Extracellular Matrix Assembly: a Multiscale Deconstruction

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Matrix Assembly: a Multiscale Deconstruction FOCUS ON THE EXTRAcELLuLAR MATRIX REVIEWS Extracellular matrix assembly: a multiscale deconstruction Janna K. Mouw1, Guanqing Ou1,2 and Valerie M. Weaver1,3–6 Abstract | The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue. The extracellular matrix (ECM) has important roles in can function both as support for cells and as active regulating the development, function and homeostasis of participants in signalling to control cell behaviour9,10. all eukaryotic cells1–3. In addition to providing physical In all cases, each class of ECM molecule has evolved the support for cells, the ECM actively participates in the ability to interact with another class to produce unique establishment, separation and maintenance of differen- physical and signalling properties that support tissue tiated tissues and organs by regulating the abundance structure, growth and function1. Growing insight into 1Center for Bioengineering of growth factors and receptors, the level of hydration the biological importance of the ECM in development, 1,4 and Tissue Regeneration, and the pH of the local environment . These diverse patho­physiology and the normal function of tissues Department of Surgery, functions are achieved through its complex chemical throughout the body has confirmed the importance of University of California, composition and organization. Although it is primaril­y elucidating the mechanisms of ECM assembly. San Francisco. 2University of California composed of water, proteins and polysaccharides, This Review provides a general overview of our cur- San Francisco and the ECM shows exquisite tissue specificity as a result rent understanding of the ‘structural principles’ that University of California of the unique ECM compositions and topographies that underlie the assembly of the ECM at several level­s, high- Berkeley Joint Graduate are generated through a dynamic biochemical and bio- lighting key molecular components and their organiza- Group in Bioengineering, physical interplay between the various cells in each tissue tion into an interlocking network. We also consider San Francisco, California 4 94143, USA. and the evolving microenvironment . The mature ECM the biochemical and mechanical cues that affect ECM 3Department of Anatomy, can also undergo dynamic remodelling in response to assembly and how its organization directly relates to University of California, environmental stimuli, such as applied force or injury, its tissue-specific functions, including as a structural San Francisco. which enables the tissue to maintain homeostasis and support, as a barrier between different tissues and as a 4Department of Bioengineering and to respond to physiological challenges and stresses, source of both chemical and physical cues. We highlight 2,5–8 Therapeutic Sciences, includin­g disease . unanswered questions that require further investigation University of California, Understanding cellular differentiation, tissue and the techniques and model systems that may facilitate San Francisco. morphogenesi­s and physiological remodelling requires this research. 5 Eli and Edythe Broad Center an understanding of the ECM components that are of Regeneration Medicine and Stem Cell Research, produced by cells, as well as the assembly of those Key molecular players in the ECM University of California, macromolecules into a functional three-dimensional Our understanding of the composition, structure and San Francisco. structure2,3. The macromolecules that constitute the function of the ECM is continuously evolving, aided by 6UCSF Helen Diller ECM have evolved structural and chemical properties the discovery of novel ECM molecules, the mapping Comprehensive Cancer Center, University of that are particularly suited to their specific biological of internal sites within ECM proteins that are crucial California, San Francisco, functions in their respective tissues. Small, modular for self-assembly and for interactions with other ECM California 94143, USA. subunits form homopolymers and heteropolymers that components, the characterization of the proteases and Correspondence to V.M.W. become supramolecular assemblies with highly special- the protease inhibitors that are responsible for ECM e‑mail: Valerie.Weaver@ ized organizations1–3. These assemblies contain binding degradation and turnover, and the identification of ucsfmedctr.org doi:10.1038/nrm3902 domains for growth factors and chemokines, establish novel receptors and signalling mechanisms that medi- 1–3 Published online complex adhesion surfaces and form diffusion barriers ate cellular