Comparative Genomics of Canine Hemoglobin Genes Reveals Primacy of Beta Subunit Delta in Adult Carnivores Sara Zaldívar-López1,2,5, Jennie L

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Genomics of Canine Hemoglobin Genes Reveals Primacy of Beta Subunit Delta in Adult Carnivores Sara Zaldívar-López1,2,5, Jennie L Zaldívar-López et al. BMC Genomics (2017) 18:141 DOI 10.1186/s12864-017-3513-0 RESEARCH ARTICLE Open Access Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores Sara Zaldívar-López1,2,5, Jennie L. Rowell1,3,6, Elise M. Fiala1, Isain Zapata1, C. Guillermo Couto2,7 and Carlos E. Alvarez1,2,4* Abstract Background: The main function of hemoglobin (Hb) is to transport oxygen in the circulation. It is among the most highly studied proteins due to its roles in physiology and disease, and most of our understanding derives from comparative research. There is great diversity in Hb gene evolution in placental mammals, mostly in the repertoire and regulation of the β-globin subunits. Dogs are an ideal model in which to study Hb genes because: 1) they are members of Laurasiatheria, our closest relatives outside of Euarchontoglires (including primates, rodents and rabbits), 2) dog breeds are isolated populations with their own Hb-associated genetics and diseases, and 3) their high level of health care allows for development of biomedical investigation and translation. Results: We established that dogs have a complement of five α and five β-globin genes, all of which can be detected as spliced mRNA in adults. Strikingly, HBD, the allegedly-unnecessary adult β-globin protein in humans, is the primary adult β-globin in dogs and other carnivores; moreover, dogs have two active copies of the HBD gene. In contrast, the dominant adult β-globin of humans, HBB, has high sequence divergence and is expressed at markedly lower levels in dogs. We also showed that canine HBD and HBB genes are complex chimeras that resulted from multiple gene conversion events between them. Lastly, we showed that the strongest signal of evolutionary selection in a high-altitude breed, the Bernese Mountain Dog, lies in a haplotype block that spans the β-globin locus. Conclusions: We report the first molecular genetic characterization of Hb genes in dogs. We found important distinctions between adult β-globin expression in carnivores compared to other members of Laurasiatheria. Our findings are also likely to raise new questions about the significance of human HBD. The comparative genomics of dog hemoglobin genes sets the stage for diverse research and translation. Keywords: Canine, Hemoglobin, Globin, Genetics, Comparative genomics, HBH, HBD, HBB Background dogs an alternative to mice, but rather a complementary Dog models are rapidly rising in diverse areas of bio- organism with many similarities to human research. How- medical research [1, 2]. Although they can be used ever, dogs have the immense advantage of having approxi- experimentally, the advantages that are gaining interest mately 400 isolated populations or breeds – each on the are related to the facts that they are natural models of order of 100-fold genetically simpler than the dog or complex traits with epidemiology and extremely powerful human population. As a result, canine investigations have translational genetics. Most investigators do not consider begun yielding important new understanding of complex- genetic traits that have been difficult to study in humans, * Correspondence: [email protected] who have vastly greater heterogeneity. Examples of major 1Center for Molecular and Human Genetics, The Research Institute at successes include diverse morphological traits [3, 4], germ ’ Nationwide Children s Hospital, Columbus, OH, USA line risk of rare cancers [5, 6] and anxiety- and aggression- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA related behaviors [7]. In the last year, the first major Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zaldívar-López et al. BMC Genomics (2017) 18:141 Page 2 of 13 genome wide association study of canine blood traits was their repertoire of β-globin genes [12]. β-globin genes were published. Using 353 clinically healthy dogs, White, Boyko present in early vertebrates and their numbers were ex- and colleagues found significant loci for alanine transfer- panded through duplications within separate lineages. The ase, amylase, segmented neutrophils, urea nitrogen, glu- stem eutherian contained five β-globin genes in one cluster, cose and mean corpuscular hemoglobin [8]. Yet, while in the order 5′-ε-γ-η-δ-β-3′;thesewerederivedbyduplica- canine genetics are exceptionally powerful, one major tions of a single ancestral embryonic-like globin (resulting bottleneck is gene annotation. in ε, γ, η) and one adult-like globin (resulting in δ, β). Some Hemoglobin (Hb) is among the most highly studied β-globin genes were lost