Bioinformatics Programming Using Python

Total Page:16

File Type:pdf, Size:1020Kb

Bioinformatics Programming Using Python Bioinformatics Programming Using Python Bioinformatics Programming Using Python Mitchell L Model Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Bioinformatics Programming Using Python by Mitchell L Model Copyright © 2010 Mitchell L Model. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Mike Loukides Indexer: Lucie Haskins Production Editor: Sarah Schneider Cover Designer: Karen Montgomery Copyeditor: Rachel Head Interior Designer: David Futato Proofreader: Sada Preisch Illustrator: Robert Romano Printing History: December 2009: First Edition. O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Bioinformatics Pro- gramming Using Python, the image of a brown rat, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information con- tained herein. TM This book uses RepKover, a durable and flexible lay-flat binding. ISBN: 978-0-596-15450-9 [M] 1259959883 Table of Contents Preface . .................................................................... xi 1. Primitives . ............................................................ 1 Simple Values 1 Booleans 2 Integers 2 Floats 3 Strings 4 Expressions 5 Numeric Operators 5 Logical Operations 7 String Operations 9 Calls 12 Compound Expressions 16 Tips, Traps, and Tracebacks 18 Tips 18 Traps 20 Tracebacks 20 2. Names, Functions, and Modules . ......................................... 21 Assigning Names 23 Defining Functions 24 Function Parameters 27 Comments and Documentation 28 Assertions 30 Default Parameter Values 32 Using Modules 34 Importing 34 Python Files 38 Tips, Traps, and Tracebacks 40 Tips 40 v Traps 45 Tracebacks 46 3. Collections . ........................................................... 47 Sets 48 Sequences 51 Strings, Bytes, and Bytearrays 53 Ranges 60 Tuples 61 Lists 62 Mappings 66 Dictionaries 67 Streams 72 Files 73 Generators 78 Collection-Related Expression Features 79 Comprehensions 79 Functional Parameters 89 Tips, Traps, and Tracebacks 94 Tips 94 Traps 96 Tracebacks 97 4. Control Statements . ................................................... 99 Conditionals 101 Loops 104 Simple Loop Examples 105 Initialization of Loop Values 106 Looping Forever 107 Loops with Guard Conditions 109 Iterations 111 Iteration Statements 111 Kinds of Iterations 113 Exception Handlers 134 Python Errors 136 Exception Handling Statements 138 Raising Exceptions 141 Extended Examples 143 Extracting Information from an HTML File 143 The Grand Unified Bioinformatics File Parser 146 Parsing GenBank Files 148 Translating RNA Sequences 151 Constructing a Table from a Text File 155 vi | Table of Contents Tips, Traps, and Tracebacks 160 Tips 160 Traps 162 Tracebacks 163 5. Classes . ............................................................. 165 Defining Classes 166 Instance Attributes 168 Class Attributes 179 Class and Method Relationships 186 Decomposition 186 Inheritance 194 Tips, Traps, and Tracebacks 205 Tips 205 Traps 207 Tracebacks 208 6. Utilities . ............................................................ 209 System Environment 209 Dates and Times: datetime 209 System Information 212 Command-Line Utilities 217 Communications 223 The Filesystem 226 Operating System Interface: os 226 Manipulating Paths: os.path 229 Filename Expansion: fnmatch and glob 232 Shell Utilities: shutil 234 Comparing Files and Directories 235 Working with Text 238 Formatting Blocks of Text: textwrap 238 String Utilities: string 240 Comma- and Tab-Separated Formats: csv 241 String-Based Reading and Writing: io 242 Persistent Storage 243 Persistent Text: dbm 243 Persistent Objects: pickle 247 Keyed Persistent Object Storage: shelve 248 Debugging Tools 249 Tips, Traps, and Tracebacks 253 Tips 253 Traps 254 Tracebacks 255 Table of Contents | vii 7. Pattern Matching . .................................................... 257 Fundamental Syntax 258 Fixed-Length Matching 259 Variable-Length Matching 262 Greedy Versus Nongreedy Matching 263 Grouping and Disjunction 264 The Actions of the re Module 265 Functions 265 Flags 266 Methods 268 Results of re Functions and Methods 269 Match Object Fields 269 Match Object Methods 269 Putting It All Together: Examples 270 Some Quick Examples 270 Extracting Descriptions from Sequence Files 272 Extracting Entries From Sequence Files 274 Tips, Traps, and Tracebacks 283 Tips 283 Traps 284 Tracebacks 285 8. Structured Text . ...................................................... 287 HTML 287 Simple HTML Processing 289 Structured HTML Processing 297 XML 300 The Nature of XML 300 An XML File for a Complete Genome 302 The ElementTree Module 303 Event-Based Processing 310 expat 317 Tips, Traps, and Tracebacks 322 Tips 322 Traps 323 Tracebacks 323 9. Web Programming . ................................................... 