responses to the ECM . The architecture 5 November 2014 between different cellular layers; thus, ECM molecules of the ECM is highly organized as a result of the innate NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 15 | DECEMBER 2014 | 771 © 2014 Macmillan Publishers Limited. All rights reserved REVIEWS a Standard collagen molecule properties of its constituent molecules and their inter­ N terminal C terminal actions, as well as the activities of resident cells. The propeptide propeptide interaction­s between cells and the environment that 1 Gly-X-Y repeats are created by the ECM in turn have important roles in directing processes in development, homeostasis and 3 α chains (2 α1,1 α2) pathogenesis. In this Review, we define the ECM as all secreted molecules that are immobilized outside a cell, including growth factors, cytokines and cell adhesion molecules, although we primarily focus on the macro- molecules that are mainly responsible for tissue-type C-terminal propeptide 2 initiates triple helix formation specific extracellula­r architecture. in the rough ER The protein and non-protein constituents of the ECM vary not only in terms of their functional roles but also in terms of their structure. The polypeptide chains of ECM macromolecules often consist of many Procollagen is secreted individual domains, and homologous domains between into the extracellular space 3 Procollagen macromolecules can have sequence and structural dif- ferences that impart different functions. Individual ECM macromolecules rarely exist in isolation but Enzymes cleave propeptides instead often integrate into supramolecular structures to form collagen 4 Collagen containing different molecular species that differ in both their identity and their relative abundance. The ECM is primarily composed of two main classes of macromolecules: fibrous proteins (including collagens and elastin) and glycoproteins (including fibronectin, Topographies b FACIT and related collagens proteoglycans (PGs) and laminin)1. The three-dimensional qualities Gly-X-Y interruption of surfaces or structures, including contours and relief. Fibrillar collagens. Collagens are major proteins of the In the context of the ECM this Non-collagen ECM and are arguably the most dominant. Decade­s of includes features such as peaks Collagen research have uncovered 28 different collagen types, and valleys, changes in and each type is comprised of homotrimers and hetero­ roughness and geometric features. trimers that are formed by three polypeptide chains (known as α-chains) (FIG. 1; TABLE 1). More than 40 Morphogenesis distinct α-chains have been identified in humans as Figure 1 | Collagen structure. a | The standard fibrillar The process of cell movement well as multiple other proteins containing collagen- collagen molecule isNature characterized Reviews by| Molecular amino- and Cell Biology during embryonic development like domains11,12. The structural hallmark of all colla- that controls the size, the carboxy-terminal propeptide sequences, which flank a shape and the patterning of series of Gly‑X‑Y repeats (where X and Y represent any gens is their triple helix — a tight right-handed helix tissues and organs. amino acids but are frequently proline and hydroxyproline) of three α-chains, each of which contains one or more (step 1). These form the central triple helical structure of regions characterized by the repeating amino acid motif Proteoglycans procollagen and collagen. Three α‑chains (the illustration Gly‑X‑Y, where X and Y can be any amino acid13 (FIG. 1). (PGs). Glycoproteins that shows two 1-chains and one 2-chain, which is consist of a core protein to α α Some colla­gen molecules assemble as homotrimers, which one or more representative of type I collagen) are intracellularly whereas others assemble as heterotrimers that are com- glycosaminoglycan chain is assembled into the triple helix following initiation of this prised of two or three distinguishable α-chain types. The attached. process by the C‑terminal domain (step 2). Procollagen is large family of collagens and proteins with collagenous secreted by cells into the extracellular space (step 3) and domains has revealed that the collagen triple helix is a Glycosaminoglycans converted into collagen by the removal of the N- and (GAGs). Long, linear, charged C‑propeptides via metalloproteinase enzymes (step 4). basic motif that can be adopted by proteins that have polysaccharides that comprise b | Fibril-associated collagens with interrupted triple helices
Recommended publications
  • Cytoplasmic Organelles
