Ocean Acidification Threatening Our Oceans

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Acidification Threatening Our Oceans MAGAZINE Chaotic chemistry experiment 6 No. 4 Fishing for hope 18 2010 The CirCle Southern discomfort 22 OCean AcidiFiCaTiOn ThreaTening Our OCeanS PUBLISHED BY THE WWF GLoBaL aRCTIC PRoGRaMME The Circle 4.2010 Contents AlAnnA Mitchell: eDITORiAl: Ocean acidification is invisible 3 in briefs 4 Richard Feely: Acid and the Arctic Ocean, our chaotic chemistry experiment 6 Steve SuMida and BRuce WRight: Alaskan waters become the battle ground – again 10 ulF RieBeSell; Big questions, big test tubes 12 helen FinDlAy: On thinning ice 15 Laura Edwards: At the ice Base – the research begins 17 AlAn ParkS: Fishing for hope in Alaska 18 Rob nicOll: Southern discomfort – Antarctic waters fast changing 22 the picture 24 OCean AcidiFiCaTiOn S).ˆ a ntarctic Survey (B a Photo: British The Circle is published quarterly by the Publisher: Editor in Chief: Clive Tesar, [email protected] CoVER: WWF Global arctic Programme. Re- WWF Global arctic Programme, Editor: Becky Rynor, [email protected] arctic pteropods commonly production and quotation with appropri- Po Box 6784 St olavs plass known as sea butterflies. ate credit are encouraged. articles by N-0130 oslo, Norway Design and production: “Pteropods are a particularly non-affiliated sources do not necessarily Ph: +47 22 03 65 00 Film & Form/Ketill Berger, important food source for reflect the views or policies of WWF. Fax: +47 22 20 06 66 [email protected] juvenile fish such as salmon Send change of address and subscrip- Internet: www.panda.org/arctic Printed at Merkur-Trykk aS and pollock.” tion queries to the address on the right. Dr. Richard Feely, page 9. We reserve the right to edit letters for Date of publication: December, 2010. Photo from:Dr. Russell R. Hopcroft Professor, Institute publication, and assume no responsibility ISSN 2074-076X = The Circle (oslo) of Marine Science, University of alaska Fairbanks for unsolicited material. 2 The Circle 4.2010 editorial Ocean acidification is invisible To the eye, first of all. Just looking at it, you can’t tell able calcium. That means creatures that need calcium that the water’s fundamental chemical composition – the to make shells, bones and bony structures are having dance of its hydrogen ions – has changed. trouble. It’s invisible on the political front, too. Off the radar. Scientists are finding that corals are scrambling to make Excluded from international carbon discussions, includ- their reefs, oyster shells are thinner, some plankton are us- ing the most recent round in Mexico. ing more energy making shells than doing other functions That’s despite the fact that scientists are now worried critical to the basic workings of the ocean. that the growing acidity of the ocean is at least as big a Along with that, the vulnerable larvae of threat to life on the planet as global climate change. oysters, snails and lobsters are struggling How? When we burn fossilized plants and animals – to mature. Fish become stupid, swimming we call them fuels – we are putting the carbon from an toward predators instead of away because ancient age into the atmosphere. So far, we’ve increased of an acid-made shift in their ability to the concentration of carbon smell. And these dioxide in the atmosphere from n ReADeRS OF the ciRcle are accustomed to are just a few of less than 0.03 per cent to nearly editorials that frame the issue we’re examining the effects scien- AlAnnA Mitchell is 0.04 per cent. That’s higher than in each edition, along with information about tists have taken a a journalist and author it’s been in millions of years. WWF solutions and initiatives. We pride our- look at. whose latest book, Sea- In the atmosphere, that car- selves on being a solutions-oriented organiza- The colder the sick: The global ocean bon dioxide acts like a blanket, tion. However, ocean acidification is too new water, the more in crisis, has become an keeping heat near the planet’s and the research too incomplete for us to fully quickly it ab- international bestseller. It surface, inert and powerful understand how to tackle this growing threat to sorbs carbon di- won the Grantham Prize enough to shift climate. our oceans. We are working with organizations oxide gas, and so for excellence in environ- But about a third of that an- such as the Catlin arctic Survey, which you can the more acidic. mental reporting. cient carbon has been absorbed read about in this edition that spent weeks on That means www.alannamitchell.com by the ocean’s surface, molecule the sea ice to conduct research into the effects the Arctic and by molecule, in an inexorable of ocean acidification.a nother article features Southern Oceans exchange between the air and the team of Dr. Ulf Riebesell, which lugged are