San Diego Astronomy Association Celebrating Over 40 Years of Astronomical Outreach

Total Page:16

File Type:pdf, Size:1020Kb

San Diego Astronomy Association Celebrating Over 40 Years of Astronomical Outreach San Diego Astronomy Association Celebrating Over 40 Years of Astronomical Outreach Office (619) 645-8940 August 2011 Observatory (619) 766-9118 http://www.sdaa.org August Program Meeting A Non-Profit Educational Association P.O. Box 23215, San Diego, CA 92193-3215 Date: August 17th Speaker: Jerry Hilburn SDAA Business Meeting Topic: JUNO - A NASA New Frontiers mission to the Next meeting will be held at: planet Jupiter 3838 Camino del Rio North Scheduled to launch in August 2011 aboard an Atlas V Suite 300 rocket the spacecraft will be placed in a polar orbit around San Diego, CA 92108 Jupiter to study the planet’s composition, gravity field, August 9th at 7pm magnetic field, and polar magnetosphere. Jerry Hilburn will discuss the mission details, science objectives, and answer Next Program Meeting questions about the mission. August 17, 2011 at 7pm San Diego Astronomy Association (SDAA) sponsors Mission Trails Regional Park speakers on a wide range of astronomy topics on the third Visitor and Interpretive Center Wednesday of every month at the Mission Trails Regional 1 Father Junipero Serra Trail Park Visitors Center. The Program meeting begins at 7:00 PM. Each attendee receives one free door prize ticket. After announcements and a small amount of business, the au- dience is treated to the featured presentation. At the close of the meeting the door prizes CONTENTS are presented. The event is open to the public. The Mission Trails Regional Park Visitors August 2011, Vol XLIX, Issue 8 Center is at One Fr. Junipero Serra Trail, San Diego CA 92119. Call the park at 619-668- Published Monthly by the 3281 for more information or visit http://www.mtrp.org. San Diego Astronomy Association Please contact Bill Carlson ([email protected]) if you have an questions, com- $2.50 an issue/$30.00 year ments, or ideas for the Program Meetings. Incorporated in California in 1963 August Program Meeting...................1 Rilke & The Horse & Rider.............1 RILKE & THE HORSE & RIDER By John Mood SDAA Membership Dues...................2 July Minutes.................................2 For just a few more weeks now Ursa Major (& its asterism the Big Dipper) will be up Julian Starfest 2011..........4 for viewing before it begins to sink into the sky glow & haze in the west. Which means Summer in the City..................4 that one of the most intriguing naked eye double stars is still available. It is the middle SDAA Contacts.......................8 star in the handle of the Big Dipper. Actually it’s 6 stars, 2 of which are visible naked August Calendar............................9 eye, a third available in telescopes, & spectroscopy reveals that each of these 3 stars is a ASIG Gallery...........................................10 double. The 2 visible ones have for more than 1000 years been known (to the Arabs) as The Back Page...........................................12 Mizar & Alcor, the Horse & the Rider. Last month I introduced you to the German-language poet Rainer Maria Rilke (1875- 1926), who has more poetry on the night and the night sky than any other. He always makes sure his information is scientifically accurate. Here’s what he says about these 2 stars as I describe in a book of mine: Rilke twice in his poetry refers to the dim naked eye double star commonly known as Newsletter Deadline the “Horse” and the “Rider.” This double star is the middle one of the three which make The deadline to submit articles up the handle of the Big Dipper. [. .] The “Horse,” the brighter star of the double, is for publication is the more precisely named “Mizar” and its technical astronomical designation is Zeta Ursae 15th of each month. Majoris; the “Rider,” the dimmer star, is named “Alcor” and is technically known as 80 Ursae Majoris. This lovely sight is easy to find if one is far away from city lights, knows exactly where San Diego Astronomy Association to look, and has good young eyes! The “Horse,” as mentioned, is significantly brighter than the other snuggled up quite close to it, the “Rider,” which is much more difficult to spot, requiring good vision and very dark skies. It is obvious that Rilke had often gazed upon both stars, illustrating his ubiquitous emphasis on “inseeing.” Rilke’s critics always interpret his “inseeing” symbolically; it never seems to occur to them that he meant it quite literally to begin with. Go gaze at the star itself! Yes indeed. Go gaze at it yourself! To do so naked eye, you’ll have to get away from the sky-glow of the San Diego metropolitan area, let your eyesight get dark-adapted, & have young eyes! I