    CYTOPLASMIC ORGANELLES OBJECTIVES: After completing this exercise, you should be able to: 1. Recognize features of the cytoplasm in the light microscope. 2. Identify major cellular organelles in electron micrographs. 3. Provide general functions of cellular organelles. ASSIGNMENT FOR TODAY'S LABORATORY GLASS SLIDES - https://medmicroscope.uc.edu/ SL 181 (spinal cord) rough endoplasmic reticulum SL 108 (pancreas) rough endoplasmic reticulum SL 125 (inflammation) rough endoplasmic reticulum and Golgi apparatus ELECTRON MICROGRAPHS (Gray envelope) EM 3-6, 4-5, 12-1, 16 plasma membrane EM 1-3, 2-1, 2-2, 3-5, 4-1, 10-5, 14-3 rough endoplasmic reticulum EM 4-2, 10-6, 12-3, 13-7, 14-5 smooth endoplasmic reticulum EM 5-2 and 5-inset ribosomes EM 11-1 to 11-4 Golgi apparatus EM 6-10 to 6-13, 2-3 to 2-5 also 3-4, 1-4, 12-2 and 13-6 mitochondria EM 3, 4, 16 and 17 Magnification and Resolution POSTED ELECTRON MICROGRAPHS # 1 Organelles # 6 Organelles Lab 2 Posted EMs SUPPLEMENTAL MATERIAL: SUPPLEMENTARY ELECTRON MICROGRAPHS Rhodin, J. A.G., An Atlas of Histology Plasma membrane Fig. 2-2; 2-3 Rough ER Fig 2-26; 2-29; 2-30; 2-31; 2-32 Smooth ER Fig 2-33; 2-34; 2-35 Ribosomes Fig 2-27; 2-28; 2-30; 2-31; 2-32 Golgi apparatus Fig 2-36; 2-37; 2-38 Mitochondria Fig 2-39; 2-40; 2-41 In the last lab, you were introduced to cells and extracellular matrix, followed by a focus on the nucleus.
    [Show full text]
  • A Tour of the Cell Overview
    Unit 3: The Cell Name______________________ Chapter 6: A Tour of the Cell Overview 6.1 Biologists use microscopes and the tools of biochemistry to study cells The discovery and early study of cells progressed with the invention of microscopes in 1590 and their improvement in the 17th century. In a light microscope (LM), visible light passes through the specimen and then through glass lenses. ○ The lenses refract light so that the image is magnified into the eye or a camera. Microscopes vary in magnification, resolution, and contrast. ○ Magnification is the ratio of an object’s image to its real size. A light microscope can magnify effectively to about 1,000 times the real size of a specimen. ○ Resolution is a measure of image clarity. It is the minimum distance two points can be separated and still be distinguished as two separate points. The minimum resolution of an LM is about 200 nanometers (nm), the size of a small bacterium. ○ Contrast accentuates differences in parts of the sample. It can be improved by staining or labeling of cell components so they stand out. Although an LM can resolve individual cells, it cannot resolve much of the internal anatomy, especially the organelles, membrane-enclosed structures within eukaryotic cells. The size range of cells 1 To resolve smaller structures, scientists use an electron microscope (EM), which focuses a beam of electrons through the specimen or onto its surface. ○ Theoretically, the resolution of a modern EM could reach 0.002 nm, but the practical limit is closer to about 2 nm. Scanning electron microscopes (SEMs) are useful for studying the surface structure or topography of a specimen.
    [Show full text]
  • Bruch's Membrane Abnormalities in PRDM5-Related Brittle Cornea
    Porter et al. Orphanet Journal of Rare Diseases (2015) 10:145 DOI 10.1186/s13023-015-0360-4 RESEARCH Open Access Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome Louise F. Porter1,2,3, Roberto Gallego-Pinazo4, Catherine L. Keeling5, Martyna Kamieniorz5, Nicoletta Zoppi6, Marina Colombi6, Cecilia Giunta7, Richard Bonshek2,8, Forbes D. Manson1 and Graeme C. Black1,9* Abstract Background: Brittle cornea syndrome (BCS) is a rare, generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Recessive mutations in transcription factors ZNF469 and PRDM5 cause BCS. Both transcription factors are suggested to act on a common pathway regulating extracellular matrix genes, particularly fibrillar collagens. We identified bilateral myopic choroidal neovascularization as the presenting feature of BCS in a 26-year-old-woman carrying a novel PRDM5 mutation (p.Glu134*). We performed immunohistochemistry of anterior and posterior segment ocular tissues, as expression of PRDM5 in the eye has not been described, or the effects of PRDM5-associated disease on the retina, particularly the extracellular matrix composition of Bruch’smembrane. Methods: Immunohistochemistry using antibodies against PRDM5, collagens type I, III, and IV was performed on the eyes of two unaffected controls and two patients (both with Δ9-14 PRDM5). Expression of collagens, integrins, tenascin and fibronectin in skin fibroblasts of a BCS patient with a novel p.Glu134* PRDM5 mutation was assessed using immunofluorescence. Results: PRDM5 is expressed in the corneal epithelium and retina. We observe reduced expression of major components of Bruch’s membrane in the eyes of two BCS patients with a PRDM5 Δ9-14 mutation.
