Transition Metal Catalyzed Selective Oxidation of Sugars and Polyols

Total Page:16

File Type:pdf, Size:1020Kb

Transition Metal Catalyzed Selective Oxidation of Sugars and Polyols Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München “Transition Metal Catalyzed Selective Oxidations of Sugars and Polyols” Matthias Bierenstiel aus Memmingen 2005 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der vierten Änderungssatzung vom 26. November 2004) außerhalb der Fakultät von Assistant Professor Dr. Marcel Schlaf, University of Guelph, Guelph, Ontario, Kanada betreut. Die Arbeit wird von Univ.-Professor Dr. Peter Klüfers vor der Fakultät vertreten. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. Guelph, Ontario, Kanada, den 17. März 2005 (Matthias Bierenstiel) Dissertation eingereicht am 22. März 2005 1. Gutachter Professor Dr. Marcel Schlaf 2. Gutachter Professor Dr. Peter Klüfers Mündliche Prüfung am 29. April 2005 “Chemistry began by saying it would change baser metals into gold; by not doing so it has done much greater things.” Ralph Waldo Emerson Table of Contents Table of Contents Table of Contents .................................................................................................. i Acknowledgements .............................................................................................. v Abstract….............................................................................................................vi Zusammenfassung .............................................................................................viii Abbreviations........................................................................................................xi Chapter 1 The Chemistry of Sugars, Transition Metal Catalysis and Research Motivation......................................................................... 1 1.1 General Significance and Features of Sugars and Their Oxidation Products......................................................................................................... 1 1.1.1 Definitions and Properties of Sugars ...................................................... 1 1.1.2 Equilibria and Mutarotation of Sugars..................................................... 3 1.1.3 Sugar Derivatives and Their Applications ............................................... 4 1.1.4 Oxidation Products of Sugars ................................................................. 6 1.1.4.1 Definition, Occurrence and Applications of Sugar Lactones ............ 8 1.1.4.2 Synthesis of Sugar Lactones ........................................................... 9 1.1.4.3 General Significance and Occurrence of Keto-sugars................... 13 1.1.4.4 Synthesis of Keto-sugars............................................................... 13 1.1.4.5 Synthesis of Usolidulosides ........................................................... 14 1.1.4.6 Application of Keto-sugars in Reactions ........................................ 18 1.1.4.7 Aldehydo-Sugars ........................................................................... 20 1.1.4.8 Other Sugar Oxidation Products.................................................... 20 1.2 Transition Metal Catalyzed Transfer Hydrogenation Reaction as a Strategy for Sugar Transformations ............................................................. 20 1.2.1 Hydrogen Transfer Reactions ............................................................... 20 1.2.2 Other Metal Catalyzed Oxidation Reactions ......................................... 23 1.2.3 Representative Examples of Metal Sugar Complexes.......................... 24 1.2.4 Examples of Transition Metal Complex Catalyzed Transformations of Sugars .............................................................................................. 25 1.3 Motivation, Research Objectives and Potential Applications........................ 28 1.3.1 Motivation ............................................................................................. 28 1.3.2 Research Objectives............................................................................. 29 1.3.3 Potential Applications of Sugar Lactones and Keto-Sugars.................. 30 1.4 References................................................................................................... 31 i Table of Contents Chapter 2 Selective Oxidation of Hemiacetals to Lactones ......................... 36 2.1 Synthesis and Properties of δ- and γ-Sugar Lactones ................................. 36 2.2 Transition Metal Catalysis ............................................................................ 38 2.2.1 RuH2(PPh3)4 and RhH(PPh3)4 in the Synthesis of Sugar Lactones ...... 38 2.2.2 Shvo’s Catalyst ..................................................................................... 41 2.3 Results and Discussion................................................................................ 44 2.3.1 Rationale for the Selection of Catalyst and Reaction Conditions .......... 44 2.3.2 Synthesis and Isolation of δ-Lactones .................................................. 45 2.3.2.1 Variation in Hydrogen Acceptor ..................................................... 45 2.3.2.2 Variation of Co-solvent .................................................................. 48 2.3.2.3 Oxidation Reactions without Co-solvent ........................................ 50 2.3.2.4 Modification of Catalyst.................................................................. 53 2.3.2.5 Optimized Reaction Conditions ..................................................... 54 2.3.3 NMR and Conformational Analysis ....................................................... 