This Is the “Accepted Manuscript” Version of the Following Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CAD Data Exchange
CCAADD DDaattaa EExxcchhaannggee 2255..335533 LLeeccttuurree SSeerriieess PPrrooff.. GGaarryy WWaanngg Department of Mechanical and Manufacturing Engineering The University of Manitoba 1 BBaacckkggrroouunndd Fundamental incompatibilities among entity representations Complexity of CAD/CAM systems CAD interoperability issues and problems cost automotive companies a combined $1 billion per year (Brunnermeier & Martin, 1999). 2 BBaacckkggrroouunndd (cont’d) Intra-company CAD interoperability Concurrent engineering and lean manufacturing philosophies focus on the reduction of manufacturing costs through the outsourcing of components (National Research Council, 2000). 3 IInnffoorrmmaattiioonn ttoo bbee EExxcchhaannggeedd Shape data: both geometric and topological information Non-shape data: graphics data Design data: mass property and finite element mesh data Manufacturing data: NC tool paths, tolerancing, process planning, tool design, and bill of materials (BOM). 4 IInntteerrooppeerraabbiilliittyy MMeetthhooddss Standardized CAD package Standardized Modeling Kernel Point-to-Point Translation: e.g. a Pro/ENGINEER model to a CATIA model. Neutral CAD Format: e.g. IGES (Shape-Based Format ) and STEP (Product Data-Based Format) Object-Linking Technology: Use Windows Object Linking and Embedding (OLE) technology to share model data 5 IInntteerrooppeerraabbiilliittyy MMeetthhooddss (Ibrahim Zeid, 1990) 6 CCAADD MMooddeelliinngg KKeerrnneellss Company/Application ACIS Parasolid Proprietary Autodesk/AutoCAD X CADKey Corp/CADKEY X Dassault Systems/CATIA v5 X IMS/TurboCAD X Parametric Technology Corp. / X Pro/ENGINEER SDRC / I-DEAS X SolidWorks Corp. / SolidWorks X Think3 / Thinkdesign X UGS / Unigraphics X Unigraphics / Solid Edge X Visionary Design System / IronCAD X X (Dr. David Kelly 2003) 7 CCAADD MMooddeelliinngg KKeerrnneellss (cond’t) Parent Subsidiary Modeling Product Company Kernel Parametric Granite v2 (B- Pro/ENGINEER Technology rep based) Corporation (PTC) (www.ptc.com) Dassault Proprietary CATIA v5 Systems SolidWorks Corp. -
A Case Study on CAD/CAM Data Transfer in CIM Environment
3 A Case Study on CAD/CAM data transfer in CIM Environment K. P. Mahadevan J.Mou M R. Henderson D. L. Shunk Department ofI&MSE Arizona State University Tempe, AZ 85287 US.A. Abstract This case study enumerates the steps involved in testing the data exchange among dissimilar CAD systems using a standard exchange mechanism and discusses the level of inter-operability that can be achieved to facilitate successful transfer of CAD data among three CAD software's namely ProlE version 17, I-DEAS Master series version 3.1 and AutoCAD release 13 in a CIM environment. First the Initial Graphics Exchange Specification (IGES) is used as the data exchange mechanism to test these software's using a standard test procedure. The same test procedure is then used to find out the effectiveness of the data exchange between ProlE and I DEAS using a different exchange standard called the Standard For Exchange Of Product Model Data (STEP). AutoCAD does not support STEP. Experimental results show that ProlE and I-DEAS have the capability to share complete CAD information but AutoCAD has some limitations in transferring information on surfaces and solids using IGES. By using the STEP translator, we are able to translate CAD data efficiently one way from ProlE to I-DEAS and vice versa but have some difficulty carrying out back and forth data transfer between tl1em. Computer Applications in Production and Engineering. F. Plonka and G. Oiling (Eds.) © 1997 IflP. Published by Chapman & Hall A case study on CAD/CAM data transfer in C/M environment 21 Keywords Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Integrated Manufacturing (CIM), Inter-operability, Initial Graphics Exchange Specification (IGES), Standard For Exchange Of Product Model Data {STEP). -
Computer-Aided Design from Wikipedia, the Free Encyclopedia "CAD" Redirects Here
Computer-aided design From Wikipedia, the free encyclopedia "CAD" redirects here. For other uses, see CAD (disambiguation). For the currency, see Canadian Dollar. Example: 2D CAD drawing Example: 3D CAD model CAD rendering of Sialk zigguratbased on archeological evidence Computer-aided design (CAD) is the use of computer systems to assist in the creation, [1] modification, analysis, or optimization of adesign. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through [2] documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. Computer-aided design is used in many fields. Its use in designing electronic systems is known as electronic design automation, or EDA. In mechanical design it is known as mechanical design automation (MDA) or computer-aided drafting (CAD), which includes the process of creating [3] a technical drawing with the use of computer software. CAD software for mechanical design uses either vector-based graphics to depict the objects of traditional drafting, or may also produceraster graphics showing the overall appearance of designed objects. However, it involves more than just shapes. As in the manual draftingof technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, andtolerances, according to application-specific conventions. CAD may be used to design curves and figures in two-dimensional (2D) space; or curves, surfaces, [4] and solids in three-dimensional (3D) space. CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, prosthetics, and many more. -
