Part I: Graphics Pipeline

Total Page:16

File Type:pdf, Size:1020Kb

Part I: Graphics Pipeline About Me Analytical Graphics, Inc. n A few videos An Introduction to GPUs and WebGL Patrick Cozzi @pjcozzi [email protected] Analytical Graphics, Inc. University of Pennsylvania See http://www.seas.upenn.edu/~pcozzi/ University of Pennsylvania Today n A few CIS 565 projects n Graphics Pipeline n GPU design Part I: Graphics n WebGL Pipeline Hao Wu Ishaan Singh Mikey Chen Yingting Xiao Vimanyu Jain Xiaoyan Zhu 1 Graphics Review: Rendering Graphics Review: Rendering Graphics Pipeline Walkthrough Vertex Assembly n Rendering Vertex Shader ¨ Goal: Assign color to pixels n Two Parts Primitive Assembly ¨ Visible surfaces Rasterizer n What is in front of what for a given view Fragment Shader ¨ Shading n Simulate the interaction of material and light to Per-Fragment Tests produce a pixel color Blend Framebuffer 7 8 9 Image from http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/lectures/01_intro.pdf Images from http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/lectures/01_intro.pdf Vertex Shader Transforms in the Pipeline Vertex Shader Vertex Assembly • Transform incoming vertex position from model to clip Vertex Assembly • Example: Textures can provide height maps for coordinates displacement mapping Vertex Shader • Perform additional per-vertex computations; modify, Vertex Shader add, or remove attributes passed down the pipeline • Formerly called the Transform and Lighting (T&L) Primitive Assembly stage. Why? Primitive Assembly Rasterizer Rasterizer vertex Pmodel Fragment Shader Fragment Shader Vertex Shader Vertex Shader Per-Fragment Tests Per-Fragment Tests modified vertex Pclip Blend Blend P = (M )(P ) Framebuffer clip model-view-projection model Framebuffer 10 12 Images from http://developer.nvidia.com/content/vertex-texture-fetch 2 Rasterization Fragment Shader Fragment Shader Vertex Assembly • Determine what pixels a primitive overlaps Vertex Assembly • Shades the fragment by simulating the interaction of Vertex Assembly light and material Vertex Shader Vertex Shader • Loosely, the combination of a fragment shader and its Vertex Shader uniform inputs is a material • Also called a Pixel Shader (D3D) Primitive Assembly Primitive Assembly Primitive Assembly Rasterizer Rasterizer fragment Rasterizer uniforms Fragment Shader Fragment Shader Fragment Shader Fragment Shader • How would you implement this? textures float diffuse = Per-Fragment Tests Per-Fragment Tests fragment’s color Per-Fragment Tests • What about aliasing? max(dot(N, L), 0.0); Blend • What happens to non-position vertex attributes during Blend • What exactly is the fragment input? Blend rasterization? • What are examples of useful uniforms? Useful Framebuffer Framebuffer textures? Framebuffer • What is the triangle-to-fragment ratio? 13 14 15 Image from http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter05.html Fragment Shader Fragment Shader Fragment Shader Vertex Assembly • Another example: Texture Mapping Vertex Assembly • Lighting and texture mapping Vertex Assembly • Another example: Bump mapping Vertex Shader Vertex Shader Vertex Shader Primitive Assembly Primitive Assembly Primitive Assembly Rasterizer Rasterizer Rasterizer Fragment Shader Fragment Shader Fragment Shader Per-Fragment Tests Per-Fragment Tests Per-Fragment Tests Blend Blend Blend Framebuffer Framebuffer Framebuffer 16 17 18 Image from http://www.realtimerendering.com/ Image from http://www.virtualglobebook.com/ 3 Fragment Shader Depth Test Depth Test Vertex Assembly • Another example: Bump mapping Vertex Assembly • Finds visible surfaces • Once called “ridiculously expensive” Vertex Shader Vertex Shader • Also called the z-test • Does it need to be after fragment shading? Primitive Assembly Primitive Assembly Rasterizer Rasterizer Fragment Shader Fragment Shader Scissor Test Per-Fragment Tests Per-Fragment Tests Stencil Test Blend Blend Depth Test Framebuffer Framebuffer 19 20 21 Image from http://www.virtualglobebook.com/ Depth Test Early 90s – Pre GPU Part II: GPU design 22 24 Image from http://www.virtualglobebook.com/ Slide from http://s09.idav.ucdavis.edu/talks/01-BPS-SIGGRAPH09-mhouston.pdf 4 AMD Toyshop Demo AMD Leo Demo GPU Compute + Rendering http://www.youtube.com/watch?v=LtxvpS5AYHQ http://www.youtube.com/watch?v=zYweEn6DFcU http://www.nvidia.com/object/GTX_400_games_demos.html