becoming sea. In the ocean, carbon dioxide two tonnes of equipment to Svalbard, then acidic about is not inert. It reacts chemically posted 24-hour watches over their experiments twice as fast as the average. A with water to produce carbonic aimed at analyzing the impact of acidification recent study calculated that the acid. on plankton communities. This sort of cutting northern ocean will be the first Now, a couple of centuries edge research will help inform further actions, in the world to hit the point into the fossil-fuel-burning although it already seems clear that there will of no return with dangerous, industrial revolution, we’ve put be changes to the ecology of the arctic ocean, systemic acidification. By the so much ancient carbon into the and that the root cause of these changes is end of this decade, 10 per cent of atmosphere that the ocean has the amount of carbon dioxide that people are the Arctic will be so acidic it will become about 30 per cent more pumping into the atmosphere. This is our first damage, rather than foster, life. acidic than before we began. concerted effort to tackle ocean acidification Unless we do something. The That’s more acidic than the at a circumpolar level, and to bring together key is to sharply reduce carbon ocean has been for about 55 mil- some of the experts urging and taking action. emissions into the atmosphere lion years. as alanna Mitchell writes, “we need to make and the ocean. Halting ocean The implications? They ocean acidification visible.” The WWF Global acidification has to be a priority cascade through the oceanic arctic Programme believes that by increasing at every round of global climate chemical soup that is the basic its visibility here through The Circle, that we are change discussions. And we medium of life on the planet. contributing to a solution. need to make ocean acidification More acidity means less avail- Clive Tesar, editor-in-chief visible. The Circle 4.2010 3 in brief people.” Sommerkorn says he the two, smaller isolated of 2010 saw the best survival WWF at Japan was particularly encouraged areas for this species will rate in 35 years. In total, 24 by the support for RACER broaden and grow into one pairs raised pups, largely due conference expressed by scientists, large habitat between Norway to a combination of active technical consultants and and Sweden that would allow management and relatively DiRectOR OF the WWF other experts who attended fox populations to breed with high rodent population. By Global Arctic Programme, the week of workshops in Ot- each other, strengthening the late autumn, numerous lem- Alexander Shestakov, hosted tawa, Canada. “There is solid gene pool. ” ming tracks were observed a side event at the 10th meet- recognition that an assess- Arnbom says the number in arctic fox territory. “If this ing of the Conference of the ment embracing the changes of arctic foxes in Sweden is trend continues, there could Parties to the Convention on to come is critically needed a fraction of what it was 150 be an incredible increase of Biological Diversity (COP- and that assessing resilience years ago – just 130 foxes lemmings by next summer, 10) in Nagoya, Japan in is the right way to move according to numbers from which would result in a boom October. “When Parks are not forward,” he said. RACER is summer, 2010 – due to in the arctic fox population Enough,” delivered a strong designed to provide guidance increased hunting in the 19th throughout Scandinavia,” warning about ecosystem to government, industry and and 20th century. But he says Arnbom says. resilience and change in the other stakeholders to ensure a recent shortage of small ro- Arctic. functional arctic ecosystems. dents – the fox’s main source “Warming in the Arctic is of food – is also a factor. economic forum proceeding at twice the global “The Scandinavian lem- rate,” Shestakov says. “This arctic fox ming has been particularly champions WWF challenges the resilience of scarce,” Arnbom says. “To arctic ecosystems and calls WWF-SWeDen is involved in a help the arctic fox in Scandi- for a major re-think of arctic new program aimed at boost- navia, supplementary feeding management plan conservation.” ing and protecting the arctic with dog pellets and removal fox population in Scandina- of predatory red foxes close for Barents Sea via. to arctic fox dens has made a raCer moves “The Felles Fjellrev pro- difference in survival rates.” WWF-RuSSiA’S initiative for gram is attempting to repop- Arctic fox populations a Complex Management forward ulate areas where no arctic suffered severe declines in Plan for the Barents Sea was foxes are currently breeding,” 2008-2009 when only a highlighted at the Second A SlAte OF exPeRtS met says WWF spokesman Tom few pups out of each litter Arctic Economic Forum in in Ottawa to help WWF’s Arnbom.