used to be able to see it easily, but today these dimmed eyes of my dotage require me to use binocs to see the double. In any telescope, one discovers that Mizar is a neat double star itself, one of mag 2.5, the other of 4.0, easily split. Between Mizar & Alcor is another star, not related to the others, so you’ll see 4. As said above, all 3 stars are spectroscopic doubles & are gravitationally related, meaning they are a 6-star system drifting through space. Incidentally, Rilke’s two uses of the “Rider” occur near the end of his great long lyric poem Duinese Elegies and in Part I, poem 11, of his sequence The Sonnets to Orpheus. {From A New Reading of Rilke’s “Elegies”: Affirming the Unity of “life-AND-death” (Lewiston, NY: Edwin Mellen Press, 2009), p. 80. Also in Rilke on Death and Other Oddities (Philadelphia: Xlibris Corp., 2007), pp. 80f., with photo.} SDAA Membership Dues Increase by Michael Vander Vorst, President Effective November 1st, the yearly cost of a contributing SDAA membership will increase by $10 and the cost of basic member- ship will increase by $5. The dues for additional family members remains the same, and the annual lease cost of the private pads will also increase by $10. This is the first dues increase in nearly a decade. Now for the good news, membership in SDAA remains an incredible value. As a contributing member you get unlimited use of our dark sky site at Tierra del Sol (TDS) and, once trained, use of the 22-inch Lipp telescope. The primary reason for the increase is to maintain and improve TDS: we are procuring a new storage container at TDS - just for loaner scopes; we will be making additional repairs to the warming room by adding new drywall, insulation and paint, as well as painting the Lipp observatory; yearly maintenance on the roadways and pad areas at TDS requires tons of gravel; we will build a new electronics shed by the roboscope; the roboscope software and hardware will be upgraded so that it can be easily used by club members for remote imaging, not just asteroid searches; and the cost of printing and mailing the newsletter is ever increasing. We on the board of directors did our best to balance the need to make TDS a great dark site and yet keep the dues reasonable. The improvements to TDS are ongoing and we hope you will take advantage of this tremendous resource. SDAA Board of Directors Monthly Business Meeting Minutes 12 July 2011 1. Call to order. The meeting was called to order at 7:06 pm with the following board members in attendance: Michael Vander Vorst, President; Bill Carlson, Vice President; Ed Rumsey, Treasurer; Jeff Herman, Corresponding Secretary; Mike Finch, Director; Kin Searcy, Director; Scott Baker, Director; Bob Austin, Director. Members in attendance were John and Andrea Kuhl, and Paul “Moose” Pountney. 2. Approval of Last Meeting Minutes. Approved 3. Priority / Member Business. None 4. Standard Reports. Treasurer’s Report. Approved. D & O insurance was the only significant expense. Membership Report. Up seven for a new total of 540. Site Maintenance Report. • The next site cleanup will take place the week before the picnic in September. • We’ll remove the damaged drywall and insulation in the warming room after the small observatory is moved into the storage container Observatory Report. No report Page 2 SAN DIEGO ASTRONOMY ASSOCIATION NEWS AND NOTES, AUGUST 2011 San Diego Astronomy Association Private Pad Report. • The newest round of private pad offerings has closed and we sent out the offers. The lease effective date is 7/11/11 pending receipt of the signed leases and payment. There were 11 people on the waiting list, 3 declined to be included in this round for various reasons, and 3 did not respond. Every member got either their first or second choice of pad. The new pad holders are: 1. Scott Atwood (Pad 46) 2. John Hardin (Pad 62) 3. Doug Coe (Pad 69) 4. Miguel Cravo (Pad 12) 5. Tim Swann (Pad 37) • I had prepared the Non-Usage notices for 2010 with invitations to the August BOD meeting per the previously received instructions. Because they are going out so late, I included usage from 1 Jan 2010 through 31 May 2011 in the letter. None of the let- ters going out had any usage in 2011. Note that I dropped one person from the list because they had 4 uses from January through May 2011. These letters are now on hold per your instructions. • The reminders that the required pad usage is 4 times per year have been prepared for the people who only used their pads 3 times last. I am including their usage through May 0f 2011 in their letters so they know where they stand for this year as well. None of them have any usage yet in 2011. These are also on hold per your instructions. • After the offerings, we will have 4 pads available and 6 people on the waiting list.