CPU and GPU Trends Why GPUs? NVIDIA GeForce 256 (1999) Vertex Assembly In hardware: n Exploit Parallelism • Fixed-function vertex shading (T&L) Vertex Shader • Multi-texturing: bump maps, light maps, etc. ¨ CPU and GPU executing in parallel • 10 million polygons per second Primitive Assembly • Direct3D 7 ¨ Data-parallel • AGP bus ¨ Pipeline parallel Rasterizer Hardware n Hardware: texture filtering, rasterization, Fragment Shader MAD, sqrt, etc. Per-Fragment Tests Blend Framebuffer 29 30 Chart from: http://proteneer.com/blog/?p=263 Image from http://en.wikipedia.org/wiki/File:VisionTek_GeForce_256.jpg 5 Evolution of the Programmable NVIDIA GeForce 8 (2006) Why Unify Shader Processors? Graphics Pipeline Vertex Assembly • Ground-up GPU redesign Vertex Shader • Geometry Shaders • Transform-feedback Geometry Shader • OpenGL 3 / Direct3D 10 • Unified shader processors Primitive Assembly • Support for GPU Compute Rasterizer Fragment Shader Per-Fragment Tests Blend 31 32 33 Framebuffer Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf Slide from Mike Houston: http://s09.idav.ucdavis.edu/talks/01-BPS-SIGGRAPH09-mhouston.pdf WebGL Bring 3D to the Masses n The web has text, images, and video n Put it in on a webpage ¨ What is the next media-type? ¨ Does not require a plugin or install n We want to support n Make it run on most GPUs Part III: WebGL ¨ Windows, Linux, Mac ¨ Desktop and mobile 35 36 6 WebGL WebGL Performance High-Profile WebGL Uses 32x32 64x64 128x128 n OpenGL ES 2.0 for JavaScript C++ 1.9 ms 6.25 ms 58.82 ms ¨ Seriously, JavaScript Chrome 18 27.77 ms 111.11 ms 454.54 ms x slowdown 14.62 17.78 7.73 CPU-intensive 32x32 64x64 128x128 C++ 3.33 ms 9.43 ms 37.03 ms Chrome 18 12.82 ms 22.72 ms 41.66 ms x slowdown 3.85 2.41 1.13 GPU-intensive (256 draws per frame) 37 38 Image from Image from http://openglinsights.com/ http://www.khronos.org/assets/uploads/developers/library/2011-siggraph-mobile/Khronos-and-the-Mobile-Ecosystem_Aug-11.pdf More Cesium WebGL Apps WebGL in Teaching Penn Student Work 7 WebGL Globe Ray Marching Distance Fields Procedural Infinite City Rohith Chandran Nop Jiarathanakul Alice Yang WebGL Hot-Air Balloons WebGL Deferred Shading WebGL Deferred Shading Yuanhui Chen Hao Wu and Guanyu He Sijie Tian and Yuqin Shao 8 WebGL Tools – Web Apps WebGL Tools – Web Apps WebGL Tools - Firefox WebGL Tools - Chrome 9 .
Recommended publications
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • First Person Shooting (FPS) Game
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Thunder Force - First Person Shooting (FPS) Game Swati Nadkarni1, Panjab Mane2, Prathamesh Raikar3, Saurabh Sawant4, Prasad Sawant5, Nitesh Kuwalekar6 1 Head of Department, Department of Information Technology, Shah & Anchor Kutchhi Engineering College 2 Assistant Professor, Department of Information Technology, Shah & Anchor Kutchhi Engineering College 3,4,5,6 B.E. student, Department of Information Technology, Shah & Anchor Kutchhi Engineering College ----------------------------------------------------------------***----------------------------------------------------------------- Abstract— It has been found in researches that there is an have challenged hardware development, and multiplayer association between playing first-person shooter video games gaming has been integral. First-person shooters are a type of and having superior mental flexibility. It was found that three-dimensional shooter game featuring a first-person people playing such games require a significantly shorter point of view with which the player sees the action through reaction time for switching between complex tasks, mainly the eyes of the player character. They are unlike third- because when playing fps games they require to rapidly react person shooters in which the player can see (usually from to fast moving visuals by developing a more responsive mind behind) the character they are controlling. The primary set and to shift back and forth between different sub-duties. design element is combat, mainly involving firearms. First person-shooter games are also of ten categorized as being The successful design of the FPS game with correct distinct from light gun shooters, a similar genre with a first- direction, attractive graphics and models will give the best person perspective which uses light gun peripherals, in experience to play the game.