57 2.3.4 δ to γ Lactone Rearrangement ............................................................. 62 2.3.4.1 Thermodynamic Considerations .................................................... 62 2.3.4.2 Mechanistic Considerations........................................................... 65 2.4 Conclusions ................................................................................................. 67 2.5 Experimental section.................................................................................... 68 2.6 References................................................................................................... 70 Chapter 3 Oxidation of 2° Alcohols in Unprotected Sugars......................... 73 3.1 General Overview and Research Strategy................................................... 73 3.1.1 Chemical Properties of Keto-Sugars..................................................... 73 3.1.2 Catalyst and Reaction Condition Requirements ................................... 78 3.1.2.1 Reaction Medium........................................................................... 78 3.1.2.2 Solubility ........................................................................................ 79 3.1.2.3 Reaction Temperature ................................................................... 79 3.1.2.4 Transition Metal Catalyst ............................................................... 80 3.1.2.5 Mediator......................................................................................... 80 3.1.2.6 Reaction Time Scale...................................................................... 81 3.1.2.7 Other Factors................................................................................. 81 3.1.3 Research Strategy and Model Systems................................................ 82 3.1.3.1 Vicinal-Diols................................................................................... 83 3.1.3.2 Thermodynamic and Kinetic Parameters....................................... 83 3.1.3.3 Theoretical Calculations of Diol Oxidations ................................... 87 3.1.3.4 Mono-alcohol Model Systems........................................................ 93 3.1.3.5 Diol Model Systems....................................................................... 95 3.1.4 Reaction Monitoring.............................................................................. 96 3.1.4.1 Monitoring of Model Systems ........................................................ 96 3.1.4.2 Monitoring of Sugar Substrate Systems ........................................ 97 ii Table of Contents 3.2 Catalytic Hydrogen Transfer Reactions Investigated ................................... 98 3.2.1 Shvo’s Catalyst ..................................................................................... 98 3.2.1.1 Shvo’s System in the Oxidation of Secondary Alcohols................. 98 3.2.1.2 Experimental Section................................................................... 100 3.2.2 Noyori System .................................................................................... 101 3.2.2.1 Introduction to Metal-Ligand Bifunctional Catalysis and Motivation .................................................................................... 101 3.2.2.2 Results and Discussion ............................................................... 106 3.2.2.3 Conclusions ................................................................................. 141 3.2.2.4 Experimental Section................................................................... 142 3.3 Investigated Transition Metal Catalyzed Peroxide Oxidations ................... 152 3.3.1 Molybdenum/ Tungsten Peroxide Systems......................................... 153 3.3.1.1 Oxidations with (NH4)6Mo7O24 and Na2MoO4............................... 153 3.3.1.2 MoO2(acac)2 System ..................................................................
Recommended publications
  • Genomewide and Enzymatic Analysis Reveals Efficient D-Galacturonic
    RESEARCH ARTICLE Molecular Biology and Physiology Genomewide and Enzymatic Analysis Reveals Efficient D-Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides Ryan J. Protzko,a,b Christina A. Hach,c Samuel T. Coradetti,b,d Magdalena A. Hackhofer,c Sonja Magosch,c Nils Thieme,c Gina M. Geiselman,b,d Adam P. Arkin,b,d,f Jeffrey M. Skerker,b,d,f John E. Dueber,b,e,f J. Philipp Benzc aDepartment of Molecular and Cell Biology, University of California, Berkeley, California, USA bEnergy Biosciences Institute, Berkeley, California, USA cHolzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany dEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA eBiological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA fDepartment of Bioengineering, University of California, Berkeley, California, USA ABSTRACT Biorefining of renewable feedstocks is one of the most promising routes to replace fossil-based products. Since many common fermentation hosts, such as Saccharomyces cerevisiae, are naturally unable to convert many component plant cell wall polysaccharides, the identification of organisms with broad catabolism capabilities represents an opportunity to expand the range of substrates used in fer- mentation biorefinery approaches. The red basidiomycete yeast Rhodosporidium to- ruloides is a promising and robust host for lipid- and terpene-derived chemicals. Pre- vious studies demonstrated assimilation of a range of substrates, from C5/C6 sugars to aromatic molecules similar to lignin monomers. In the current study, we analyzed the potential of R. toruloides to assimilate D-galacturonic acid, a major sugar in many pectin-rich agricultural waste streams, including sugar beet pulp and citrus peels.