or duplicated in different species proteins because of its central role in physiology and its (some are extant as pseudogenes). The obscure η-globin alteration in hemoglobinopathies, some of which are very gene is only extant in Laurasiatheria and its expression is common (e.g., sickle-cell disease). Hb proteins were only known for goat (embryonic [14]); however, the gene among the first to be characterized by structure and func- was lost in rodents and rabbits, and is a pseudogene in pri- tion, and comparative studies were among the earliest mates. γ-globin has the opposite pattern, where it is extant tools used by biochemists to try to understand normal in Euarchontoglires (primates, rodents and rabbits), but and disease-mutant Hb in the 1950’s [9]. In the pre- absent or a pseudogene in Laurasiatheria. genomics DNA era, β-globin genes were some of the earli- Laurasiatheria is a very large and diverse suborder that est prototypes of gene duplication, gene/protein evolution, together with Euarchontoglires makes up Boreoeutheria and tissue- and developmental-specific transcriptional (the two other superorders of eutherians are Xenartha and regulation [10]. The gene for a human Hb subunit (HBB) Afrotheria) [15]. The two suborders are closely related ac- from β-thalassemia patients was one of the earliest to be cording to genetic sequences, and it is believed they split targeted in the nascent field of gene editing [11]. There is ~85 MYA, after the break-up of the supercontinent Pangea a wealth of knowledge on Hb gene regulation and protein into Laurasia (which includes North America, Europe and function in humans, mice, and chickens [10]. However, Asia) and Gondwana (Antarctica, South America, Africa, despite fine comparative genetic studies of Hb genes in Madagascar, Australia, the Arabian Peninsula and the In- placental mammals and animals in general, there is a gap dian subcontinent). In addition to carnivores such as dogs, in the understanding of Hb biology in the placental mam- cats and bears, Laurasiatheria includes shrews, hedgehogs, mal superorder of Laurasiatheria. most hoofed animals (including horses, pigs, ruminants, From its emergence, plants and animals adapted the camels, rhinos and hippos), pangolins, whales, and bats. porphyrin ring for diverse functions in both chlorophyll Laurasiatherians are thus in an excellent position to shed and heme proteins (e.g., O2 transport). That evolution, light on the ancestral functions of Boreoeutherian β-globin which led to the creation and expansion of Hb genes, con- genes, such as η-globin discussed above. Another mystery tinues to be pronounced to this day. Based on homology that they may help resolve is the significance of δ-globin. In between invertebrates and vertebrates, the ancestral humans, the δ-globin protein sequence has diverged signifi- heme-containing globin gene present ~800 million years cantlymorethanβ-globin from the common δ/β-ancestor, ago (MYA) appears to be Neuroglobin [12]. Since that and it is expressed at very low levels as a subunit of the time, gene duplications have resulted in a total of five gene minor adult Hb (HbA2, 3% of total adult Hb) [16]. Human families in tetrapods (amphibians, reptiles, birds, and δ-globin is thought to be physiologically irrelevant because mammals): neuroglobin, α-globin, β-globin, myoglobin, it shows no clinical manifestations when mutant (and, and cytoglobin. Evolutionary adaptation of Hb genes is despite having similar function to HbA, HbA2 levels are recognized in fish, amphibians, reptiles, birds and mam- too low to replace HbA function in β-thalassemia mals [9]. Additional understanding of Hb protein func- major) [16, 17]. However, the δ-globin gene HBD has tion, gene regulation, and evolution comes from studies of reduced diversity levels in humans, and it and the prox- diverse species in which known environmentally-induced imal pseudogene HBBP1 have the strongest signatures of adaptations occurred [12], including extinct species such purifying selection at the β-globin locus [18, 19]. The facts as the woolly mammoth [13]. discussed above have led Moleirinho et al. to propose that The α-globin genes of amniotes are ζ-, μ-, and α- globin, the evolutionary selection at HBD has to do with conser- plus θ-globin in marsupials/placental mammals [12]. ζ- vation of regulatory functions on other β-globin genes globin is expressed in embryonic erythroid cells and α- rather than δ-globin protein function [18]. globin is expressed in fetal and adult erythroid cells. μ-and Due to the high prevalence of hemoglobinopathies in θ- globin are transcribed in tetrapods, but their protein people, α-andβ- globin gene clusters of humans, and of products have not been detected in mammals (whereas the animal models, mouse and chicken are well character- birds express μ-globin protein in adult erythroid cells).