Recommended publications
  • Slow-Onset Processes and Resulting Loss and Damage
    Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative
    [Show full text]
  • Ocean Acidification in Washington State
    University of Washington • Washington Sea Grant Ocean Acidification in Washington State What is Ocean Acidification? OA in Washington State cean Acidification (or ‘OA’) is a long-term decrease ur region is experiencing ocean acidification sooner Oin seawater pH that is primarily caused by the Oand more severely than expected, due to a combina- ocean’s uptake of carbon dioxide (CO2 ) from the atmo- tion of human and natural causes. In the spring and sum- sphere. CO2 generated by humans’ use of fossil fuels and mer, acidification along our coast is compounded by up- deforestation has been accumulating in the atmosphere welling, which mixes deep, naturally low-pH seawater into since the industrial revolution. About one quarter of this the already acidified surface layer. In Puget Sound, nutri- CO2 is absorbed by the oceans, pH describes the acidity of a liquid ents generated by human activities (mostly where it reacts with water to form nitrogen and phosphorus from sewage, carbonic acid. As a result, the aver- fertilizers and manure) fuel processes that age pH of seawater at the ocean add even more CO2 to this ‘doubly-acidified’ surface has already dropped by ~0.1 seawater. The combination can be deadly units, a 30% increase in acidity. If to vulnerable organisms. pH levels as low atmospheric CO2 levels continue as 7.4 have been recorded in Hood Canal, to climb at the present rate, ocean an important shellfish-growing region. acidity will double by the end of this State and federal agencies, scientists, tribes, century. shellfish growers and NGOs are working together to address OA in our region.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • 9. AM Ecocide
    Amendments to draft resolution On the crime of Ecocide № Party Line Action Current Text Proposed Amendment Explanation 1 Bündnis 90/ 1 replace On an international recognition of the Tackle environmental destruction: Die Grünen crime of ecocide: 2 Bündnis 90/ 25 replace that global warming must be limited to agreed to holding the increase in the global Die Grünen 1,5°C. average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognising that this would significantly reduce the risks and impacts of climate change. Amendments on Draft Resolution on an international recognition of the crime of ecocide European Green Party - 5th Congress, Liverpool, UK, 30 March-2 April 2017 1 № Party Line Action Current Text Proposed Amendment Explanation 3 Vihreät - De 30-36 delete According to environmental scientists Not necessary for making the point, Gröna Johan Rockström (Stockholm Resilience the chapter draws the attention Centre) and Will Steffen (Australian away from the point of the National University), these are two among resolution making it unnecessarily four “planetary boundaries” that have long. 4 Strana 30-36 replace already been exceeded. These “planetary These present two out of nine “planetary The original text presents the zelenych boundaries” involve nine thresholds on boundaries”, or nine thresholds on core concept of "planetary boundaries" (Czech core environmental issues (greenhouse gas environmental issues, beyond which human only as an opinion of Rockstrom Greens) amount in atmosphere, biodiversity, but existence would be threatened. The concept and Steffen and, moreover, it does also ocean acidification, land use for crop, has been introduced by a group of not state any source, that this consumption of freshwater...) beyond international scientists, led by Johan opinion is based on.