    [Show full text]
  • Advanced Computer Graphics to Do Motivation Real-Time Rendering
    To Do Advanced Computer Graphics § Assignment 2 due Feb 19 § Should already be well on way. CSE 190 [Winter 2016], Lecture 12 § Contact us for difficulties etc. Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation Real-Time Rendering § Today, create photorealistic computer graphics § Goal: interactive rendering. Critical in many apps § Complex geometry, lighting, materials, shadows § Games, visualization, computer-aided design, … § Computer-generated movies/special effects (difficult or impossible to tell real from rendered…) § Until 10-15 years ago, focus on complex geometry § CSE 168 images from rendering competition (2011) § § But algorithms are very slow (hours to days) Chasm between interactivity, realism Evolution of 3D graphics rendering Offline 3D Graphics Rendering Interactive 3D graphics pipeline as in OpenGL Ray tracing, radiosity, photon mapping § Earliest SGI machines (Clark 82) to today § High realism (global illum, shadows, refraction, lighting,..) § Most of focus on more geometry, texture mapping § But historically very slow techniques § Some tweaks for realism (shadow mapping, accum. buffer) “So, while you and your children’s children are waiting for ray tracing to take over the world, what do you do in the meantime?” Real-Time Rendering SGI Reality Engine 93 (Kurt Akeley) Pictures courtesy Henrik Wann Jensen 1 New Trend: Acquired Data 15 years ago § Image-Based Rendering: Real/precomputed images as input § High quality rendering: ray tracing, global illumination § Little change in CSE 168 syllabus, from 2003 to
    [Show full text]
  • Developer Tools Showcase
    Developer Tools Showcase Randy Fernando Developer Tools Product Manager NVISION 2008 Software Content Creation Performance Education Development FX Composer Shader PerfKit Conference Presentations Debugger mental mill PerfHUD Whitepapers Artist Edition Direct3D SDK PerfSDK GPU Programming Guide NVIDIA OpenGL SDK Shader Library GLExpert Videos CUDA SDK NV PIX Plug‐in Photoshop Plug‐ins Books Cg Toolkit gDEBugger GPU Gems 3 Texture Tools NVSG GPU Gems 2 Melody PhysX SDK ShaderPerf GPU Gems PhysX Plug‐Ins PhysX VRD PhysX Tools The Cg Tutorial NVIDIA FX Composer 2.5 The World’s Most Advanced Shader Authoring Environment DirectX 10 Support NVIDIA Shader Debugger Support ShaderPerf 2.0 Integration Visual Models & Styles Particle Systems Improved User Interface Particle Systems All-New Start Page 350Z Sample Project Visual Models & Styles Other Major Features Shader Creation Wizard Code Editor Quickly create common shaders Full editor with assisted Shader Library code generation Hundreds of samples Properties Panel Texture Viewer HDR Color Picker Materials Panel View, organize, and apply textures Even More Features Automatic Light Binding Complete Scripting Support Support for DirectX 10 (Geometry Shaders, Stream Out, Texture Arrays) Support for COLLADA, .FBX, .OBJ, .3DS, .X Extensible Plug‐in Architecture with SDK Customizable Layouts Semantic and Annotation Remapping Vertex Attribute Packing Remote Control Capability New Sample Projects 350Z Visual Styles Atmospheric Scattering DirectX 10 PCSS Soft Shadows Materials Post‐Processing Simple Shadows
    [Show full text]
  • Real-Time Rendering Techniques with Hardware Tessellation
    Volume 34 (2015), Number x pp. 0–24 COMPUTER GRAPHICS forum Real-time Rendering Techniques with Hardware Tessellation M. Nießner1 and B. Keinert2 and M. Fisher1 and M. Stamminger2 and C. Loop3 and H. Schäfer2 1Stanford University 2University of Erlangen-Nuremberg 3Microsoft Research Abstract Graphics hardware has been progressively optimized to render more triangles with increasingly flexible shading. For highly detailed geometry, interactive applications restricted themselves to performing transforms on fixed geometry, since they could not incur the cost required to generate and transfer smooth or displaced geometry to the GPU at render time. As a result of recent advances in graphics hardware, in particular the GPU tessellation unit, complex geometry can now be generated on-the-fly within the GPU’s rendering pipeline. This has enabled the generation and displacement of smooth parametric surfaces in real-time applications. However, many well- established approaches in offline rendering are not directly transferable due to the limited tessellation patterns or the parallel execution model of the tessellation stage. In this survey, we provide an overview of recent work and challenges in this topic by summarizing, discussing, and comparing methods for the rendering of smooth and highly-detailed surfaces in real-time. 1. Introduction Hardware tessellation has attained widespread use in computer games for displaying highly-detailed, possibly an- Graphics hardware originated with the goal of efficiently imated, objects. In the animation industry, where displaced rendering geometric surfaces. GPUs achieve high perfor- subdivision surfaces are the typical modeling and rendering mance by using a pipeline where large components are per- primitive, hardware tessellation has also been identified as a formed independently and in parallel.