Recommended publications
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • Flat Galaxy - Above 30 Deg
    Flat Galaxy - Above 30 Deg. DEC A B C D E F G H I J K L 1 Const. Object ID Other ID RA Dec Size (arcmin) Mag Urano. Urano. Millennium Notes 2 RFGC NGC hh mm ss dd mm ss.s Major Minor 1st Ed. 2nd Ed. 3 CVn 2245 NGC 4244 12 17 30 +37 48 31 19.4 2.1 10.2 107 54 633 Vol II Note: 4 Com 2335 NGC 4565 12 36 21 +25 59 06 15.9 1.9 10.6 149 71 677 Vol II Note: Slightly asymmetric dust lane 5 Dra 2946 NGC 5907 15 15 52 +56 19 46 12.8 1.4 11.3 50 22 568 Vol II Note: 6 Vir 2315 NGC 4517 12 32 46 +00 06 53 11.5 1.5 11.3 238 110 773 Vol II Note: Dust spots 7 Vir 2579 NGC 5170 13 29 49 -17 57 57 9.9 1.2 11.8 285 130 842 Vol II Note: Eccentric dust lane 8 UMa 2212 NGC 4157 12 11 05 +50 29 07 7.9 1.1 12.2 47 37 592 Vol II Note: 9 Vir 2449 MCG-3-33-30 13 03 17 -17 25 23 8.0 1.1 12.5 284 130 843 Vol II Note: Four knots in the centre 10 CVn 2495 NGC 5023 13 12 12 +44 02 17 7.3 0.8 12.7 75 37 609 Vol II Note: 11 Hya 2682 IC 4351 13 57 54 -29 18 57 6.1 0.8 12.9 371 148 888 Vol II Note: Dust lane.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • 197 6Apjs. . .30. .451H the Astrophysical Journal Supplement Series, 30:451-490, 1976 April © 1976. the American Astronomical S
    .451H The Astrophysical Journal Supplement Series, 30:451-490, 1976 April .30. © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 6ApJS. 197 EVOLVED STARS IN OPEN CLUSTERS Gretchen L. H. Harris* David Dunlap Observatory, Richmond Hill, Ontario Received 1974 September 16; revised 1975 June 18 ABSTRACT Radial-velocity observations and MK classifications have been used to study evolved stars in 25 open clusters. Published data on stars in 72 additional clusters are rediscussed and com- bined with the observations friade in this investigation to yield positions in the Hertzsprung- Russell diagram for 559 evolved stars in 97 clusters. Ages for the parent clusters were estimated from the main-sequence turnoff points, earliest spectral types, and bluest stars in the clusters themselves. The evolved stars were sorted into six age groups ranging from 4 x 106 yr to 4 x 108 yr, and the composite H-R diagram for each age group was then used to study the evolutionary tracks for stars of various masses. The observational results were found to be in reasonably good agreement with recent theoretical computations. The composite color-magnitude diagrams were found to be strikingly different from those of the rich open clusters in the Magellanic Clouds. At a given age the red giants in the Small Magellanic Cloud and the Large Magellanic Cloud clusters are brighter and bluer than their galactic counterparts. It is suggested that these effects may be accounted for by differences in metal abundance. Subject headings: clusters: open — galaxies: Magellanic Clouds — radial velocities — stars : evolution — stars : late-type — stars : spectral classification 1.