    [Show full text]
  • Ocean Acidification and the Permo- Triassic Mass Extinction: Process and Manifestation
    Goldschmidt2015 Abstracts Ocean acidification and the permo- Triassic mass extinction: Process and manifestation S. A. KASEMANN1, R. WOOD2*, M. O. CLARKSON3, T. M. LENTON4, S. J. DAINES4, S. RICHOZ5, F. OHNEMUELLER1, A. MEIXNER1, S. W. POULTON6 AND E. T. TIPPER7 1Department of Geosciences & MARUM-Center for Marine Environmental Sciences, Univ. of Bremen, Germany 2School of GeoSciences, University of Edinburgh, UK (*[email protected]) 3Department of Chemistry, Univ. of Otago, New Zealand 4College of Life and Environmental Sciences, Univ. of Exeter 5Institute of Earth Sciences, University of Graz, Austria 6School of Earth and Environment, University of Leeds, UK 7Dept. of Earth Sciences, University of Cambridge, UK Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permian-Triassic Boundary (PTB) mass extinction, but direct evidence for an acidification event is lacking. We present a high resolution seawater pH record across this interval, utilizing boron isotope data (δ11B) combined with petrographic analysis and a quantitative modeling approach. Through this integration we are able to produce an envelope that encompasses the most realistic range in pH, which then allows us to resolve three distinct chronological phases of carbon cycle perturbation, each with very different environmental consequences for the Late Permian-Early Triassic Earth system. In the latest Permian, increased ocean alkalinity, primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.
    [Show full text]
  • Ocean Acidification During the Early Toarcian
    https://doi.org/10.1130/G47781.1 Manuscript received 20 April 2020 Revised manuscript received 29 June 2020 Manuscript accepted 6 July 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 13 August 2020 Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods Tamás Müller1*, Hana Jurikova2,3, Marcus Gutjahr2, Adam Tomašových1, Jan Schlögl4, Volker Liebetrau2, Luís v. Duarte5, Rastislav Milovský1, Guillaume Suan6, Emanuela Mattioli6,7, Bernard Pittet6 and Anton Eisenhauer2 1 Earth Science Institute, Slovak Academy of Sciences, Dˇ umbierska 1, 974 01 Banská Bystrica, Slovakia 2 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany 3 GFZ Deutsches GeoForschungsZentrum–Helmholtz-Zentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany 4 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicˇova 6, SK-842 15 Bratislava, Slovakia 5 University of Coimbra, MARE–Marine and Environmental Sciences Centre–Department of Earth Sciences, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal 6 Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France 7 Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France ABSTRACT methane, have also been postulated (Hesselbo The loss of carbonate production during the Toarcian Oceanic Anoxic Event (T-OAE, ca. et al., 2000; Them et al., 2017). 183 Ma) is hypothesized to have been at least partly triggered by ocean acidification linked The changes in the carbon cycle are globally to magmatism from the Karoo-Ferrar large igneous province (southern Africa and Antarc- expressed as a short negative shift in the car- tica).