Recommended publications
  • Extracellular Neuroglobin As a Stress-Induced Factor Activating
    cancers Article Extracellular Neuroglobin as a Stress-Induced Factor Activating Pre-Adaptation Mechanisms against Oxidative Stress and Chemotherapy-Induced Cell Death in Breast Cancer 1, , 1, 2 1 Marco Fiocchetti * y, Virginia Solar Fernandez y, Marco Segatto , Stefano Leone , Paolo Cercola 3, Annalisa Massari 3, Francesco Cavaliere 3 and Maria Marino 1,* 1 Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; [email protected] (V.S.F.); [email protected] (S.L.) 2 Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy; [email protected] 3 Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; [email protected] (P.C.); [email protected] (A.M.); [email protected] (F.C.) * Correspondence: marco.fi[email protected] (M.F.); [email protected] (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.) These authors contributed equally to this work. y Received: 27 July 2020; Accepted: 26 August 2020; Published: 29 August 2020 Abstract: Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines.
    [Show full text]
  • Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing
    Journal of Personalized Medicine Article Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing Adekunle Adekile 1,*, Nagihan Akbulut-Jeradi 2, Rasha Al Khaldi 2, Maria Jinky Fernandez 2 and Jalaja Sukumaran 1 1 Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; jalajasukumaran@hotmail 2 Advanced Technology Company, Hawali 32060, Kuwait; [email protected] (N.A.-J.); [email protected] (R.A.); [email protected] (M.J.F.) * Correspondence: [email protected]; Tel.: +965-253-194-86 Abstract: Hemoglobin genotype and HBB haplotype are established genetic factors that modify the clinical phenotype in sickle cell disease (SCD). Current methods of establishing these two factors are cumbersome and/or prone to errors. The throughput capability of next generation sequencing (NGS) makes it ideal for simultaneous interrogation of the many genes of interest in SCD. This study was designed to confirm the diagnosis in patients with HbSS and Sβ-thalassemia, identify any ß-thal mutations and simultaneously determine the ßS HBB haplotype. Illumina Ampliseq custom DNA panel was used to genotype the DNA samples. Haplotyping was based on the alleles on five haplotype-specific SNPs. The patients studied included 159 HbSS patients and 68 Sβ-thal patients, previously diagnosed using high performance liquid chromatography (HPLC). There was Citation: Adekile, A.; considerable discordance between HPLC and NGS results, giving a false +ve rate of 20.5% with a S Akbulut-Jeradi, N.; Al Khaldi, R.; sensitivity of 79% for the identification of Sβthal.
    [Show full text]
  • Biochemical and Cellular Studies of Vertebrate Globins
    Biochemical and Cellular Studies of Vertebrate Globins By Shun Wilford Tse Thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences University of East Anglia September 2015 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotations from the thesis, nor any information derived there-from may be published without the author's prior, written consent. Abstract Human cytoglobin is a small heme-containing protein in the globin superfamily with a wide range of tissue and organ distribution. Although several cellular functions have been proposed for cytoglobin, the exact physiological function is still not fully defined. Recently, cytoglobin has been implicated to have a regulatory role in cancer cells to control cell proliferation and migration depending on cellular oxygen level. In order to gain a better understanding of a structure-to-function relationship of cytoglobin as a heme-protein and to evaluate its possible physiological function(s) in cancer cells, a combination of techniques, including protein engineering and advanced spectroscopies, was deployed. In this study, recombinant human cytoglobin purified from E.coli was purified as a monomeric protein, but displayed a dimeric property in solution. An intra-molecular disulphide bond is formed within the protein which has a redox potential at ca -280 mV. Advanced spectroscopic studies confirmed a low-spin bis-histidyl heme in cytoglobin in both ferric and ferrous state regardless of the state of the disulphide bond. Furthermore, nitrite reductase activitiy in globins was investigated in detail using myoglobin as a model to explore the biochemical basis of the distal histidine residue in determining activity.