325 Manipulating URLs: urllib.parse 325 Disassembling URLs 326 Assembling URLs 327 Opening Web Pages: webbrowser 328 Module Functions 328 viii | Table of Contents Constructing and Submitting Queries 329 Constructing and Viewing an HTML Page 330 Web Clients 331 Making the URLs in a Response Absolute 332 Constructing an HTML Page of Extracted Links 333 Downloading a Web Page’s Linked Files 334 Web Servers 337 Sockets and Servers 337 CGI 343 Simple Web Applications 348 Tips, Traps, and Tracebacks 354 Tips 355 Traps 357 Tracebacks 358 10. Relational Databases . ................................................. 359 Representation in Relational Databases 360 Database Tables 360 A Restriction Enzyme Database 365 Using Relational Data 370 SQL Basics 371 SQL Queries 380 Querying the Database from a Web Page 392 Tips, Traps, and Tracebacks 395 Tips 395 Traps 398 Tracebacks 398 11. Structured Graphics . .................................................. 399 Introduction to Graphics Programming 399 Concepts 400 GUI Toolkits 404 Structured Graphics with tkinter 406 tkinter Fundamentals 406 Examples 411 Structured Graphics with SVG 431 SVG File Contents 432 Examples 436 Tips, Traps, and Tracebacks 444 Tips 444 Traps 445 Tracebacks 447 Table of Contents | ix A. Python Language Summary . ........................................... 449 B. Collection Type Summary . ............................................. 459 Index . 473 x | Table of Contents Preface This preface provides information I expect will be important for someone reading and using this book. The first part introduces the book itself. The second talks about Python. The third part contains other notes of various kinds. Introduction I would like to begin with some comments about this book, the field of bioinformatics, and the kinds of people I think will find it useful. About This Book The purpose of this book is to show the reader how to use the Python programming language to facilitate and automate the wide variety of data manipulation tasks en- countered in life science research and development. It is designed to be accessible to readers with a range of interests and backgrounds, both scientific and technical. It emphasizes practical programming, using meaningful examples of useful code. In ad- dition to meeting the needs of individual readers, it can also be used as a textbook for a one-semester upper-level undergraduate or graduate-level course. The book differs from traditional introductory programming texts in a variety of ways. It does not attempt to detail every possible variation of the mechanisms it describes, emphasizing instead the most frequently used. It offers an introduction to Python pro- gramming that is more rapid and in some ways more superficial than what would be found in a text devoted solely to Python or introductory programming. At the same time, it includes some advanced features, techniques, and topics that are often omitted from entry-level Python books. These are included because of their wide applicability in bioinformatics programming, and they are used extensively in the book’s examples. Python’s installation includes a large selection of optional components called “modules.” Python books usually cover a small selection of the most generally useful modules, and perhaps some others in less detail. Having bioinformatics programming as this book’s target had some interesting effects on the choice of which modules to discuss, and at what depth. The modules (or parts of modules) that are xi covered in this book are the ones that are most likely to be particularly valuable in bioinformatics programming. In some cases the discussions are more substantial than would be found in a generic Python book, and many of the modules covered here appear in few other books. Chapter 6, in particular, describes a large number of narrowly focused “utility” modules. The remaining chapters focus on particular
Recommended publications
  • Basic Structures: Sets, Functions, Sequences, and Sums 2-2
    CHAPTER Basic Structures: Sets, Functions, 2 Sequences, and Sums 2.1 Sets uch of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects. Many important discrete structures are built using sets, which 2.2 Set Operations M are collections of objects. Among the discrete structures built from sets are combinations, 2.3 Functions unordered collections of objects used extensively in counting; relations, sets of ordered pairs that represent relationships between objects; graphs, sets of vertices and edges that connect 2.4 Sequences and vertices; and finite state machines, used to model computing machines. These are some of the Summations topics we will study in later chapters. The concept of a function is extremely important in discrete mathematics. A function assigns to each element of a set exactly one element of a set. Functions play important roles throughout discrete mathematics. They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as sequences and strings are special types of functions. In this chapter, we will introduce the notion of a sequence, which represents ordered lists of elements. We will introduce some important types of sequences, and we will address the problem of identifying a pattern for the terms of a sequence from its first few terms. Using the notion of a sequence, we will define what it means for a set to be countable, namely, that we can list all the elements of the set in a sequence.