    [Show full text]
  • Ocean Acidification and Climate Change: Synergies and Challenges
    n synthesis 5 Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC ELLYCIA R. HARROULD-KOLIEB1, DOROTHE´E HERR2* 1 10 School of Land and Environment, University of Melbourne, Melbourne, VIC 3010, Australia 2 Global Marine and Polar Programme, International Union for Conservation of Nature (IUCN), Suite 300, 1630 Connecticut Avenue NW, Washington, DC 20001, USA 15 Ocean acidification and climate change are linked by their common driver: CO2. Climate change is the consequence of a range of GHG emissions, but ocean acidification on a global scale is caused solely by increased concentrations of atmospheric CO2. Reducing CO2 emissions is therefore the most effective way to mitigate ocean acidification. Acting to prevent further ocean acidification by reducing CO2 emissions will also provide simultaneous benefits by alleviating future climate change. Although it is possible that reducing CO2 emissions to a level low enough to address ocean acidification will simultaneously address climate change, the reverse is unfortunately not necessarily true. Despite the ocean’s integral role in the climate system and the 20 potentially wide-ranging impacts on marine life and humans, the problem of ocean acidification is largely absent from most policy discussions pertaining to CO2 emissions. The linkages between ocean acidification, climate change and the United Nations Framework Convention on Climate Change (UNFCCC) are identified and possible scenarios for developing common solutions to reduce and adapt to ocean acidification and climate change are offered. Areas where the UNFCCC is currently lacking capacity to effectively tackle rising ocean acidity are also highlighted. 25 Keywords: climate change; climate policy; ocean acidification; oceans; UNFCCC L’acidification des oce´ans et le changement climatique sont lie´s par leur cause commune : le CO2.
    [Show full text]
  • Ocean Acidification Summary for Policymakers – Third
    O A Summary for Policymakers Third Symposium on the Ocean in a High-CO2 World Scientific sponsors: The International Geosphere-Biosphere Programme (IGBP) was launched in 1987 to coordinate international research on global-scale and regional-scale interactions between Earth’s biological, chemical and physical processes and their interactions with human systems. IGBP’s international core projects Integrated Marine Biogeochemistry and Ecosystem Research (IMBER), Surface Ocean–Lower Atmosphere Study (SOLAS), Past Global Changes (PAGES) and Land–Ocean Interactions in the Coastal Zone (LOICZ) study ocean acidification. The Intergovernmental Oceanographic Commission (IOC-UNESCO) was established by the United Nations Educational, Scientific and Cultural Organization (UNESCO) in 1960 to provide Member States of the United Nations with an essential mechanism for global cooperation in the study of the ocean. The Scientific Committee on Oceanic Research (SCOR) was established by the International Council for Science (ICSU) in 1957 and is a co-sponsor of the international projects IMBER and SOLAS. Citation: IGBP, IOC, SCOR (2013). Ocean Acidification Summary for Policymakers – Third Symposium on the Ocean in a High-CO2 World. International Geosphere-Biosphere Programme, Stockholm, Sweden. Editors: Wendy Broadgate (IGBP), Owen Gaffney (IGBP), Kirsten Isensee (IOC-UNESCO), Ulf Riebesell (GEOMAR), Ed Urban (SCOR) and Luis Valdés (IOC-UNESCO). Authors: Wendy Broadgate, IGBP; Ulf Riebesell, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany; Claire
    [Show full text]
  • Climate Torts and Ecocide in the Context of Proposals for an International Environmental Court
    City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2011 Climate Torts and Ecocide in the Context of Proposals for an International Environmental Court Patrick Foster CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/40 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Climate Torts and Ecocide in the Context of Proposals for an International Environmental Court Patrick Foster Graduating June, 2011 Advisor: Professor Jürgen Dedring Submitted in Partial Fulfillment of the Requirements for the Degree of Master of International Affairs at the City College of New York TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................................3 CHAPTER ONE: NECESSITY AND FEASIBILITY...................................................................................4 CAUSES OF ACTION AND THEORIES OF JUSTICE...............................................................................................5 DIPLOMATIC THEORY IN THE CONTEXT OF ENVIRONMENTAL TREATY MAKING ...........................................7 CHAPTER TWO: INTERNATIONAL ENVIRONMENTAL TORTS: CLIMATE CHANGE LITIGATION .......................................................................................................................................................9