    [Show full text]
  • Proto-Planetary Nebula Observing Guide
    Proto-Planetary Nebula Observing Guide www.reinervogel.net RA Dec CRL 618 Westbrook Nebula 04h 42m 53.6s +36° 06' 53" PK 166-6 1 HD 44179 Red Rectangle 06h 19m 58.2s -10° 38' 14" V777 Mon OH 231.8+4.2 Rotten Egg N. 07h 42m 16.8s -14° 42' 52" Calabash N. IRAS 09371+1212 Frosty Leo 09h 39m 53.6s +11° 58' 54" CW Leonis Peanut Nebula 09h 47m 57.4s +13° 16' 44" Carbon Star with dust shell M 2-9 Butterfly Nebula 17h 05m 38.1s -10° 08' 33" PK 10+18 2 IRAS 17150-3224 Cotton Candy Nebula 17h 18m 20.0s -32° 27' 20" Hen 3-1475 Garden-sprinkler Nebula 17h 45m 14. 2s -17° 56' 47" IRAS 17423-1755 IRAS 17441-2411 Silkworm Nebula 17h 47m 13.5s -24° 12' 51" IRAS 18059-3211 Gomez' Hamburger 18h 09m 13.3s -32° 10' 48" MWC 922 Red Square Nebula 18h 21m 15s -13° 01' 27" IRAS 19024+0044 19h 05m 02.1s +00° 48' 50.9" M 1-92 Footprint Nebula 19h 36m 18.9s +29° 32' 50" Minkowski's Footprint IRAS 20068+4051 20h 08m 38.5s +41° 00' 37" CRL 2688 Egg Nebula 21h 02m 18.8s +36° 41' 38" PK 80-6 1 IRAS 22036+5306 22h 05m 30.3s +53° 21' 32.8" IRAS 23166+1655 23h 19m 12.6s +17° 11' 33.1" Southern Objects ESO 172-7 Boomerang Nebula 12h 44m 45.4s -54° 31' 11" Centaurus bipolar nebula PN G340.3-03.2 Water Lily Nebula 17h 03m 10.1s -47° 00' 27" PK 340-03 1 IRAS 17163-3907 Fried Egg Nebula 17h 19m 49.3s -39° 10' 37.9" Finder charts measure 20° (with 5° circle) and 5° (with 1° circle) and were made with Cartes du Ciel by Patrick Chevalley (http://www.ap-i.net/skychart) Images are DSS Images (blue plates, POSS II or SERCJ) and measure 30’ by 30’ (http://archive.stsci.edu/cgi- bin/dss_plate_finder) and STScI Images (Hubble Space Telescope) Downloaded from www.reinervogel.net version 12/2012 DSS images copyright notice: The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S.
    [Show full text]
  • Open Clusters
    Open Clusters Open clusters (also known as galactic clusters) are of tremendous importance to the science of astronomy, if not to astrophysics and cosmology generally. Star clusters serve as the "laboratories" of astronomy, with stars now all at nearly the same distance and all created at essentially the same time. Each cluster thus is a running experiment, where we can observe the effects of composition, age, and environment. We are hobbled by seeing only a snapshot in time of each cluster, but taken collectively we can understand their evolution, and that of their included stars. These clusters are also important tracers of the Milky Way and other parent galaxies. They help us to understand their current structure and derive theories of the creation and evolution of galaxies. Just as importantly, starting from just the Hyades and the Pleiades, and then going to more distance clusters, open clusters serve to define the distance scale of the Milky Way, and from there all other galaxies and the entire universe. However, there is far more to the study of star clusters than that. Anyone who has looked at a cluster through a telescope or binoculars has realized that these are objects of immense beauty and symmetry. Whether a cluster like the Pleiades seen with delicate beauty with the unaided eye or in a small telescope or binoculars, or a cluster like NGC 7789 whose thousands of stars are seen with overpowering wonder in a large telescope, open clusters can only bring awe and amazement to the viewer. These sights are available to all.