    [Show full text]
  • Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes
    International Journal of Molecular Sciences Review The Role of Hemoproteins: Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes Anna Bilska-Wilkosz *, Małgorzata Iciek, Magdalena Górny and Danuta Kowalczyk-Pachel Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum ,7 Kopernika Street, Kraków 31-034, Poland; [email protected] (M.I.); [email protected] (M.G.); [email protected] (D.K.-P.) * Correspondence: [email protected]; Tel.: +48-12-4227-400; Fax: +48-12-4223-272 Received: 5 May 2017; Accepted: 16 June 2017; Published: 20 June 2017 Abstract: Thiosulfate formation and biodegradation processes link aerobic and anaerobic metabolism of cysteine. In these reactions, sulfite formed from thiosulfate is oxidized to sulfate while hydrogen sulfide is transformed into thiosulfate. These processes occurring mostly in mitochondria are described as a canonical hydrogen sulfide oxidation pathway. In this review, we discuss the current state of knowledge on the interactions between hydrogen sulfide and hemoglobin, myoglobin and neuroglobin and postulate that thiosulfate is a metabolically important product of this processes. Hydrogen sulfide oxidation by ferric hemoglobin, myoglobin and neuroglobin has been defined as a non-canonical hydrogen sulfide oxidation pathway. Until recently, it appeared that the goal of thiosulfate production was to delay irreversible oxidation of hydrogen sulfide to sulfate excreted in urine; while thiosulfate itself was only an intermediate, transient metabolite on the hydrogen sulfide oxidation pathway. In the light of data presented in this paper, it seems that thiosulfate is a molecule that plays a prominent role in the human body. Thus, we hope that all these findings will encourage further studies on the role of hemoproteins in the formation of this undoubtedly fascinating molecule and on the mechanisms responsible for its biological activity in the human body.
    [Show full text]
  • Supporting Information
    Supporting Information Biagioli et al. 10.1073/pnas.0813216106 SI Text and the procedure was repeated twice. Single cells were then RNA Isolation, Reverse Transcription, qPCR, Cloning, and Sequencing. resuspended in panning buffer and incubated on lectin-coated RNA was extracted from cell lines and blood by using TRIzol panning plates for 15 min at room temperature. Nonadherent reagent (Invitrogen) and following vendor instructions. cells were transferred to the next panning plate (four pannings, RNA was extracted from LCM- or FACS-purified cells with an 15 min each). Then, nonadherent cells were collected, centri- Absolutely RNA Nanoprep Kit (Stratagene). Single-strand fuged, and resuspended in serum-free neuronal medium or PBS. cDNA was obtained from purified RNA by using the iSCRIPT A similar procedure was also followed for the dissociation of cDNA Synhesis Kit (Bio-Rad) according to the manufacturer’s cortical and hippocampal astrocytes and oligodendrocytes. instructions. Quantitative RT-PCR was performed by using A cell strainer with 70-␮m nylon mesh was used to obtain a SYBER-Green PCR Master Mix and an iQ5 Real-Time PCR single-cell suspension (BD Falcon) before sorting. 7-AAD Detection System (Bio-Rad). (Beckman–Coulter) was added to the cell suspension to exclude Quantitative RT-PCR was performed with an iCycler IQ dead cells. A high-speed cell sorter (MoFlo) was used to sort (Bio-Rad); ␤-actin was used as an endogenous control to nor- subpopulation of cells expressing GFP. Sorting parameters used malize the expression level of target genes. Primers were chosen for the three different populations are visualized in Fig.
    [Show full text]
  • Adult, Embryonic and Fetal Hemoglobin Are Expressed in Human Glioblastoma Cells
    514 INTERNATIONAL JOURNAL OF ONCOLOGY 44: 514-520, 2014 Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells MARWAN EMARA1,2, A. ROBERT TURNER1 and JOAN ALLALUNIS-TURNER1 1Department of Oncology, University of Alberta and Alberta Health Services, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; 2Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt Received September 7, 2013; Accepted October 7, 2013 DOI: 10.3892/ijo.2013.2186 Abstract. Hemoglobin is a hemoprotein, produced mainly in Introduction erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell Globins are hemo-containing proteins, have the ability to types including human and rodent neurons of embryonic bind gaseous ligands [oxygen (O2), nitric oxide (NO) and and adult brain, but not astrocytes and oligodendrocytes. carbon monoxide (CO)] reversibly. They have been described Human glioblastoma multiforme (GBM) is the most aggres- in prokaryotes, fungi, plants and animals with an enormous sive tumor among gliomas. However, despite extensive basic diversity of structure and function (1). To date, hemoglobin, and clinical research studies on GBM cells, little is known myoglobin, neuroglobin (Ngb) and cytoglobin (Cygb) repre- about glial defence mechanisms that allow these cells to sent the vertebrate globin family with distinct function and survive and resist various types of treatment. We have tissue distributions (2). During ontogeny, developing erythro- shown previously that the newest members of vertebrate blasts sequentially express embryonic {[Gower 1 (ζ2ε2), globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are Gower 2 (α2ε2), and Portland 1 (ζ2γ2)] to fetal [Hb F(α2γ2)] expressed in human GBM cells.
