Alaska Compiled By

Total Page:16

File Type:pdf, Size:1020Kb

Alaska Compiled By U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geologic Map of Central (Interior) Alaska compiled by Frederic H. Wilson1, James H. Dover1, Dwight C. Bradley1, Florence R. Weber2, Thomas K. Bundtzen3, and Peter J. Haeussler1 1998 Text to accompany U.S. Geological Survey Open-File Report OF 98-133 Prepared in cooperation with the Alaska Department of Natural Resources, Division of Oil and Gas and Division of Geological and Geophysical Surveys U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 U.S. Geological Survey, 4200 University Dr., Anchorage AK 99508-4667; 2 U.S. Geological Survey, P.O. Box 80586, Fairbanks, AK 99708-0586; 3 Pacific Rim Geological Consulting, P.O. Box 81906, Fairbanks, AK 99708-1906 Geologic Map of Central (Interior) Alaska Table of Contents Introduction.....................................................................................................................................1 Acknowledgements ..........................................................................................................................2 DESCRIPTION OF MAP UNITS GENERAL UNITS bu Bedrock of unknown type or age ......................................................................................3 QUATERNARY AND LATE TERTIARY ROCKS AND DEPOSITS Qs Surficial deposits, undifferentiated...................................................................................3 Qv Volcanic rocks, undivided.................................................................................................3 QTv Volcanic rocks, undivided.................................................................................................3 QTi Intrusive rocks, undivided ................................................................................................3 TERTIARY ROCKS Sedimentary rocks Tsu Sedimentary rocks, undivided ..........................................................................................3 Tk Kenai Group, undivided....................................................................................................3 Tsf Sterling Formation ................................................................................................4 Tkb Beluga Formation..................................................................................................4 Tty Tyonek Formation .................................................................................................4 Tn Nenana Gravel...................................................................................................................4 Tcb Coal-bearing rocks ............................................................................................................4 Ttw Tsadaka, West Foreland, and Wishbone Formations, undivided ....................................4 Tts Tsadaka Formation ...............................................................................................4 Twf West Foreland Formation......................................................................................4 Tw Wishbone Formation.............................................................................................4 Tvs Volcanic and sedimentary rocks, undivided.....................................................................4 Tfv Fluviatile sedimentary rocks and subordinate volcanic rocks.........................................5 Tch Chickaloon Formation.......................................................................................................5 Tar Arkose Ridge Formation....................................................................................................5 Tovs Orca Group, undivided......................................................................................................5 Tos Sedimentary rocks of the Orca Group..................................................................5 Toc Conglomerate of the Orca Group..........................................................................5 Tov Volcanic rocks of the Orca Group, undivided ......................................................5 Igneous rocks Volcanic and hypabyssal rocks Tvu Volcanic rocks, undivided.................................................................................................5 Trs Rhyolitic volcanic and sedimentary rocks ........................................................................5 Tb Basalt.................................................................................................................................6 Thf Hypabyssal felsic and intermediate intrusive rocks.........................................................6 Thm Hypabyssal mafic intrusive rocks.....................................................................................6 Pliocene Thd Hornblende dacite .............................................................................................................6 Miocene Tba Basaltic andesite ...............................................................................................................6 i Oligocene and Eocene Tvr Crystal and crystal-lithic ash-flow tuff.............................................................................6 Tvb Andesite and basalt...........................................................................................................6 Paleocene Tcv Volcanic rocks of the Cantwell Formation........................................................................7 Plutonic rocks Tiv Granitic and volcanic rocks, undivided............................................................................7 Oligocene Togr Granite...............................................................................................................................7 Oligocene or Eocene Toegr Granitic rocks....................................................................................................................7 Toem Granodiorite to tonalite.....................................................................................................7 Eocene Tegr Granite and