    [Show full text]
  • Effects of Climate Change on Ocean Acidification Relevant to the Pacific Islands
    PACIFIC MARINE CLIMATE CHANGE REPORT CARD Science Review 2018: pp 31-42 Effects of Climate Change on Ocean Acidification Relevant to the Pacific Islands Andrew Lenton, Richard J. Matear, and Mathieu Mongin, CSIRO Oceans and Atmosphere, Australia. EXECUTIVE SUMMARY Ocean acidification has the potential to significantly impact Pacific Island ecosystems and the ecosystem services they provide. There is compelling evidence that the ocean has become more acidic in response to rising atmospheric CO2 levels. As atmospheric CO2 levels continue to rise the ocean will increasingly become more acidic, and these changes are likely to persist for hundreds to thousands of years. The rate and magnitude of these changes will be directly proportional to the future carbon emission pathway followed. While a low carbon emissions pathway will clearly limit the impacts of ocean acidification, a high carbon emission pathway will lead to conditions that will threaten the long-term viability of important marine ecosystems, such as coral reefs. In the future, increased confidence in projected changes will come through a better understanding of how the large-scale changes are modulated by processes at the island scale. This will be achieved through a combination of sustained long-term measurements and higher-resolution modelling. There is also critical need to understand the impact of multiple environmental stressors, as future ocean acidification will be accompanied by ocean warming and other environmental consequences (e.g. invasive species). Finally, implementation of a viable emission pathway is urgently needed to underpin the development of sustainable adaption and resilience options, and to explore potential engineering and adaptation solutions that may be required to offset long-term ocean acidification changes.
    [Show full text]
  • Ocean Acidification and the UNFCCC
    Climate Change and Ocean Acidification Synergies and Opportunities within the UNFCCC Discussion Paper Ellycia Harrould-Kolieba and Dorothée Herrb Executive Summary Ocean acidification is arguably one of the most serious threats facing the oceans and humans this century. Ocean acidification is not a symptom of climate change; rather, it is a threat concurrent with climate change and caused by a common root problem: ongoing anthropogenic CO2 emissions. It is a serious global challenge of unprecedented scale and importance that requires immediate action. Preventing further acidification of the oceans will require stabilizing and reducing the level of CO2 in the atmosphere, which is most effectively done through reducing CO2 emissions. The United Nations Framework Convention on Climate Change (UNFCCC) is clearly an appropriate environmental policy regime to deal with the mitigation of ocean acidification, through CO2 reductions. It is also a suitable forum for devising and providing funding for responses to ocean acidification that can be incorporated into national adaptation plans. Many efforts are underway to raise awareness and inform policy and decision makers about ocean acidification and its potential impacts. So far, however, no concrete recommendations have been made on how ocean acidification could be integrated within the UNFCCC. This paper attempts to address this gap by offering an initial suite of possible ways to address ocean acidification alongside climate change mitigation and adaptation strategies. Recommendations: - Recognize
    [Show full text]
  • An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No
    Secretariat of the CBD Technical Series Convention on No. 75 Biological Diversity 75 An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No. 75 AN UPDATED SYNTHESIS OF THE IMPACTS OF OCEAN ACIDIFICATION ON MARINE BIODIVERSITY The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the copyright holders concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Reuse of the figures is subject to permission from the original rights holders. Published by the Secretariat of the Convention on Biological Diversity. ISBN 92-9225-527-4 (print version); ISBN 92-9225-528-2 (web version) Copyright © 2014, Secretariat of the Convention on Biological Diversity Citation: Secretariat of the Convention on Biological Diversity (2014). An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity (Eds: S. Hennige, J.M. Roberts & P. Williamson). Montreal, Technical Series No. 75, 99 pages For further information, contact: Secretariat of the Convention on Biological Diversity World Trade Centre, 413 Rue St. Jacques, Suite 800, Montréal, Quebec,Canada H2Y 1N9 Tel: +1 (514) 288 2220 Fax: +1 (514) 288 6588 E-mail: [email protected] Website: www.cbd.int Cover images, top to bottom: Katharina Fabricius; N.
    [Show full text]