    [Show full text]
  • Technical Note, Appendix: an Analysis of Blood Processing Methods to Prepare Samples for Genechip® Expression Profiling (Pdf, 1
    Appendix 1: Signature genes for different blood cell types. Blood Cell Type Source Probe Set Description Symbol Blood Cell Type Source Probe Set Description Symbol Fraction ID Fraction ID Mono- Lympho- GSK 203547_at CD4 antigen (p55) CD4 Whitney et al. 209813_x_at T cell receptor TRG nuclear cytes gamma locus cells Whitney et al. 209995_s_at T-cell leukemia/ TCL1A Whitney et al. 203104_at colony stimulating CSF1R lymphoma 1A factor 1 receptor, Whitney et al. 210164_at granzyme B GZMB formerly McDonough (granzyme 2, feline sarcoma viral cytotoxic T-lymphocyte- (v-fms) oncogene associated serine homolog esterase 1) Whitney et al. 203290_at major histocompatibility HLA-DQA1 Whitney et al. 210321_at similar to granzyme B CTLA1 complex, class II, (granzyme 2, cytotoxic DQ alpha 1 T-lymphocyte-associated Whitney et al. 203413_at NEL-like 2 (chicken) NELL2 serine esterase 1) Whitney et al. 203828_s_at natural killer cell NK4 (H. sapiens) transcript 4 Whitney et al. 212827_at immunoglobulin heavy IGHM Whitney et al. 203932_at major histocompatibility HLA-DMB constant mu complex, class II, Whitney et al. 212998_x_at major histocompatibility HLA-DQB1 DM beta complex, class II, Whitney et al. 204655_at chemokine (C-C motif) CCL5 DQ beta 1 ligand 5 Whitney et al. 212999_x_at major histocompatibility HLA-DQB Whitney et al. 204661_at CDW52 antigen CDW52 complex, class II, (CAMPATH-1 antigen) DQ beta 1 Whitney et al. 205049_s_at CD79A antigen CD79A Whitney et al. 213193_x_at T cell receptor beta locus TRB (immunoglobulin- Whitney et al. 213425_at Homo sapiens cDNA associated alpha) FLJ11441 fis, clone Whitney et al. 205291_at interleukin 2 receptor, IL2RB HEMBA1001323, beta mRNA sequence Whitney et al.
    [Show full text]
  • Supplementary Material
    Adaptation of mammalian myosin II sequences to body mass Mark N Wass*1, Sarah T Jeanfavre*1,2, Michael P Coghlan*1, Martin Ridout#, Anthony J Baines*3 and Michael A Geeves*3 School of Biosciences*, and School of Mathematics#, Statistics and Actuarial Science, University of Kent, Canterbury, UK 1. Equal contribution 2. Current address: Broad Institute, 415 Main Street, 7029-K, Cambridge MA 02142 3. Joint corresponding authors Key words: selection, muscle contraction, mammalian physiology, heart rate Address for correspondence: Prof M.A.Geeves School of Biosciences, University of Kent, Canterbury CT1 7NJ UK [email protected] tel 44 1227827597 Dr A J Baines School of Biosciences, University of Kent, Canterbury CT1 7NJ UK [email protected] tel 44 1227 823462 SUPPLEMENTARY MATERIAL Supplementary Table 1. Source of Myosin sequences and the mass of each species used in the analysis of Fig 1 & 2 Species Isoform Mass Skeletal Skeletal Embryonic Skeletal α- β-cardiac Perinatal Non- Non- Smooth Extraocular Slow (kg) 2d/x 2a 2b cardiac muscle A muscle B Muscle Tonic Human P12882 Q9UKX2 251757455 Q9Y623 P13533 P12883 P13535 P35579 219841954 13432177 110624781 599045671 68a Bonobo 675746236 397494570 675746242 675746226 397473260 397473262 675746209 675764569 675746138 675746206 675798456 45.5a Macaque 544497116 544497114 544497126 109113269 544446347 544446351 544497122 383408157 384940798 387541766 544497107 544465262 6.55b Tarsier 640786419 640786435 640786417 640818214 640818212 640786413 640796733 640805785 640786411 640822915 0.1315c
    [Show full text]
  • Neuroglobin and Cytoglobin Fresh Blood for the Vertebrate Globin Family
    EMBO reports Neuroglobin and cytoglobin Fresh blood for the vertebrate globin family Alessandra Pesce, Martino Bolognesi+, Alessio Bocedi1, Paolo Ascenzi1, Sylvia Dewilde2, Luc Moens2, Thomas Hankeln3 & Thorsten Burmester4 Department of Physics–INFM and Center for Excellence in Biomedical Research, University of Genova, Via Dodecaneso 33, I-16146 Genova, 1Department of Biology, University ‘Roma Tre’, Viale Guglielmo Marconi 446, I-00146 Roma, Italy, 2Department of Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium, 3Institute of Molecular Genetics, Johannes Gutenberg University of Mainz, Becherweg 32, D-55099 Mainz and 