granodiorite...................................................................................................7 Td Felsic intrusive rocks ........................................................................................................7 Paleocene Tpgr Granitic rocks....................................................................................................................8 Thgd Granodiorite and other intermediate plutonic rocks........................................................8 Tgl Gabbro...............................................................................................................................8 TERTIARY AND/OR CRETACEOUS Sedimentary rocks TKcg Conglomerate, sandstone, and lignite ..............................................................................8 Igneous rocks Volcanic and hypabyssal rocks TKv Flows, tuff, and breccia, undivided...................................................................................8 TKd Dikes and subvolcanic rocks of intermediate composition..............................................8 TKgp Hypabyssal granite porphyry dikes and rhyolitic sills, and plugs...................................8 TKvr Rhyolite and related rocks ................................................................................................8 TKvi Andesite and related rocks................................................................................................9 TKiv Mafic to intermediate volcano-plutonic complexes ..........................................................9 Intrusive rocks TKi Intrusive rocks, undivided ................................................................................................9 TKg Granitic rocks....................................................................................................................9 TKgd Granodiorite, tonalite, and monzonite dikes, and stocks ................................................9 TKqd Quartz diorite and diorite dikes and stocks .....................................................................9 TKl Lamprophyre, alkali gabbro, and alkali diorite ................................................................9 TKgb Gabbro and leucogabbro...................................................................................................9 TDg Gabbro...............................................................................................................................9 ii Metamorphic rocks TKc Melange or cataclastite of the Orca Group.......................................................................9 TKgg Gneissose granitic rocks ...................................................................................................9 TPza Amphibolite facies metamorphic rocks...........................................................................10 UNDIVIDED MESOZOIC ROCKS Sedimentary rocks KTRg Gemuk Group..................................................................................................................10 Igneous rocks Mzi Intrusive rocks.................................................................................................................10 Mzum Ultramafic and associated rocks.....................................................................................10
Recommended publications
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Thermochronology of the Talkeetna Intraoceanic Arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf Dating
    TECTONICS, VOL. 30, TC1011, doi:10.1029/2010TC002798, 2011 Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating B. R. Hacker,1 Peter B. Kelemen,2 Matthew Rioux,1,3 Michael O. McWilliams,4 Philip B. Gans,1 Peter W. Reiners,5 Paul W. Layer,6 Ulf Söderlund,7 and Jeffrey D. Vervoort8 Received 17 September 2010; revised 8 December 2010; accepted 27 December 2010; published 26 February 2011. [1] As one of two well‐exposed intraoceanic arcs, the of the Talkeetna arc was spatially variable. One‐ Talkeetna arc of Alaska affords an opportunity to under- dimensional finite difference thermal models show that stand processes deep within arcs. This study reports new this kind of spatial variability is inherent to intraoceanic Lu‐Hf and Sm‐Nd garnet ages, 40Ar/39Ar hornblende, arcs with simple construction histories. Citation: Hacker, mica and whole‐rock ages, and U‐Th/He zircon and B. R., P. B. Kelemen, M. Rioux, M. O. McWilliams, P. B. Gans, apatite ages from the Chugach Mountains, Talkeetna P. W. Reiners, P. W. Layer, U. Söderlund, and J. D. Vervoort Mountains, and Alaska Peninsula, which, in conjunc- (2011), Thermochronology of the Talkeetna intraoceanic arc of tion with existing geochronology, constrain the thermal Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating, Tectonics, history of the arc. Zircon U‐Pb ages establish the 30, TC1011, doi:10.1029/2010TC002798. main period of arc magmatism as 202–181 Ma in the Chugach Mountains and 183–153 Ma in the 1.
    [Show full text]
  • The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
    The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales.
    [Show full text]
  • Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska
    Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska U.S. Department of the Interior U.S. Geological Survey Open-File Report 2006-1124 Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska Amy E. Draut U.S. Geological Survey, Pacific Science Center, Santa Cruz, CA 95060 Peter D. Clift School of Geosciences, University of Aberdeen, AB24 3UE, U.K. Robert B. Blodgett U.S. Geological Survey–Contractor, Anchorage, AK 99508 U.S. GEOLOGICAL SURVEY Open-File Report 2006-1124 2006 U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2006 Revised and reprinted: 2006 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government To download a copy of this report from the World Wide Web: http://pubs.usgs.gov/of/2006/1124/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. LIST OF FIGURES FIGURE 1. Regional map of the field-trip area. FIGURE 2. Geologic cross section through Sheep Mountain. FIGURE 3. Stratigraphic sections on the south side of Sheep Mountain.