    [Show full text]
  • NVIDIA Quadro Technical Specifications
    NVIDIA Quadro Technical Specifications NVIDIA Quadro Workstation GPU High-resolution Antialiasing ° Dassault CATIA • Full 128-bit floating point precision • Up to 16x full-scene antialiasing (FSAA), ° ESRI ArcGIS pipeline at resolutions up to 1920 x 1200 ° ICEM Surf • 12-bit subpixel precision • 12-bit subpixel sampling precision ° MSC.Nastran, MSC.Patran • Hardware-accelerated antialiased enhances AA quality ° PTC Pro/ENGINEER Wildfire, points and lines • Rotated-grid FSAA significantly 3Dpaint, CDRS The NVIDIA Quadro® family of In addition to a full line up of 2D and • Hardware OpenGL overlay planes increases color accuracy and visual ° SolidWorks • Hardware-accelerated two-sided quality for edges, while maintaining ° UDS NX Series, I-deas, SolidEdge, professional solutions for workstations 3D workstation graphics solutions, the lighting performance3 Unigraphics, SDRC delivers the fastest application NVIDIA Quadro professional products • Hardware-accelerated clipping planes and many more… Memory performance and the highest quality include a set of specialty solutions that • Third-generation occlusion culling • Digital Content Creation (DCC) graphics. have been architected to meet the • 16 textures per pixel • High-speed memory (up to 512MB Alias Maya, MOTIONBUILDER needs of a wide range of industry • OpenGL quad-buffered stereo (3-pin GDDR3) ° NewTek Lightwave 3D Raw performance and quality are only sync connector) • Advanced lossless compression ° professionals. These specialty Autodesk Media and Entertainment the beginning. The NVIDIA
    [Show full text]
  • Extending the Graphics Pipeline with Adaptive, Multi-Rate Shading
    Extending the Graphics Pipeline with Adaptive, Multi-Rate Shading Yong He Yan Gu Kayvon Fatahalian Carnegie Mellon University Abstract compute capability as a primary mechanism for improving the qual- ity of real-time graphics. Simply put, to scale to more advanced Due to complex shaders and high-resolution displays (particularly rendering effects and to high-resolution outputs, future GPUs must on mobile graphics platforms), fragment shading often dominates adopt techniques that perform shading calculations more efficiently the cost of rendering in games. To improve the efficiency of shad- than the brute-force approaches used today. ing on GPUs, we extend the graphics pipeline to natively support techniques that adaptively sample components of the shading func- In this paper, we enable high-quality shading at reduced cost on tion more sparsely than per-pixel rates. We perform an extensive GPUs by extending the graphics pipeline’s fragment shading stage study of the challenges of integrating adaptive, multi-rate shading to natively support techniques that adaptively sample aspects of the into the graphics pipeline, and evaluate two- and three-rate imple- shading function more sparsely than per-pixel rates. Specifically, mentations that we believe are practical evolutions of modern GPU our extensions allow different components of the pipeline’s shad- designs. We design new shading language abstractions that sim- ing function to be evaluated at different screen-space rates and pro- plify development of shaders for this system, and design adaptive vide mechanisms for shader programs to dynamically determine (at techniques that use these mechanisms to reduce the number of in- fine screen granularity) which computations to perform at which structions performed during shading by more than a factor of three rates.