    [Show full text]
  • Protein Export Via the Type III Secretion System of the Bacterial Flagellum
    biomolecules Review Protein Export via the Type III Secretion System of the Bacterial Flagellum Manuel Halte and Marc Erhardt * Institute for Biology–Bacterial Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany; [email protected] * Correspondence: [email protected] Abstract: The bacterial flagellum and the related virulence-associated injectisome system of pathogenic bacteria utilize a type III secretion system (T3SS) to export substrate proteins across the inner membrane in a proton motive force-dependent manner. The T3SS is composed of an export gate (FliPQR/FlhA/FlhB) located in the flagellar basal body and an associated soluble ATPase complex in the cytoplasm (FliHIJ). Here, we summarise recent insights into the structure, assembly and protein secretion mechanisms of the T3SS with a focus on energy transduction and protein transport across the cytoplasmic membrane. Keywords: bacterial flagellum; flagellar assembly; type III protein export; ATPase; proton motive force; secretion model 1. Introduction Flagella are complex rotary nanomachines embedded in the cell envelope of many Citation: Halte, M.; Erhardt, M. bacteria. In addition to functions in adhering to surfaces, flagella allow bacteria to move Protein Export via the Type III in their environment towards nutrients or to escape harmful molecules. They are present Secretion System of the Bacterial in both Gram-negative and Gram-positive bacteria, and are evolutionary related to the Flagellum. Biomolecules 2021, 11, 186. injectisome device, which various Gram-negative bacterial species use to inject effectors into https://doi.org/10.3390/ eukaryotic target cells [1]. Both the flagellum and injectisome are complex nanomachines biom11020186 and made of around 20 different proteins, ranging from a copy number of very few to several thousand [2].
    [Show full text]
  • A Study of Extracellular Space in Central Nervous Tissue by Freeze-Substitution
    A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION A. VAN HARREVELD, M.D., JANE CROWELL, Ph.D., and S. K. MALHOTRA, D.Phil. From the Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology, Pasadena, California ABSTRACT Downloaded from It was attempted to preserve the water distribution in central nervous tissue by rapid freezing followed by substitution fixation at low temperature. The vermis of the cerebellum of white mice was frozen by bringing it into contact with a polished silver mirror maintained at a temperature of about -207C. The tissue was subjected to substitution fixation in acetone containing 2 per cent Os0 4 at -85°C for 2 days, and then prepared for electron micros- copy by embedding in Maraglas, sectioning, and staining with lead citrate or uranyl www.jcb.org acetate and lead. Cerebellum frozen within 30 seconds of circulatory arrest was compared with cerebellum frozen after 8 minutes' asphyxiation. From impedance measurements under these conditions, it could be expected that in the former tissue the electrolyte and water distribution is similar to that in the normal, oxygenated cerebellum, whereas in the on August 22, 2006 asphyxiated tissue a transport of water and electrolytes into the intracellular compartment has taken place. Electron micrographs of tissue frozen shortly after circulatory arrest re- vealed the presence of an appreciable extracellular space between the axons of granular layer cells. Between glia, dendrites, and presynaptic endings the usual narrow clefts and even tight junctions were found. Also the synaptic cleft was of the usual width (250 to 300 A).