    [Show full text]
  • Xylooligosaccharides Production, Quantification, and Characterization
    19 Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment Qing Qing1, Hongjia Li2,3,4,Ã, Rajeev Kumar2,4 and Charles E. Wyman2,3,4 1 Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, China 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 4 BioEnergy Science Center, Oak Ridge, USA 19.1 Introduction 19.1.1 Definition of Oligosaccharides Oligosaccharides, also termed sugar oligomers, refer to short-chain polymers of monosaccharide units con- nected by a and/or b glycosidic bonds. In structure, oligosaccharides represent a class of carbohydrates between polysaccharides and monosaccharides, but the range of degree of polymerization (DP, chain length) spanned by oligosaccharides has not been consistently defined. For example, the Medical Subject Headings (MeSH) database of the US National Library of Medicine defines oligosaccharides as carbohy- drates consisting of 2–10 monosaccharide units; in other literature, sugar polymers with DPs of up to 30–40 have been included as oligosaccharides [1–3]. ÃPresent address: DuPont Industrial Biosciences, Palo Alto, USA Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, First Edition. Edited by Charles E. Wyman. Ó 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. 392 Aqueous Pretreatment of Plant Biomass for
    [Show full text]
  • Alcohol Oxidation
    Alcohol oxidation Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and The indirect oxidation of aldehyde hydrates primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R- CH(OH)2) by reaction with water. The oxidation of a primary alcohol at the aldehyde level is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed. Contents Oxidation to aldehydes Oxidation to ketones Oxidation to carboxylic acids Diol oxidation References Oxidation to aldehydes Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are further oxidized to carboxylic acids. Conditions required for making aldehydes are heat and distillation. In aldehyde formation, the temperature of the reaction should be kept above the boiling point of the aldehyde and below the boiling point of the alcohol. Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include: Oxidation of alcohols to aldehydes and ketones Chromium-based reagents, such as Collins reagent (CrO3·Py2), PDC or PCC. Sulfonium species known as "activated DMSO" which can result from reaction of DMSO with electrophiles, such as oxalyl chloride (Swern oxidation), a carbodiimide (Pfitzner-Moffatt oxidation) or the complex SO3·Py (Parikh-Doering oxidation). Hypervalent iodine compounds, such as Dess-Martin periodinane or 2-Iodoxybenzoic acid. Catalytic TPAP in presence of excess of NMO (Ley oxidation). Catalytic TEMPO in presence of excess bleach (NaOCl) (Oxoammonium-catalyzed oxidation).
    [Show full text]
  • BIO 1: Enzymatic Biodiesel Chairs: H.C
    Abstracts 105th AOCS Annual Meeting & Expo May 4-May 7, 2014 BIO 1: Enzymatic Biodiesel Chairs: H.C. Holm, Novozymes A/S, Denmark; and R. Burton, MARC-IV, Inc., USA Technical Considerations for Biodiesel Production feedstocks. The recent results from a commercial Using Enzyme Catalysis. R. Burton, MARC-IV, Inc., continuous unit for the enzymatic production of Pittsboro, NC, USA. biodiesel using high FFA’s multiple feedstocks will The search for alternative catalysts for the also be presented. production of biodiesel has been of significant interest to industry. Enzyme Catalyzed Biodiesel Using Liquid Lipases. One primary reason to replace conventional P.M. Nielsen, Novozymes A/S, Bagsvaerd, Denmark. alkaline catalysis is to eliminate soap waste streams During the last year the enzymatic in commercial production. Furthermore, utilizing transesterification using liquid lipase (the BioFAME enzymes in the processing of fatty acid esters can process) has been proven in full production scale in eliminate waste water streams, enhance the co- two plants in USA. The learnings from these plants product quality of glycerol, and provide the ability to are shared in this presentation in the discussion of use lower quality feedstocks. These low quality how to control the process to get biodiesel from feedstocks like yellow grease with higher free fatty used cooking oil and DDGS corn oil. The most acid (FFA) content are largely underutilized for important parameters have been: biodiesel due to the difficulty of processing these Securing correct pretreatment to keep the types of oils. This paper will evaluate the real world enzyme stable experiences of an enzymatic biodiesel plant.
    [Show full text]
  • How Is Alcohol Metabolized by the Body?
    Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to­ acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.
    [Show full text]
  • Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-Species
    Molecules 2014, 19, 6534-6582; doi:10.3390/molecules19056534 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-species Vincenzo Piccialli Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ―Federico II‖, Via Cintia 4, 80126, Napoli, Italy; E-Mail: [email protected]; Tel.: +39-081-674111; Fax: +39-081-674393 Received: 24 February 2014; in revised form: 14 May 2014 / Accepted: 16 May 2014 / Published: 21 May 2014 Abstract: In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C–C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds.