4Institute of Zoology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany Received August 7, 2002; revised October 8, 2002; accepted October 18, 2002 Neuroglobin and cytoglobin are two recently discovered (Wittenberg, 1970, 1992; Antonini and Brunori, 1971; Perutz, members of the vertebrate globin family. Both are intracellular 1979, 1990; Dickerson and Geis, 1983; Bunn and Forget, 1986; proteins endowed with hexacoordinated heme-Fe atoms, in Brunori, 1999; Weber and Vinogradov, 2001; Merx et al., 2002), their ferrous and ferric forms, and display O2 affinities comparable although they can also carry out enzymatic functions (Minning with that of myoglobin. Neuroglobin, which is predominantly et al., 1999; Ascenzi et al., 2001). expressed in nerve cells, is thought to protect neurons from Four types of globin, differing in structure, tissue distribution hypoxic–ischemic injury. It is of ancient evolutionary origin, and likely in function, have been discovered in man and other and is homologous to nerve globins of invertebrates. vertebrates: hemoglobin, myoglobin, neuroglobin and cyto- Cytoglobin is expressed in many different tissues, although at globin.
    [Show full text]
  • A Gene-Environment Study of Cytoglobin in the Human and Rat Hippocampus
    A Gene-Environment Study of Cytoglobin in the Human and Rat Hippocampus Christian Ansgar Hundahl1,3, Betina Elfving2, Heidi Kaastrup Mu¨ ller2, Anders Hay-Schmidt3, Gregers Wegener2,4* 1 Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia, 2 Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, 3 Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark, 4 Unit for Drug Research and Development, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa Abstract Background: Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (nNOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression. Methods: Immunohistochemistry was used to compare Cygb expression in the human and rat hippocampi as well as Cygb and nNOS co-expression in the rat hippocampus. Transcription and translation of Cygb and nNOS were investigated using quantitative real-time polymerase chain reaction (real-time qPCR) and Western blotting on hippocampi from Flinders (FSL/ FRL) rats exposed to CRS. Principal Findings: Cygb expression pattern in the human and rat hippocampus was found to be similar.
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation
    Molecular Neurobiology (2019) 56:2101–2122 https://doi.org/10.1007/s12035-018-1212-8 Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation Zoë P. Van Acker1 & Evi Luyckx1 & Sylvia Dewilde1 Received: 22 November 2017 /Accepted: 26 June 2018 /Published online: 10 July 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract After its discovery in 2000, the notion grew that neuroglobin, a neuronal specific heme protein, is involved in cytoprotection. To date, neuroglobin levels have been positively correlated with a beneficial outcome in a plethora of neurotoxic insults, e.g., ischemic and traumatic brain injuries and Alzheimer’s disease. The first part of this review goes further into these changes of neuroglobin expression upon different neuronal insults as well as the underlying regulation. In the second part, we shed light on the mechanisms by which neuroglobin contributes to neuroprotection, being (i) the scavenging and detoxification of reactive oxygen/nitrogen species, (ii) the augmentation of the threshold for apoptosis initiation, (iii) its contribution to an anti-inflammatory milieu, and (iv) tissue regeneration. We also consider different neuroglobin models to address as yet unanswered questions. Based on the recent findings and progress in the field, we invigorate the avenues of neuroglobin in neurological ailments to increase in the coming years. Keywords Neuroglobin . Expression . Neuroprotection . Apoptosis . Inflammation . Neurogenesis Introduction system [4, 5]. Highest expression levels are detected in the mammalian hypothalamus, which shows 100-fold higher tran- Sustainment of homeostasis in the central nervous system scription rates than other key Ngb expression regions as the is essential to support vital physiological functions.
    [Show full text]