    [Show full text]
  • Lysosome Trafficking Is Necessary for EGF-Driven Invasion and Is
    Dykes et al. BMC Cancer (2017) 17:672 DOI 10.1186/s12885-017-3660-3 RESEARCH ARTICLE Open Access Lysosome trafficking is necessary for EGF- driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers Samantha S. Dykes1,2,4, Joshua J. Steffan3* and James A. Cardelli1,2 Abstract Background: Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Methods: Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. Results: EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. Conclusions: These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.
    [Show full text]
  • Vascular Phenotypes in Nonvascular Subtypes of the Ehlers-Danlos Syndrome: a Systematic Review
    SYSTEMATIC REVIEW Official journal of the American College of Medical Genetics and Genomics Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review Sanne D’hondt, MSc1, Tim Van Damme, MD1 and Fransiska Malfait, MD, PhD1 Purpose: Within the spectrum of the Ehlers-Danlos syndromes (53%), frequently reported in musculocontractural and classical- (EDS), vascular complications are usually associated with the like EDS; intracranial hemorrhages (18%), with a high risk in vascular subtype of EDS. Vascular complications are also observed dermatosparaxis EDS; and arterial dissections (16%), frequently in other EDS subtypes, but the reports are anecdotal and the reported in kyphoscoliotic and classical EDS. Other, more minor, information is dispersed. To better document the nature of vascular vascular complications were reported in cardiac-valvular, arthro- complications among “nonvascular” EDS subtypes, we performed chalasia, spondylodysplastic, and periodontal EDS. a systematic review. Conclusion: Potentially life-threatening vascular complications are Methods: We queried three databases for English-language a rare but important finding in several nonvascular EDS sub- studies from inception until May 2017, documenting both types, highlighting a need for more systematic documentation. This phenotypes and genotypes of patients with nonvascular EDS review will help familiarize clinicians with the spectrum of vascular subtypes. The outcome included the number and nature of vascular complications in EDS and guide follow-up and management. complications. Genet Med advance online publication 5 October 2017 Results: A total of 112 papers were included and data were collected from 467 patients, of whom 77 presented with a vascular Key Words: connective tissue disorder; Ehlers-Danlos syndrome; phenotype.
    [Show full text]
  • Reduction of Type V Collagen Using a Dominant-Negative
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Reduction of Type V Collagen Using a Dominant-negative Strategy Alters the Regulation of Fibrillogenesis and Results in the Loss of Corneal-Specific Fibril Morphology Jeffrey K. Marchant, Rita A. Hahn, Thomas F. Linsenmayer, and David E. Birk Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 Abstract. A number of factors have been implicated in synthesized the truncated or(V) protein, and this was the regulation of tissue-specific collagen fibril diameter. detectable only intracellularly, in a distribution that Previous data suggest that assembly of heterotypic colocalized with lysosomes. To assess endogenous fibrils composed of two different fibrillar collagens rep- etl(V) protein levels, infected cell cultures were as- resents a general mechanism regulating fibril diameter. sayed, and these consistently demonstrated reductions Specifically, we hypothesize that type V collagen is re- relative to control virus-infected or uninfected cultures. quired for the assembly of the small diameter fibrils ob- Analyses of corneal fibril morphology demonstrated served in the cornea. To test this, we used a dominant- that the reduction in type V collagen resulted in the as- negative retroviral strategy to decrease the levels of sembly of large-diameter fibrils with a broad size distri- type V collagen secreted by chicken corneal fibroblasts. bution, characteristics similar to fibrils produced in The chicken or(V) collagen gene was cloned, and ret- connective tissues with low type V concentrations. Im- roviral vectors that expressed a polycistronic mRNA munoelectron microscopy demonstrated the amino- encoding a truncated otl(V) minigene and the reporter terminal domain of type V collagen was associated with gene LacZ were constructed.