    [Show full text]
  • Ii- Carbohydrates of Biological Importance
    Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons.
    [Show full text]
  • Development of an Economically and Environmentally Sustainable Method for the Oxidation of Rice Bran Wax
    Technische Universität München Professur für Molekulare Katalyse Development of an Economically and Environmentally Sustainable Method for the Oxidation of Rice Bran Wax Tommy Alfred Hofmann Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Klaus Köhler Prüfer der Dissertation: 1. Prof. Dr. Fritz E. Kühn 2. Prof. Dr. Kai-Olaf Hinrichsen Die Dissertation wurde am 14.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 13.06.2018 angenommen. „Dem Anwenden muss das Erkennen vorausgehen." (Max Planck) I Die vorliegende Arbeit wurde von August 2015 bis Mai 2018 an der Professur für Molekulare Katalyse der Technischen Universität München angefertigt. Mein ganz besonderer Dank gilt meinem Doktorvater Professor Dr. Fritz E. Kühn Vielen Dank für die Aufnahme in Ihren Arbeitskreis, die Themenauswahl zu Beginn meiner Masterarbeit und die anschließende Übernahme als Doktorand. Die hervorragenden Bedingungen in Ihrem Arbeitskreis, Ihre direkte und unkomplizierte Betreuung sowie das in mich gesetzte Vertrauen ermöglichten den Erfolg dieser Arbeit. Sollte sich in der Zukunft die Gelegenheit zu erneuter Zusammenarbeit ergeben, so würde ich mich darüber sehr freuen. II III Danksagung (Acknowledgements) Ich danke meinem Mentor Dr. Nicolai Nagorny sowie der Kahl GmbH & Co. KG für die produktive Zusammenarbeit und die grundsätzliche Fragestellung. Dem BMBF danke ich für die Bewilligung und Finanzierung des Projekts. Vielen Dank an Tilo Rauchhaus für die umgehende Beantwortung verschiedener verwaltungstechnischer Fragen. Dem Fakultätsgraduiertenzentrum Chemie danke ich für die gegebenen Möglichkeiten und besonders für die Finanzierung meine Konferenzteilnahme in Rochester, NY.
    [Show full text]
  • Biochemistry Introductory Lecture Dr
    Biochemistry Introductory lecture Dr. Munaf S. Daoud Carbohydrates (CHO) Definition: Aldehyde or Ketone derivatives of the higher polyhydric alcohols or compounds which yield these derivatives on hydrolysis. Classification: (mono, di, oligo, poly) saccharide. Monosaccharides: Can be classified as trioses, tetroses, pentoses, hexoses and heptoses depending upon the number of carbon atoms, and as aldoses or ketoses, depending upon whether they have an aldehyde or ketone group. Aldehyde (-CHO) Aldoses Ketone (-C=O) Ketoses Polysaccharides (glycans): Homopolysaccharides (homoglycans): e.g. starch, glycogen, inulin, cellulose, dextrins, dextrans. Heteropolysaccharides (heteroglycans): e.g. mucopolysaccharides (MPS) or glycosaminoglycans. Function of CHO: 1) Chief source of energy (immediate and stored energy). 2) Constituent of compound lipids and conjugated protein. 3) Structural element like cellulose. 4) Drugs like cardiac glycosides and antibodies. 5) Lactating mammary gland (Lactose in milk). 6) Synthesis of other substances like fatty acids, cholesterol, amino acids…etc. by their degradation products. 7) Constituent of mucopolysaccharides. 1 1) Stereo-isomerism Stereo-isomers: D-form, L-form 2) Optical isomers (optical activity) Enantiomers: dextrorotatory (d or + sign) Levorotatory (l or – sign) Racemic (d l) 3) Cyclic structures or open chain 4) Anomers and Anomeric carbon OH on carbon number 1, if below the plane then its -form, if above the plane then -form. Mutarotation: the changes of the initial optical rotation that takes place
    [Show full text]
  • Carbohydrates
    CARBOHYDRATES By: Dr. MohammedAzim Bagban MI 201 Assistant Professor, Unit-1 C. U. SHAH Institute of Science LECTURE OUTLINE The Importance of carbohydrates. The Definition of Carbohydrates. The Classification of Carbohydrates. The Difference between various Isomers.. CARBOHYDRATE: IMPORTANCE Most Abundant Class of Biomolecules. An Important Macronutrient. Performs important physiological functions in the body. Associated with Pathological Conditions (Diabetes Mellitus, Lactose Intolerance). DEFINING CARBOHYDRATES Carbohydrates or Saccharides (Greek Sakcharon meaning "Sugar") Organic compounds composed of Carbon, Hydrogen and oxygen. Many Carbohydrates also contain Nitrogen and other elements. Carbohydrates derive their name from a Misleading Concept 'Hydrates of Carbon’ Hydrogen and Oxygen in Carbohydrates were found to be present in the same proportion as in water. (2:1).