    [Show full text]
  • Introduction
    Introduction A need shared by many applications is the ability to authenticate a user and then bind a set of permissions to the user which indicate what actions the user is permitted to perform (i.e. authorization). A LocalSystem may have implemented it's own authentication and authorization and now wishes to utilize a federated Identity Provider (IdP). Typically the IdP provides an assertion with information describing the authenticated user. The goal is to transform the IdP assertion into a LocalSystem token. In it's simplest terms this is a data transformation which might include: • renaming of data items • conversion to a different format • deletion of data • addition of data • reorganization of data There are many ways such a transformation could be implemented: 1. Custom site specific code 2. Scripts written in a scripting language 3. XSLT 4. Rule based transforms We also desire these goals for the transformation. 1. Site administrator configurable 2. Secure 3. Simple 4. Extensible 5. Efficient Implementation choice 1, custom written code fails goals 1, 3 and 4, an admin cannot adapt it, it's not simple, and it's likely to be difficult to extend. Implementation choice 2, script based transformations have a lot of appeal. Because one has at their disposal the full power of an actual programming language there are virtually no limitations. If it's a popular scripting language an administrator is likely to already know the language and might be able to program a new transformation or at a minimum tweak an existing script. Forking out to a script interpreter is inefficient, but it's now possible to embed script interpreters in the existing application.
    [Show full text]
  • Pharo by Example
    Portland State University PDXScholar Computer Science Faculty Publications and Computer Science Presentations 2009 Pharo by Example Andrew P. Black Portland State University, [email protected] Stéphane Ducasse Oscar Nierstrasz University of Berne Damien Pollet University of Lille Damien Cassou See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac Citation Details Black, Andrew, et al. Pharo by example. 2009. This Book is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Authors Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and Marcus Denker This book is available at PDXScholar: http://pdxscholar.library.pdx.edu/compsci_fac/108 Pharo by Example Andrew P. Black Stéphane Ducasse Oscar Nierstrasz Damien Pollet with Damien Cassou and Marcus Denker Version of 2009-10-28 ii This book is available as a free download from http://PharoByExample.org. Copyright © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz and Damien Pollet. The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    [Show full text]
  • An Extensible and Expressive Visitor Framework for Programming Language Reuse
    EVF: An Extensible and Expressive Visitor Framework for Programming Language Reuse Weixin Zhang and Bruno C. d. S. Oliveira The University of Hong Kong, Hong Kong, China {wxzhang2,bruno}@cs.hku.hk Abstract Object Algebras are a design pattern that enables extensibility, modularity, and reuse in main- stream object-oriented languages such as Java. The theoretical foundations of Object Algebras are rooted on Church encodings of datatypes, which are in turn closely related to folds in func- tional programming. Unfortunately, it is well-known that certain programs are difficult to write and may incur performance penalties when using Church-encodings/folds. This paper presents EVF: an extensible and expressive Java Visitor framework. The visitors supported by EVF generalize Object Algebras and enable writing programs using a generally recursive style rather than folds. The use of such generally recursive style enables users to more naturally write programs, which would otherwise require contrived workarounds using a fold-like structure. EVF visitors retain the type-safe extensibility of Object Algebras. The key advance in EVF is a novel technique to support modular external visitors. Modular external visitors are able to control traversals with direct access to the data structure being traversed, allowing dependent operations to be defined modularly without the need of advanced type system features. To make EVF practical, the framework employs annotations to automatically generate large amounts of boilerplate code related to visitors and traversals. To illustrate the applicability of EVF we conduct a case study, which refactors a large number of non-modular interpreters from the “Types and Programming Languages” (TAPL) book.