    [Show full text]
  • NVIDIA Quadro P620
    UNMATCHED POWER. UNMATCHED CREATIVE FREEDOM. NVIDIA® QUADRO® P620 Powerful Professional Graphics with FEATURES > Four Mini DisplayPort 1.4 Expansive 4K Visual Workspace Connectors1 > DisplayPort with Audio The NVIDIA Quadro P620 combines a 512 CUDA core > NVIDIA nView® Desktop Pascal GPU, large on-board memory and advanced Management Software display technologies to deliver amazing performance > HDCP 2.2 Support for a range of professional workflows. 2 GB of ultra- > NVIDIA Mosaic2 fast GPU memory enables the creation of complex 2D > Dedicated hardware video encode and decode engines3 and 3D models and a flexible single-slot, low-profile SPECIFICATIONS form factor makes it compatible with even the most GPU Memory 2 GB GDDR5 space and power-constrained chassis. Support for Memory Interface 128-bit up to four 4K displays (4096x2160 @ 60 Hz) with HDR Memory Bandwidth Up to 80 GB/s color gives you an expansive visual workspace to view NVIDIA CUDA® Cores 512 your creations in stunning detail. System Interface PCI Express 3.0 x16 Quadro cards are certified with a broad range of Max Power Consumption 40 W sophisticated professional applications, tested by Thermal Solution Active leading workstation manufacturers, and backed by Form Factor 2.713” H x 5.7” L, a global team of support specialists, giving you the Single Slot, Low Profile peace of mind to focus on doing your best work. Display Connectors 4x Mini DisplayPort 1.4 Whether you’re developing revolutionary products or Max Simultaneous 4 direct, 4x DisplayPort telling spectacularly vivid visual stories, Quadro gives Displays 1.4 Multi-Stream you the performance to do it brilliantly.
    [Show full text]
  • Graphics Pipeline and Rasterization
    Graphics Pipeline & Rasterization Image removed due to copyright restrictions. MIT EECS 6.837 – Matusik 1 How Do We Render Interactively? • Use graphics hardware, via OpenGL or DirectX – OpenGL is multi-platform, DirectX is MS only OpenGL rendering Our ray tracer © Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 2 How Do We Render Interactively? • Use graphics hardware, via OpenGL or DirectX – OpenGL is multi-platform, DirectX is MS only OpenGL rendering Our ray tracer © Khronos Group. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. • Most global effects available in ray tracing will be sacrificed for speed, but some can be approximated 3 Ray Casting vs. GPUs for Triangles Ray Casting For each pixel (ray) For each triangle Does ray hit triangle? Keep closest hit Scene primitives Pixel raster 4 Ray Casting vs. GPUs for Triangles Ray Casting GPU For each pixel (ray) For each triangle For each triangle For each pixel Does ray hit triangle? Does triangle cover pixel? Keep closest hit Keep closest hit Scene primitives Pixel raster Scene primitives Pixel raster 5 Ray Casting vs. GPUs for Triangles Ray Casting GPU For each pixel (ray) For each triangle For each triangle For each pixel Does ray hit triangle? Does triangle cover pixel? Keep closest hit Keep closest hit Scene primitives It’s just a different orderPixel raster of the loops!