(E.g. Glucose C6H12O6 or C6 (H2O)6). It is due to this fact that compounds derived their name “Carbon Hydrate”. GLUCOSE H-C=O H-C-OH OH-C-H H-C-OH H-C-OH CH2OH This term is not a perfect derivation as many carbohydrates do not have the same proportion as water. Example: DEOXYRIBOSE (C5H10O4) H-C=O H-C-H H-C-OH H-C-OH CH2OH CHEMICAL DEFINITION OF CARBOHYDRATES Polyhydroxyl: Having more than one hydroxyl group. (-OH) Functional Group: It is a specific group of atoms or bonds which are part of a larger hydrocarbon chain.(Provide a specific chemical behaviour). For carbohydrates, the functional group is the carbonyl group which may be either Aldehyde
    [Show full text]
  • Nucleophilic Addition to the Carbonyl Group 6
    Nucleophilic addition to the carbonyl group 6 Connections Building on Arriving at Looking forward to • Functional groups, especially the C=O • How and why the C=O group reacts • Additions of organometallic group ch2 with nucleophiles reagents ch9 • Identifying the functional groups in a • Explaining the reactivity of the C=O • Substitution reactions of the C=O molecule spectroscopically ch3 group using molecular orbitals and curly group’s oxygen atom ch11 • How molecular orbitals explain arrows • How the C=O group in derivatives of molecular shapes and functional • What sorts of molecules can be made by carboxylic acids promotes substitution groups ch4 reactions of C=O groups reactions ch10 • How, and why, molecules react together • How acid or base catalysts improve the • C=O groups with an adjacent double and using curly arrows to describe reactivity of the C=O group bond ch22 reactions ch5 Molecular orbitals explain the reactivity of the carbonyl group We are now going to leave to one side most of the reactions you met in the last chapter—we will come back to them all again later in the book. In this chapter we are going to concentrate on just one of them—probably the simplest of all organic reactions—the addition of a nucleo- phile to a carbonyl group. The carbonyl group, as found in aldehydes, ketones, and many other compounds, is without doubt the most important functional group in organic chemis- try, and that is another reason why we have chosen it as our fi rst topic for more detailed study. You met nucleophilic addition to a carbonyl group on pp.
    [Show full text]
  • Engineering Saccharomyces Cerevisiae for Co-Utilization of D
    ARTICLE DOI: 10.1038/s41467-018-07589-w OPEN Engineering Saccharomyces cerevisiae for co- utilization of D-galacturonic acid and D-glucose from citrus peel waste Ryan J. Protzko1, Luke N. Latimer2, Ze Martinho3, Elise de Reus4, Tanja Seibert5,6, J. Philipp Benz 5 & John E. Dueber 3,7 1234567890():,; Pectin-rich biomasses, such as citrus peel and sugar beet pulp, hold promise as inexpensive feedstocks for microbial fermentations as enzymatic hydrolysis of their component poly- saccharides can be accomplished inexpensively to yield high concentrations of fermentable sugars and D-galacturonic acid (D-galUA). In this study, we tackle a number of challenges associated with engineering a microbial strain to convert pectin-rich hydrolysates into commodity and specialty chemicals. First, we engineer D-galUA utilization into yeast, Sac- charomyces cerevisiae. Second, we identify that the mechanism of D-galUA uptake into yeast is mediated by hexose transporters and that consumption of D-galUA is inhibited by D-glucose. Third, we enable co-utilization of D-galUA and D-glucose by identifying and expressing a heterologous transporter, GatA, from Aspergillus niger. Last, we demonstrate the use of this transporter for production of the platform chemical, meso-galactaric acid, directly from industrial Navel orange peel waste. 1 Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. 2 Department of Chemistry, University of California, Berkeley, CA 94720, USA. 3 Department of Bioengineering, University of California, Berkeley, CA 94720, USA. 4 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark. 5 Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
    [Show full text]