    [Show full text]
  • Declaration a Variable Within Curly Braces
    Declaration A Variable Within Curly Braces How cyprinoid is Allan when rotiferous and towery Fulton mutilating some charities? Heywood often assumes ditto when waiversoapless very Grove once. overuse andante and mongrelising her lollipop. Mortified Winslow sploshes unmeasurably, he hones his Initialization is always applicable. The curly brace must declare tcl commands in declaring constructors like comparision, often want to perform a command contained within their benefits. But lower is a fundamental difference between instrumentation and. It is variable. But also used from within curly braces though, declare a declaration and your comment! Controlling precision with tcl_precision. Every opening brace has a closing brace. However, bitwise NOT, a feel turn to contact us. Simply indicates that variables declared or braces. There is no difference in the way they are executed on a page. JavaScript Scope and Closures CSS-Tricks. If the code goes first, and it represents one of the values in that array. That curly braces. They can declare be used within strings to separate variables from surrounding text. Requires curly braces. The braces within another is a single character or white space is just ignored in declarations, declare various types and destructuring variable not when you have. Basics of Jinja Template Language Flask tutorial OverIQcom. PREFER using interpolation to compose strings and values. The variable declarations by a decorative frame. The code between any pair of curly braces in a method is facilitate a function b brick c block d sector. Beginners sometimes answer that. This is destructuring assignment syntax. Null pointer to me or variable declaration a within curly braces can two.
    [Show full text]
  • An Introduction to the C Programming Language and Software Design
    An Introduction to the C Programming Language and Software Design Tim Bailey Preface This textbook began as a set of lecture notes for a first-year undergraduate software engineering course in 2003. The course was run over a 13-week semester with two lectures a week. The intention of this text is to cover topics on the C programming language and introductory software design in sequence as a 20 lecture course, with the material in Chapters 2, 7, 8, 11, and 13 well served by two lectures apiece. Ample cross-referencing and indexing is provided to make the text a servicable reference, but more complete works are recommended. In particular, for the practicing programmer, the best available tutorial and reference is Kernighan and Ritchie [KR88] and the best in-depth reference is Harbison and Steele [HS95, HS02]. The influence of these two works on this text is readily apparent throughout. What sets this book apart from most introductory C-programming texts is its strong emphasis on software design. Like other texts, it presents the core language syntax and semantics, but it also addresses aspects of program composition, such as function interfaces (Section 4.5), file modularity (Section 5.7), and object-modular coding style (Section 11.6). It also shows how to design for errors using assert() and exit() (Section 4.4). Chapter 6 introduces the basics of the software design process—from the requirements and specification, to top-down and bottom-up design, to writing actual code. Chapter 14 shows how to write generic software (i.e., code designed to work with a variety of different data types).
    [Show full text]
  • Pharo by Example
    Pharo by Example Andrew P. Black Stéphane Ducasse Oscar Nierstrasz Damien Pollet with Damien Cassou and Marcus Denker Version of 2009-10-28 ii This book is available as a free download from http://PharoByExample.org. Copyright © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz and Damien Pollet. The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. • For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page: creativecommons.org/licenses/by-sa/3.0/ • Any of the above conditions can be waived if you get permission from the copyright holder. • Nothing in this license impairs or restricts the author’s moral rights. Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of the Legal Code (the full license): creativecommons.org/licenses/by-sa/3.0/legalcode Published by Square Bracket Associates, Switzerland. http://SquareBracketAssociates.org ISBN 978-3-9523341-4-0 First Edition, October, 2009.
    [Show full text]
  • Node.Js 562 Background
    Eloquent JavaScript 3rd edition Marijn Haverbeke Copyright © 2018 by Marijn Haverbeke This work is licensed under a Creative Commons attribution-noncommercial license (http://creativecommons.org/licenses/by-nc/3.0/). All code in the book may also be considered licensed under an MIT license (https: //eloquentjavascript.net/code/LICENSE). The illustrations are contributed by various artists: Cover and chap- ter illustrations by Madalina Tantareanu. Pixel art in Chapters 7 and 16 by Antonio Perdomo Pastor. Regular expression diagrams in Chap- ter 9 generated with regexper.com by Jeff Avallone. Village photograph in Chapter 11 by Fabrice Creuzot. Game concept for Chapter 16 by Thomas Palef. The third edition of Eloquent JavaScript was made possible by 325 financial backers. You can buy a print version of this book, with an extra bonus chapter in- cluded, printed by No Starch Press at http://a-fwd.com/com=marijhaver- 20&asin-com=1593279507. i Contents Introduction 1 On programming .......................... 2 Why language matters ....................... 4 What is JavaScript? ......................... 9 Code, and what to do with it ................... 11 Overview of this book ........................ 12 Typographic conventions ...................... 13 1 Values, Types, and Operators 15 Values ................................. 16 Numbers ............................... 17 Strings ................................ 21 Unary operators ........................... 24 Boolean values ............................ 25 Empty values ............................