    [Show full text]
  • Nvidia Quadro T1000
    NVIDIA professional laptop GPUs power the world’s most advanced thin and light mobile workstations and unique compact devices to meet the visual computing needs of professionals across a wide range of industries. The latest generation of NVIDIA RTX professional laptop GPUs, built on the NVIDIA Ampere architecture combine the latest advancements in real-time ray tracing, advanced shading, and AI-based capabilities to tackle the most demanding design and visualization workflows on the go. With the NVIDIA PROFESSIONAL latest graphics technology, enhanced performance, and added compute power, NVIDIA professional laptop GPUs give designers, scientists, and artists the tools they need to NVIDIA MOBILE GRAPHICS SOLUTIONS work efficiently from anywhere. LINE CARD GPU SPECIFICATIONS PERFORMANCE OPTIONS 2 1 ® / TXAA™ Anti- ® ™ 3 4 * 5 NVIDIA FXAA Aliasing Manager NVIDIA RTX Desktop Support Vulkan NVIDIA Optimus NVIDIA CUDA NVIDIA RT Cores Cores Tensor GPU Memory Memory Bandwidth* Peak Memory Type Memory Interface Consumption Max Power TGP DisplayPort Open GL Shader Model DirectX PCIe Generation Floating-Point Precision Single Peak)* (TFLOPS, Performance (TFLOPS, Performance Tensor Peak) Gen MAX-Q Technology 3rd NVENC / NVDEC Processing Cores Processing Laptop GPUs 48 (2nd 192 (3rd NVIDIA RTX A5000 6,144 16 GB 448 GB/s GDDR6 256-bit 80 - 165 W* 1.4 4.6 7.0 12 Ultimate 4 21.7 174.0 Gen) Gen) 40 (2nd 160 (3rd NVIDIA RTX A4000 5,120 8 GB 384 GB/s GDDR6 256-bit 80 - 140 W* 1.4 4.6 7.0 12 Ultimate 4 17.8 142.5 Gen) Gen) 32 (2nd 128 (3rd NVIDIA RTX A3000
    [Show full text]
  • A Qualitative Comparison Study Between Common GPGPU Frameworks
    A Qualitative Comparison Study Between Common GPGPU Frameworks. Adam Söderström Department of Computer and Information Science Linköping University This dissertation is submitted for the degree of M. Sc. in Media Technology and Engineering June 2018 Acknowledgements I would like to acknowledge MindRoad AB and Åsa Detterfelt for making this work possible. I would also like to thank Ingemar Ragnemalm and August Ernstsson at Linköping University. Abstract The development of graphic processing units have during the last decade improved signif- icantly in performance while at the same time becoming cheaper. This has developed a new type of usage of the device where the massive parallelism available in modern GPU’s are used for more general purpose computing, also known as GPGPU. Frameworks have been developed just for this purpose and some of the most popular are CUDA, OpenCL and DirectX Compute Shaders, also known as DirectCompute. The choice of what framework to use may depend on factors such as features, portability and framework complexity. This paper aims to evaluate these concepts, while also comparing the speedup of a parallel imple- mentation of the N-Body problem with Barnes-hut optimization, compared to a sequential implementation. Table of contents List of figures xi List of tables xiii Nomenclature xv 1 Introduction1 1.1 Motivation . .1 1.2 Aim . .3 1.3 Research questions . .3 1.4 Delimitations . .4 1.5 Related work . .4 1.5.1 Framework comparison . .4 1.5.2 N-Body with Barnes-Hut . .5 2 Theory9 2.1 Background . .9 2.1.1 GPGPU History . 10 2.2 GPU Architecture .
    [Show full text]
  • Graphics Shaders Mike Hergaarden January 2011, VU Amsterdam
    Graphics shaders Mike Hergaarden January 2011, VU Amsterdam [Source: http://unity3d.com/support/documentation/Manual/Materials.html] Abstract Shaders are the key to finalizing any image rendering, be it computer games, images or movies. Shaders have greatly improved the output of computer generated media; from photo-realistic computer generated humans to more vivid cartoon movies. Furthermore shaders paved the way to general-purpose computation on GPU (GPGPU). This paper introduces shaders by discussing the theory and practice. Introduction A shader is a piece of code that is executed on the Graphics Processing Unit (GPU), usually found on a graphics card, to manipulate an image before it is drawn to the screen. Shaders allow for various kinds of rendering effect, ranging from adding an X-Ray view to adding cartoony outlines to rendering output. The history of shaders starts at LucasFilm in the early 1980’s. LucasFilm hired graphics programmers to computerize the special effects industry [1]. This proved a success for the film/ rendering industry, especially at Pixars Toy Story movie launch in 1995. RenderMan introduced the notion of Shaders; “The Renderman Shading Language allows material definitions of surfaces to be described in not only a simple manner, but also highly complex and custom manner using a C like language. Using this method as opposed to a pre-defined set of materials allows for complex procedural textures, new shading models and programmable lighting. Another thing that sets the renderers based on the RISpec apart from many other renderers, is the ability to output arbitrary variables as an image—surface normals, separate lighting passes and pretty much anything else can be output from the renderer in one pass.” [1] The term shader was first only used to refer to “pixel shaders”, but soon enough new uses of shaders such as vertex and geometry shaders were introduced, making the term shaders more general.
    [Show full text]