Integrating Design and Manufacturing with Solidworks
CHAPTER TWO INTEGRATING DESIGN AND MANUFACTURING WITH SOLIDWORKS: INTEGRATING WITH 3D CAD SOFTWARE CHAPTER TWO CHAPTER 1: RECAP INTEGRATING In the first of our series of eBooks on Integrating Design and Manufacturing with SOLIDWORKS®, we discussed the advantages offered by adopting an integrated WITH 3D CAD design and manufacturing solution, which can help companies make the transition from design to manufacturing a seamless one, with fewer errors due to translation problems and with less miscommunication between teams due to use of tools that SOFTWARE don’t speak a common language—all of which will translate to boosted productivity, reduced costs, and higher-quality products. In this eBook you’ll learn how SOLIDWORKS CAD can help you bridge the gaps created in the non-integrated approach to design and manufacturing. Integrating Design and Manufacturing with SOLIDWORKS® CHAPTER 2: INTEGRATING WITH 3D CAD SOFTWARE 2 SOLIDWORKS 3D CAD SOLIDWORKS 3D CAD capabilities include: For all your modeling needs whether large or • 3D Solid Modeling turn ideas and concepts into virtual 3D models quickly and easily small, simple or complex. • Conceptual Design begin 3D designs quickly using imported images, simple sketches, or scanned 3D data, and then add more details as the design evolves Effective product design involves a wide range of tasks that demand flexibility in • Assembly Structure Planning: SOLIDWORKS Treehouse quickly lay out your your software. 3D solid modeling offers several advantages over traditional 2D design assembly structure and then export to SOLIDWORKS to automatically design, but you want 3D CAD tools that you can use every day while being powerful create your CAD files enough to handle all the aspects of your design process. -
Integrated Feature-Based and Geometric CAD Data Exchange
ACM Symposium on Solid Modeling and Applications (2004) G. Elber, N. Patrikalakis, P. Brunet (Editors) Integrated Feature-Based and Geometric CAD Data Exchange Steven Spitzy and Ari Rappoportz Abstract Data exchange between CAD systems is an extremely important solid modeling concept, fundamental for both the theory of the field and its practical applications. The two main data exchange (DE) paradigms are geometric and parametric DE. Geometric DE is the ordinary method, in which the boundary representation of the object is exchanged. Parametric (or feature-based) DE is a novel method where, given a parametric history (feature) graph in a source system, the goal is to construct a graph in the target system that results in similar geometry while preserving as much parametric information as possible. Each method has its uses and associated problems. In this paper, we introduce Geometry Per Feature (GPF), a method for integration of parametric and geometric data exchange at the single part (object) level. Features can be exchanged either parametrically or geometrically, according to user guidelines and system constraints. At the target system, the resulting model is represented using a history tree, regardless of the amount of original parametric features that have been rewritten as geometric ones. Using this method we maximize the exchange of overall parametric data and overcome one of the main stumbling blocks for feature-based data exchange. Categories and Subject Descriptors (according to ACM CCS): D.2.12 [Interoperability]: data mapping; I.3.5 [Computational Ge- ometry and Object Modeling]: Breps, CSG, solid, and object representations, geometric languages and systems; I.3.6 [Method- ology and Techniques]: graphics data structures and data types, languages, standards; 1. -
Solidview 2020 Features List
SolidView 2020 Features List SolidView/Lite Features • Windows 7, 8 and 10 support without special graphics hardware. • View, measure and modify SVD files from SolidView/Pro. • View STL, SFX, SolidWorks, OBJ, AMF and VRML CAD files. • Prints all supported file formats. • Assembly viewing tools. SolidView Features • Windows 7, 8 and 10 support without special graphics hardware. • View, measure, modify and rotate SVD, STL, SFX, SolidWorks, OBJ, AMF and VRML CAD files. • Edit and Save SVD files created from SolidView/Pro. • Prints all supported file formats. • Assembly viewing tools. SolidView/Pro Features • Windows 7, 8 and 10 support without special graphics hardware. • Optional interfaces for Pro/E, CATIA, Unigraphics, IGES/ VDA-FS, STEP and other formats. • Export to STL, SVD and 2D image formats. • View, measure, and modify SVD, STL, SFX, SolidWorks, VRML, DWG, PLY, OBJ, AMF, JT and DXF CAD files as well as popular 2D image formats. • 3D dimensioning of edges, faces, arcs, points, objects and assemblies. • Translate, scale, rotate, mirror, verify, copy and combine 3D data. • Collaborative engineering review tools. • Section Measuring – exportable to 2D DXF format. • Scene Editing – create 3D slideshows. • Mold analysis to highlight undercuts and draft. • Paint Function – paint objects, faces, triangles, surfaces, cones, cylinders and shells. • Verify STL integrity for RP applications. • Context sensitive help and PMI support for Pro/E, UG and Catia V5/V6 interfaces. • Prints all supported file formats. • Assembly viewing tools. • Floating and Stand Alone Licensing. • File Compare – compare the differences between two files. • Wall Thickness & Gap Analysis to identify minimum wall and gap areas. • ZoomRP Instant Quote allowing for instant rapid prototype quotes. -