    [Show full text]
  • ID Database Utilities Programs for Simple, Fast, High-Capacity Cross-Referencing for Version 4.6
    ID database utilities Programs for simple, fast, high-capacity cross-referencing for version 4.6 Greg McGary Tom Horsley ID utilities 1 ID utilities This manual documents version 4.6 of the ID utilities. Chapter 1: Introduction 2 1 Introduction An ID database is a binary file containing a list of file names, a list of tokens, andasparse matrix indicating which tokens appear in which files. With this database and some tools to query it (described in this manual), many text- searching tasks become simpler and faster. For example, you can list all files that reference a particular #include file throughout a huge source hierarchy, search for all the memos containing references to a project, or automatically invoke an editor on all files containing references to some function or variable. Anyone with a large software project to maintain, or a large set of text files to organize, can benefit from the ID utilities. Although the name `ID' is short for `identifier’, the ID utilities handle more than just identifiers; they also treat other kinds of tokens, most notably numeric constants, andthe contents of certain character strings. Thus, this manual will use the word token as a term that is inclusive of identifiers, numbers and strings. There are several programs in the ID utilities family: `mkid' scans files for tokens and builds the ID database file. `lid' queries the ID database for tokens, then reports matching file names or match- ing lines. `fid' lists all tokens recorded in the database for given files, or tokens common to two files. `fnid' matches the file names in the database, rather than the tokens.
    [Show full text]
  • Types and Programming Languages
    Types and Programming Languages Types and Programming Languages Benjamin C. Pierce The MIT Press Cambridge, Massachusetts London, England ©2002 Benjamin C. Pierce All rights reserved. No part of this book may be reproduced in any form by any electronic of mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. A This book was set in Lucida Bright by the author using the LTEX document preparation system. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Pierce, Benjamin C. Types and programming languages / Benjamin C. Pierce p. cm. Includes bibliographical references and index. ISBN 0-262-16209-1 (hc. : alk. paper) 1. Programming languages (Electronic computers). I. Title. QA76.7 .P54 2002 005.13—dc21 2001044428 Contents Preface xiii 1 Introduction 1 1.1 Types in Computer Science 1 1.2 What Type Systems Are Good For 4 1.3 Type Systems and Language Design 9 1.4 Capsule History 10 1.5 Related Reading 12 2 Mathematical Preliminaries 15 2.1 Sets, Relations, and Functions 15 2.2 Ordered Sets 16 2.3 Sequences 18 2.4 Induction 19 2.5 Background Reading 20 I Untyped Systems 21 3 Untyped Arithmetic Expressions 23 3.1 Introduction 23 3.2 Syntax 26 3.3 Induction on Terms 29 3.4 Semantic Styles 32 3.5 Evaluation 34 3.6 Notes 43 vi Contents 4 An ML Implementation of Arithmetic Expressions 45 4.1 Syntax 46 4.2 Evaluation 47 4.3 The Rest of the Story 49 5 The Untyped Lambda-Calculus 51 5.1 Basics 52 5.2 Programming in
    [Show full text]
  • Squeak by Example
    Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 2009 Squeak by Example Andrew P. Black Portland State University, [email protected] Stéphane Ducasse Oscar Nierstrasz Damien Pollet Damien Cassou See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac Part of the Programming Languages and Compilers Commons Let us know how access to this document benefits ou.y Citation Details Black, Andrew, et al. Squeak by example. 2009. This Book is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and Marcus Denker This book is available at PDXScholar: https://pdxscholar.library.pdx.edu/compsci_fac/110 Squeak by Example Andrew P. Black Stéphane Ducasse Oscar Nierstrasz Damien Pollet with Damien Cassou and Marcus Denker Version of 2009-09-29 ii This book is available as a free download from SqueakByExample.org, hosted by the Institute of Computer Science and Applied Mathematics of the University of Bern, Switzerland. Copyright © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz and Damien Pollet. The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    [Show full text]
  • Squeak by Example Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, Marcus Denker
    Squeak by Example Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, Marcus Denker To cite this version: Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, et al.. Squeak by Example. Square Bracket Associates, pp.304, 2007, 978-3-9523341-0-2. inria-00441576 HAL Id: inria-00441576 https://hal.inria.fr/inria-00441576 Submitted on 16 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Squeak by Example Andrew P. Black Stéphane Ducasse Oscar Nierstrasz Damien Pollet with Damien Cassou and Marcus Denker Version of 2009-09-29 ii This book is available as a free download from SqueakByExample.org, hosted by the Institute of Computer Science and Applied Mathematics of the University of Bern, Switzerland. Copyright © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz and Damien Pollet. The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    [Show full text]