    [Show full text]
  • Methylome and Transcriptome Maps of Human Visceral and Subcutaneous
    www.nature.com/scientificreports OPEN Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal Received: 9 April 2019 Accepted: 11 June 2019 key epigenetic diferences at Published: xx xx xxxx developmental genes Stephen T. Bradford1,2,3, Shalima S. Nair1,3, Aaron L. Statham1, Susan J. van Dijk2, Timothy J. Peters 1,3,4, Firoz Anwar 2, Hugh J. French 1, Julius Z. H. von Martels1, Brodie Sutclife2, Madhavi P. Maddugoda1, Michelle Peranec1, Hilal Varinli1,2,5, Rosanna Arnoldy1, Michael Buckley1,4, Jason P. Ross2, Elena Zotenko1,3, Jenny Z. Song1, Clare Stirzaker1,3, Denis C. Bauer2, Wenjia Qu1, Michael M. Swarbrick6, Helen L. Lutgers1,7, Reginald V. Lord8, Katherine Samaras9,10, Peter L. Molloy 2 & Susan J. Clark 1,3 Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional diferences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic diferences and their contribution to cell type and depot-specifc function. We found that DNA methylomes were notably distinct between diferent adipocyte depots and were associated with diferential gene expression within pathways fundamental to adipocyte function. Most striking diferential methylation was found at transcription factor and developmental genes. Our fndings highlight the importance of developmental origins in the function of diferent fat depots.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Time-Series Plasma Cell-Free DNA Analysis Reveals Disease Severity of COVID-19 Patients
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.08.20124305; this version posted June 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Time-series plasma cell-free DNA analysis reveals disease severity of COVID- 19 patients Authors: Xinping Chen1†, Yu Lin2†, Tao Wu1†, Jinjin Xu2†, Zhichao Ma1†, Kun Sun2,5†, Hui Li1†, Yuxue Luo2,3†, Chen Zhang1, Fang Chen2, Jiao Wang1, Tingyu Kuo2,4, Xiaojuan Li1, Chunyu Geng2, Feng Lin1, Chaojie Huang2, Junjie Hu1, Jianhua Yin2, Ming Liu1, Ye Tao2, Jiye Zhang1, Rijing Ou2, Furong Xiao1, Huanming Yang2,6, Jian Wang2,6, Xun Xu2,7, Shengmiao Fu1*, Xin Jin2,3*, Hongyan Jiang1*, Ruoyan Chen2* Affiliations: 1Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou 570311, Hainan, China. 2BGI-Shenzhen, Shenzhen, 518083, Guangdong, China 3School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China 5Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong, China 6James D. Watson Institute of Genome Sciences, Hangzhou 310058, China 7Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China *Correspondence to: [email protected]; [email protected]; [email protected]; [email protected]. †These authors contributed equally to this work. Abstract: Clinical symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death.
    [Show full text]
  • Copper, Lysyl Oxidase, and Extracellular Matrix Protein Cross-Linking1–3
    Copper, lysyl oxidase, and extracellular matrix protein cross-linking1–3 Robert B Rucker, Taru Kosonen, Michael S Clegg, Alyson E Mitchell, Brian R Rucker, Janet Y Uriu-Hare, and Carl L Keen Downloaded from https://academic.oup.com/ajcn/article/67/5/996S/4666210 by guest on 01 October 2021 ABSTRACT Protein-lysine 6-oxidase (lysyl oxidase) is a progress toward understanding copper’s role advanced quickly. cuproenzyme that is essential for stabilization of extracellular Lysyl oxidase is responsible for the formation of lysine-derived matrixes, specifically the enzymatic cross-linking of collagen and cross-links in connective tissue, particularly in collagen and elastin. A hypothesis is proposed that links dietary copper levels elastin. Normal cross-linking is essential in providing resistance to dynamic and proportional changes in lysyl oxidase activity in to elastolysis and collagenolysis by nonspecific proteinases, eg, connective tissue. Although nutritional copper status does not various proteinases involved in blood coagulation (11). Resis- influence the accumulation of lysyl oxidase as protein or lysyl tance to proteolysis occurs within a short period of copper reple- oxidase steady state messenger RNA concentrations, the direct tion in most animals; eg, Tinker et al (12) observed that the depo- influence of dietary copper on the functional activity of lysyl oxi- sition of aortic elastin is restored to near normal values after dase is clear. The hypothesis is based on the possibility that cop- 48–72 h of copper repletion in copper-deficient cockerels. per efflux and lysyl oxidase secretion from cells may share a Effects of copper deprivation are most pronounced in common pathway.
    [Show full text]