CAD/CAM and the Exchange of Product Data
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CAD/CAM and the Exchange of Product Data N.-J. Høimyr CERN, Geneva, Switzerland Abstract A 3D model defined in a CAD-system is used as a basis for design and product development. The concept of Computer Integrated Manufacturing (CIM) consists of sharing information between different applications used for design and manufacturing of a product so that the requirements of the manufacturing processes are taken into account already at the design stage, allowing shortened product development cycles. Later on in the product’s life-cycle, the same product data could be used to support e.g. maintenance processes. This process requires that different CAx applications can share the same product model. Thus CIM puts stringent demands on the abilities of CAx tools to exchange product data and the methodology used in the design process. The emerging ISO STandard for the Exchange of Product Data (ISO 10303 STEP) addresses some of these needs, while use of existing de-facto standards require a pragmatic approach and careful selection of CAD-tools and planning of design methodology. Keywords: CAD/CAM, Shape Geometry, Product Data, STEP, Engineering, Manufacturing 1 Introduction, CAD-data exchange is often the bottleneck A Computer Aided Design (CAD)-system used to be a computerized drawing automation tool. Nowadays CAD/CAM systems are 3D solid modelling tool which allow for complete definitions of product geometry in an electronic form. This data can be used as a basis for numerous other applications. -
A Brief History of Early Product Data Exchange Standards
NATL INST. OF STAND & TECH R.I.C NIST ' PUBLICATIONS a 1 1 1 o s assbifi N I STIR 62 21 A Brief History of Early Product Data Exchange Standards Barbara L. M. Goldstein Sharon J. Kemmerer Curtis H. Parks U.S. DEPARTMENT OF COMMERCE Technology Administration Electronics & Electrical Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 . U56 NO. 6221 1999 NISTIR 6221 A Brief History of Early Product Data Exchange Standards Barbara L. M. Goldstein Sharon i. Kemmerer Curtis H. Parks U.S. DEPARTMENT OF COMMERCE Technology Administration Electronics & Electrical Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 September 1998 U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary TECHNOLOGY ADMINISTRATION Gary R. Bachula, Acting Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director ABSTRACT The following paper traces the history of product data exchange standards from the physical model through electronic representations such as IGES. This paper provides an understanding of the early efforts leading to ISO 10303—STandard for the Exchange of Product model data (STEP), but does not cover STEP’S development. 1. INTRODUCTION “Before the dawn of the industrial revolution, engineering work was defined by a physical model of a product to be reproduced. For example, a worker manufacturing a rifle barrel would ensure that the dimensions of the barrel corresponded to a model barrel by using calipers to transfer measurements from one to the other. This method reinforced the concept of workers manufacturing specific product types rather than generic components of larger products. -
Interoperability Requirements for CAD Data Transfer in the Autostep Project
lnteroperability Requirements for CAD Data Transfer in the AutoSTEP Project Simon P. Frechette U.S. DEPARTMENT OF COMMERCE TECHNOLOGY ADMINISTRATION National Institute of Standards and Technology Gaithersburg, MD 20899 March 1996 U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L Good, Under Secretary for Technology National Institute of Standards and Technology Arati Pabhakar, Director Contents 1 Introduction 1.1 Purpose of this Document ................................................ 1 1.2 Document Organization ................................................. 1 2 Overview 2.1 AutoSTEP Project ...................................................... 1 2.2 Interoperability Requirements Gathering Project .............................. 2 3 Infrastructure 3.1 Communications ....................................................... 4 3.2 Standards /Formats ..................................................... 5 4 Interoperability Requirements 4.1 Scope ................................................................ 6 4.2 Uses ofCAD Data ..................................................... 6 4.3 PackagingApplication .................................................. 7 4.4 Problems Encountered ................................................. -7 4.5 Requirements for STEP Implementation .................................... 8 4.6 Metrics ............................................................. 10 4.7 Model Complexity .................................................... 11 4.8 User Observations .................................................... -
Initial Graphics Exchange Specifications
