drug abuse.
    [Show full text]
  • A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2007-12-28 A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation Frederick Albert Schroeder University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Enzymes and Coenzymes Commons, Genetic Phenomena Commons, Mental Disorders Commons, Nervous System Commons, and the Therapeutics Commons Repository Citation Schroeder FA. (2007). A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/7bk0-a687. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/370 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. A Dissertation Presented by Frederick Albert Schroeder Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences Worcester, Massachusetts, USA in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 28, 2007 Program in Neuroscience A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs A Dissertation Presented By Frederick Albert Schroeder Approved as to style and content by: _____________________________________ Alonzo Ross, Ph.D., Chair of Committee _____________________________________ Pradeep Bhide, Ph.D., Member of Committee _____________________________________ Craig L.
    [Show full text]
  • Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
    www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10 Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10 Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page 19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles, page 26 Figure S7.
    [Show full text]
  • Characterization of Mice with Altered Dopamine Transporter and Vesicular Monoamine Transporter 2 Levels
    Characterization of Mice with Altered Dopamine Transporter and Vesicular Monoamine Transporter 2 Levels by Shababa Tanzeel Masoud A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Pharmacology and Toxicology University of Toronto © Copyright by Shababa Tanzeel Masoud 2017 Characterization of Mice with Altered Dopamine Transporter and Vesicular Monoamine Transporter 2 Levels Shababa Tanzeel Masoud Doctor of Philosophy Department of Pharmacology and Toxicology University of Toronto 2017 Abstract Dopamine is a key neurotransmitter that regulates motor coordination and dysfunction of the dopamine system gives rise to Parkinson’s disease. Nigrostriatal dopamine neurons are vulnerable to various genetic and environmental insults, suggesting that these cells are inherently at-risk. A cell-specific risk factor for these neurons is the neurotransmitter, dopamine itself. If intracellular dopamine is not appropriately sequestered into vesicles, it can accumulate in the cytosol. Cytosolic dopamine is highly reactive and can trigger oxidative stress, leading to cellular toxicity. Cytosolic dopamine levels are modulated by the plasma membrane dopamine transporter (DAT) that takes up dopamine from the extracellular space, and the vesicular monoamine transporter 2 (VMAT2) that stores dopamine into vesicles. In this thesis, we altered DAT and VMAT2 levels to investigate the detrimental consequences of potentially amplifying cytosolic dopamine in transgenic mice. Project 1 focused on selective over-expression of DAT in dopaminergic cells of transgenic mice (DAT-tg). DAT-tg mice displayed phenotypes of dopaminergic damage: increased dopamine-specific oxidative stress, L-DOPA-reversible fine motor deficits and enhanced sensitivity to toxicant insult, suggesting that increasing DAT- mediated dopamine uptake is detrimental for dopamine cells.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • EUROPEAN COMMISSION Brussels, 11.7.2011 SEC(2011)
    EUROPEAN COMMISSION Brussels, 11.7.2011 SEC(2011) 912 final COMMISSION STAFF WORKING PAPER on the assessment of the functioning of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances Accompanying the document REPORT FROM THE COMMISSION on the assessment of the functioning of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances {COM(2011) 430 final} EN EN TABLE OF CONTENTS 1. Introduction...................................................................................................................3 2. Methodology.................................................................................................................4 3. Key findings from the 2002 evaluation of the Joint Action on synthetic drugs ...........5 4. Overview of notifications, types of substances and trends at EU level 2005-2010......7 5. Other EU legislation relevant for the regulation of new psychoactive substances.....12 6. Functioning of the Council Decision on new psychoactive substances .....................16 7. Findings of the survey among Member States............................................................17 7.1. Assessment of the Council Decision ..........................................................................17 7.2. Stages in the functioning of the Council Decision .....................................................18 7.3. National responses to new psychoactive substances ..................................................20
    [Show full text]
  • Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the Use of Antiemetics Author(S): Dr Annette Edwards (Chai
    Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the use of Antiemetics Author(s): Dr Annette Edwards (Chair) and Deborah Royle on behalf of the Yorkshire Palliative Medicine Clinical Guidelines Group Overall objective : To provide guidance on the evidence for the use of antiemetics in specialist palliative care. Search Strategy: Search strategy: Medline, Embase and Cinahl databases were searched using the words nausea, vomit$, emesis, antiemetic and drug name. Review Date: March 2008 Competing interests: None declared Disclaimer: These guidelines are the property of the Yorkshire Palliative Medicine Clinical Guidelines Group. They are intended to be used by qualified, specialist palliative care professionals as an information resource. They should be used in the clinical context of each individual patient’s needs. The clinical guidelines group takes no responsibility for any consequences of any actions taken as a result of using these guidelines. Contact Details: Dr Annette Edwards, Macmillan Consultant in Palliative Medicine, Department of Palliative Medicine, Pinderfields General Hospital, Aberford Road, Wakefield, WF1 4DG Tel: 01924 212290 E-mail: [email protected] 1 Introduction: Nausea and vomiting are common symptoms in patients with advanced cancer. A careful history, examination and appropriate investigations may help to infer the pathophysiological mechanism involved. Where possible and clinically appropriate aetiological factors should be corrected. Antiemetics are chosen based on the likely mechanism and the neurotransmitters involved in the emetic pathway. However, a recent systematic review has highlighted that evidence for the management of nausea and vomiting in advanced cancer is sparse. (Glare 2004) The following drug and non-drug treatments were reviewed to assess the strength of evidence for their use as antiemetics with particular emphasis on their use in the palliative care population.
    [Show full text]
  • Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
    (19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes.
    [Show full text]