    [Show full text]
  • Figure-Of-Eight Velocity Curves: UGC 10205? J.C
    AND Your thesaurus codes are: ASTROPHYSICS 03(11.09.1 UGC 10205; 11.11.1; 11.19.2; 11.19.6) 9.5.1997 Figure-of-eight velocity curves: UGC 10205? J.C. Vega1,E.M.Corsini2, A. Pizzella2, and F. Bertola2 1 Telescopio Nazionale Galileo, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 2 Dipartimento di Astronomia, Universit`a di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy Received..................; accepted................... Abstract. We measured the velocity curve Boulesteix 1996). and the velocity dispersion profile of the ion- In the inner regions of the Sc NGC 5907 Miller ized gas along the major axis of the edge-on & Rubin (1995) observed double-valued ion- galaxy UGC 10205. The observed kinematics ized gas emissions. They attributed the higher extends up to about 4000 from the nucleus. In velocity system to disk gas near the nucleus, the inner ±1300 of this early-type spiral three and the lower velocity system to an outer kinematically distinct gaseous components are gas ring. Although these two gas components present. We disentangle a fast-rotating and are supposed to be spatially distinct, they are a slow-rotating component. They give to the viewed superimposed along the line-of-sight on UGC 10205 velocity curve a “figure-of-eight” account of NGC 5907 high inclination. appearance. A third velocity component is The spirals NGC 5746 (Kuijken & Merrifield also detected on the southeast side of the 1995; Bureau & Freeman 1996), NGC 5965 galaxy. Possibly it is produced by gas in non- (Kuijken & Merrifield 1995), IC 5096 (Bureau circular motions.
    [Show full text]
  • CORONA Medlemsblad for Trondheim Astronomiske Forening Nr
    CORONA Medlemsblad for Trondheim Astronomiske Forening Nr. 1 Mars 2003 5. årgang og Autronica Astronomiske Forening Redaktørens ord Bladet dere nå har fått i hendene er god måte. Denne logoen skal også det første i 5. årgang. Det vil si at vi pryde en T-skjorte som vi kommer til har et lite jubileum i år! Jeg synes vi å anskaffe nå i vår. Fargeversjonen er kan være stolt av bladet vårt, noe på forsiden og svart/hvitt versjonen som først og fremst er takket være til høyre. bidrag fra mange av foreningens medlemmer. Jeg vil spesielt trekke Påsken står for døren snart og en del fram medlemsgalleriet, hvor med- av dere skal nok opp i fjellet for å stå lemmene selv skriver om sin interes- på ski. På fjellet er også observa- REDAKSJONEN sjonsforholdene meget gode, så ikke se, opplevelser og erfaringer i denne morsomme og spennende hobbyen glem å ta med kikkert og et stjerne- kart. Det er noe magisk med en bek- Redaktør: vår. Jeg tror nok mange i likhet med Terje Bjerkgård meg kjenner seg igjen i disse beskri- mørk himmel hvor Melkeveibåndet sees så tydelig over himmelhvelving- Gisle Johnsons gate 2a velsene. 7042 Trondheim en. Husk også at det er en rekke tele- I dette nummeret er det i tillegg til et skoper og prismekikkerter til utlån i nytt bidrag til medlemsgalleriet, en de to foreningene, for de som ønsker Tlf priv: 73 52 15 77 spennvidde fra planeten Saturn til det. Mobiltlf: 911 99 521 Universets voldsomste eksplosjoner, E-post: [email protected] og videre til de merkelige kvasarene, Siden påsken er så sein i år, vil ob- de fjerneste objektene vi kan se i Uni- servasjonssesongen når det gjelder Layout (og TAFs adresse) : verset.