Initial Graphics Exchange Specifications Drawings created with Computer-Aided Design Most companies find it difficult to enforce the use of (CAD) tools, which were introduced in the 1960s, a common set of CAD/CAM tools within their organiza- represented tremendous productivity gains over paper tion, much less across (multiple) supply chains and drawings, such as ease to revise and archive. CAD among joint venture partners. Because of the lack of any tools also opened new opportunities, such as enabling common set of tools, a common format for neutral file manufacturing instructions to be derived automatically exchange is needed. Using a neutral standard for and executed directly from the drawing. Nevertheless, as transferring information across systems drastically computer design and manufacturing tools proliferated to reduces the requirements for translators. The cost meet increasingly complex and diverse engineering benefits are suggested by the reduction in necessary needs, so did the formats that each tool used to capture translators shown in Fig. 1. It illustrates that by using a and store product data. While paper drawings can be neutral file exchange, the number of translators marked up by anyone with a pencil, a product model (for N systems) can be reduced from scaling as n (n–1) that cannot be interpreted by the necessary CAD tool to 2n. is useless. For organizations to share designs across In 1979, a series of events catalyzed the CAD vendor various CAD and Computer-Aided Manufacturing and user community to create the first national standard (CAM) tools, their data files must be formatted in a for CAD data exchange, which is documented in the manner that the tool can recognize. -
Evaluate How the STEP Standard AP 242 Could Enable Knowledge Transfer Between CAD and KBE Environments
Evaluate How the STEP Standard AP 242 Could Enable Knowledge Transfer between CAD and KBE Environments Evaluer hvordan STEP standard AP 242 kan muliggjøre konvertering mellom CAD og KBE Jerome Schätzle Mechanical Engineering Submission date: April 2016 Supervisor: Ole Ivar Sivertsen, IPM Norwegian University of Science and Technology Department of Engineering Design and Materials THE NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ENGINEERING DESIGN AND MATERIALS MASTER THESIS AUTUMN 2015 FOR STUD.TECHN. JEROME SCHATZLE EVALUATE HOW THE STEP STANDARD AP 242 COULD ENABLE KNOWLEDGE TRANSFER BETWEEN CAD AND KBE ENVIRONMENTS Evaluer hvordan STEP standard AP 242 kan muliggjare konvettering mellom CAD og KBE The STEP standard provides a framework for representing and exchanging product data independently from any particular system. In the last years there have been several Application Protocols (AP) released in which different functionalities of the standard have been defined. The aerospace and automotive industry respectively drove the development of specific protocols, namely AP 203 and AP 214. The new AP 242 aims at merging these two parallel protocols and at further extending the STEP standard in order to become the cornerstone standard of the cross-process capabilities for interoperability of core engineering design information. The new specifications mainly address the consistent technical product data representation, which is necessary for an effective exchange and long term archiving of this data. A KBE system with its object oriented paradigm offers many advantages in comparison to the classical engineering approach with its standalone tools for CAD, FEM and all the other parts of the engineering process. As some of these standalone tools are well established in the industry and are often well adapted to the specific needs of the customers, it would be of great use to integrate some of these tools into the KBE environment. -
A Feature-Based Method for MBD Model Exchange Among Heterogeneous CAD Systems
Advances in Computer Science Research, volume 71 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) A Feature-based Method for MBD Model Exchange among Heterogeneous CAD Systems Xie Weikang1, a, Zhao Gang1, b, Yu Yong1, c and Wang Yaodong2, d 1 School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China; 2 Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China. [email protected], [email protected], [email protected], [email protected] Keywords: heterogeneous CAD; MBD model; feature-based; data exchange; non-geometric information. Abstract. To solve the problem that missing feature and non-geometric information when MBD (Model Based Definition) model is exchanged among heterogeneous CAD systems, a feature-based heterogeneous MBD model exchange method is proposed considering geometric feature information, non-geometric information and the association between them. Firstly, use a neutral format to express the feature information and non-geometric information of MBD model and the association between them. Secondly, transform the geometric feature information and engineering note information at the same time and maintain the relationship between them through information extraction and reconstruction by using XML (Extensible Markup Language) file as neutral format. Finally, exchange a structural model of a certain type of aircraft between Pro/E and CATIA to verify the validity of the method. 1. Introduction With the rapid development of economic globalization and digitalization technology, collaborative design for complex product by distributed in different locations, belong to different enterprises or departments has become a trend [1]. In the process of product collaborative design, due to reasons of function or economy, different enterprises or departments often choose various CAD systems.