    [Show full text]
  • Geological Survey Research 1965
    GEOLOGICAL SURVEY RESEARCH 1965 Chapter D GEOLOGICAL SURVEY PROFESSIONAL PAPER 525-D Scientific notes and summaries of investiga- tions by members of the Conservation, Geo- logic, and Water Resources Divisions in geology, hydrology, and related fields - UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price $2 GEOLOGIC STUDIES Geochronology Page Implications of new radiometric ages in eastern Connecticut and Massachusetts, by Robert Zartman, George Snyder, T. W.Stern, R.F. Marvin,.and R.C.Bucknam-----------,------------------------------------------------ Reconna&sance of mineral ages of plutons in Elko County, Nev., and vicinity, by R. R. Coats, R. F. Marvin, and T.W.Stern---------------------------------------------------------------------i---------------------- Juragsic plutonism in the Cook Inlet region, Alaska, by R. L. Detterman, B. L. Reed, and M. A. Lanphere ------ ------ Age and distribution of sedimentary zircon as a guide to provenance, by R. S. Houston and J. F. Murphy - - - - - - - - - - - - Carboniferous isotopic age of the metamorphism of the Salmon Hornblende Schist and Abrams Mica Schist, southern Klamath Mountains, Calif.,*by M. A. Lanphere and W. P. Irwin- ------------------,-------------------------- Radiocarbon dates from lliamna Lake, Alaska, by R. L. Detterman, B. L. Reed, and Meyer Rubin
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Mineralogy of Non-Silicified Fossil Wood
    Article Mineralogy of Non-Silicified Fossil Wood George E. Mustoe Geology Department, Western Washington University, Bellingham, WA 98225, USA; [email protected]; Tel: +1-360-650-3582 Received: 21 December 2017; Accepted: 27 February 2018; Published: 3 March 2018 Abstract: The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy. Keywords: fossil wood; mineralogy; paleobotany; permineralization 1. Introduction Non-silica minerals that cause wood petrifaction include calcite, apatite, iron pyrites, siderite, hematite, manganese oxide, various copper minerals, fluorite, barite, natrolite, and the chromium- rich smectite clay mineral, volkonskoite. This report provides a broad overview of woods fossilized with these minerals, describing specimens from world-wide locations comprising a diverse variety of mineral assemblages. Data from previously-undescribed fossil woods are also presented. The result is a paper that has a somewhat unconventional format, being a combination of literature review and original research. In an attempt for clarity, the information is organized based on mineral composition, rather than in the format of a hypothesis-driven research report.
    [Show full text]
  • Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
    Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5
    [Show full text]
  • Coal Exploration Permit Application for Mental Health Land Coal Lease Mht 9200375 Chickaloon Coal Project
    COAL EXPLORATION PERMIT APPLICATION FOR MENTAL HEALTH LAND COAL LEASE MHT 9200375 CHICKALOON COAL PROJECT Prepared For: Riversdale Alaska LLC A subsidiary of RIVERSDALE RESOURCES PTY LTD Level 2, Chifley Tower 2 Chifley Square Sydney NSW 2000 +61 2 9324 4499 US Cell 907 3016031 [email protected] Prepared By: Michael A. Belowich Alaska Earth Sciences, Inc. 1075 Check Street, Suite 210 Wasilla, Alaska 99654 March 23, 2012 Revised on May 04, 2012 TABLE OF CONTENTS Page Table of Contents i List of Figures , Tables, and Plates ii PART A – GENERAL INFORMATION 1.0 Applicant Information iv 2.0 Location of the Exploration v 3.0 Period of Exploration vi 4.0 Ownership of Surface/Subsurface Mineral Estate vi 5.0 Chickaloon Land Owners vii PART B – EXPLORATION AREA DESCRIPTION 1.0 Location, Access and Physiography 1 2.0 Geology-General 4 3.0 Previous Mine History and Exploration Drilling 8 3.1 Chickaloon, Kings River, and Coal Creek Mines 8 3.2 Castle Mountain Mine 11 4.0 Coal Resources and Quality 13 5.0 Land Use 15 6.0 Climate 18 7.0 Hydrology – General 20 7.1 Surface Water 20 7.2 Ground Water 22 8.0 Soils 26 9.0 Vegetation 29 10.0 Birds and Other Terrestrial Wildlife 31 10.1 Birds 31 10.2 Terrestrial Wildlife 33 11.0 Aquatic Wildlife 34 12.0 Cultural and Historical Resources 36 PART C – EXPLORATION AND RECLAMATION PLAN 1.0 Introduction 39 2.0 2012 Surface Drilling Program 40 3.0 Trenching and Test Pits 47 4.0 Geophysical Exploration Methods 49 5.0 Equipment Types/Uses 50 6.0 Environmental Baseline Data Gathering 52 7.0 Borehole Plugging and Reclamation 54 8.0 Revegetation Procedures 57 9.0 Hydrologic Balance Control Measures 58 10.0 Transportation and Facilities 60 11.0 Reclamation Bond 62 i 12.0 Time Table 66 13.0 References 67 LIST OF FIGURES Figure Page 1.
    [Show full text]
  • An Inventory of Belemnites Documented in Six Us National Parks in Alaska
    Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian.
    [Show full text]