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • Summer Sp Target Information
    SUMMER SP TARGET INFORMATION ALGIEBA (g LEO) BASIC INFORMATION OBJECT TYPE: Binary Star CONSTELLATION: Leo BEST VIEW: Late April DISCOVERY: Known to Ancients DISTANCE: 131 ly BINARY SEPARATION: 4” (170 AU) ORBITAL PERIOD: ~500 yr. APPARENT MAGNITUDE: 1.98 DISTANCE DETERMINATION After measuring the shift in position of the star relative to background stars as Earth orbits the Sun, simple trigonometry can yield the distance. The Hipparcos satellite was launched in 1989 to create a comprehensive catalog of trigonometric parallax measurements from space. The distance quoted above is from this catalog. NOTABLE FEATURES/FACTS • William Herschel discovered Algieba’s binary nature in 1782. • Both components of Algieba have evolved beyond the main sequence. They began their lives as B-type stars, and they will end their lives as white dwarfs. • In 2010, a team including former UT astronomer Arte Hatzes discovered a planet orbiting Algieba A. The planet is nine times the mass of Jupiter and orbits the star in 1.2 years at an average distance of 1.2 AU. SUMMER SP TARGET INFORMATION MESSIER 97 (THE OWL NEBULA) BASIC INFORMATION OBJECT TYPE: Planetary Nebula CONSTELLATION: Ursa Major BEST VIEW: Early May DISCOVERY: Pierre Mechain, 1781 DISTANCE: ~2000 ly DIAMETER: 1.8 ly APPARENT MAGNITUDE: +9.9 APPARENT DIMENSIONS: 3.3’ DISTANCE DETERMINATION The distances to most planetary nebulae are very poorly known. A variety of methods can be used, providing mixed results. In many cases, astronomers resort to statistical methods to estimate the distances to planetary nebulae. Although we don’t have accurate distances for most of the planetary nebulae in the Milky Way, we do know exactly how far away the Large Magellanic Cloud is.
    [Show full text]
  • Collapse and Final E X P Losions Collapse and Final E X P Losions
    Collapse and final explosions Collapse and final explosions Evolution of the C-O core Stars with initial mass of less then ~ 9M (this limit depends strongly on mass loss) develop degenerate cores and if shell sources cannot increase Mc to ~Mch the star becomes a WD. Other stars undergo core collapse (such as those with neutron stars as remnants) or describes T0(0) for given Mc. explosions, thereby ejecting a large part of their mass (supernova). tracks - non-degenerate region: for different - for low and small M the temperature T increases up to Evolution of the C-O core Mc values 0 c 0 a maximum value T0max, after which it decreases until T0 0 - Further evolution details depend on whether C-O core becomes degenerate or not in the (A, B; M3, M2 in Ch. 28). ensuing contraction phase. -with 0 relativistic degeneracy becomes important; we rewrite Estimating critical core mass Mcrit, which determines whether contraction will increase Tc or if EOS as ( with ): the core becomes degenerate: - consider (approximate) EOS interpolating between both (non-deg. – degen.) regimes: - rough estimate of central0 values >>106gcm-3 <<106gcm-3 this shows that T increases again with 1/3 for P dominated by non-deg. e- from hydrostatic equation 0 0 4/3≤≤5/3 (e≈2, 0≥12) rel. non-rel. ~ Homologous contraction 1015-1013 of a gas sphere ≈ if : T0 T0max & decreases afterwards use EOS for P0 if : T continuously increases with 1/3. dominates for both terms are about 0 0 non-degeneracy equal for high-degeneracy Collapse and final explosions Collapse and final explosions Evolution of the C-O core estimate T0max for in non-relativistic regime: Evolution of the C-O core (A, B): ≈ shell-burning source(s) cannot increase core mass to MCh: T0 to T0max until core becomes degenerate and core cools pair creation down to become a WD.
    [Show full text]