Least Tern Dropped Prey Analyses at Alameda Point, San Francisco Bay, California

Total Page:16

File Type:pdf, Size:1020Kb

Least Tern Dropped Prey Analyses at Alameda Point, San Francisco Bay, California Least Tern Dropped Prey Analyses at Alameda Point, San Francisco Bay, California. by Meredith L. Elliott Marine Ecology Division PRBO Conservation Science 3820 Cypress Drive, #11 Petaluma, CA 94954 January 11, 2008 Submitted to: Richard Morat U. S. Fish and Wildlife Service 2800 Cottage Way, Room W-2605 Sacramento, CA 95825-1846 and Joelle Buffa U. S. Fish and Wildlife Service San Francisco Bay National Wildlife Refuge Complex 9500 Thornton Ave. Newark, CA 94560 Analyses and reporting funded by FWS Coastal Program at San Francisco Bay EXECUTIVE SUMMARY Prey dropped on seabird colonies may be used as an indicator of foraging and diet. Dropped fish have been collected from the Alameda Point Least Tern colony in most years since 1981, and findings were compared to California Department of Fish and Game (CDFG) fish trawl data of Central and South San Francisco Bay; sizes of dropped fish have been collected since 2000, and these results were compared to sizes of fish found in the Bay. Most of the dropped prey were jacksmelt (Atherinopsis californiensis), topsmelt (Atherinops affinis), and northern anchovy (Engraulis mordax). Surfperch species (family Embiotocidae) were also present in the dropped fish and likely represent fish too large to fit through the gape of a tern chick. Northern anchovy and jacksmelt were the most common prey species sampled in San Francisco Bay. Fish dropped at the colony were generally smaller than Bay fish, although terns chose larger fish than expected during the early part of the breeding season (during courtship and incubation). The largest dropped prey were found in 2006; this was also found in the Bay fish results and was probably driven by significantly larger jacksmelt and northern anchovy in the Bay in that same year. Dropped prey appeared to get smaller as the season progressed, indicating that adult terns switch from feeding larger fish to their mates to feeding smaller fish to chicks. Intra- annual Bay fish size results were the opposite, reflecting the growth of the age-0 class fish that had spawned in the winter and spring months. Selectivity analyses illustrate the importance of small, pelagic, schooling fishes to Least Terns, particularly northern anchovy, Pacific herring (Clupea pallasii), and Pacific sardine (Sardinops sagax). Terns also forage on benthic fishes found in the nearshore environment, such as arrow goby (Clevelandia ios) and cheekspot goby (Ilypnus gilberti). Despite the large numbers of jacksmelt and topsmelt collected from the Least Tern colony, results suggest that terns are not selecting these species over northern anchovy. Northern anchovy, Pacific herring, and Pacific sardine are all relatively high in fat and may be the preferred prey to terns. However, if these species are not locally available, terns may switch to catching jacksmelt and topsmelt, as these species may be more abundant near the colony during the breeding season. 2 TABLE OF CONTENTS EXECUTIVE SUMMARY.................................................................................................................................2 TABLE OF CONTENTS .................................................................................................................................3 TABLES ...............................................................................................................................................................4 FIGURES .............................................................................................................................................................5 INTRODUCTION ...........................................................................................................................................6 METHODS .........................................................................................................................................................7 Least Tern data.............................................................................................................................................................7 Dropped prey collection..............................................................................................................................................7 CDFG San Francisco Bay prey data.........................................................................................................................8 Size comparisons.......................................................................................................................................................10 Species compositions ................................................................................................................................................10 RESULTS.......................................................................................................................................................... 11 Dropped prey..............................................................................................................................................................11 San Francisco Bay fish..............................................................................................................................................12 Colony and Bay comparisons..................................................................................................................................13 DISCUSSION.................................................................................................................................................. 14 ACKNOWLEDGMENTS............................................................................................................................. 17 LITERATURE CITED.................................................................................................................................... 19 3 TABLES Table 1. Definitions of breeding stages, 2000-2006............................................................................... 21 Table 2. San Francisco Bay Monitoring Program sampling months, 1980-2006.............................. 22 Table 3. Minimum lengths of fish sampled in San Francisco Bay......................................................... 23 Table 4. Families and species of fish identified in dropped prey, 1981-2006. .................................. 24 Table 5. Standard lengths and body depths of dropped prey, 2000-2006........................................ 26 Table 6. Standard lengths and body depths of dropped prey by breeding stage, 2000-2006....... 27 Table 7. Two-factor ANOVA results for dropped fish sizes, 2000-2006......................................... 28 Table 8. Fish sampled in San Francisco Bay during the Least Tern breeding season (April – August), 1980-2006....................................................................................................................................... 29 Table 9. Lengths of fish sampled with different gear types in San Francisco Bay, April-August, 2000-2006........................................................................................................................................................ 33 Table 10. Lengths of suitably-sized fish sampled with different gear types in San Francisco Bay, April-August, 2000-2006.............................................................................................................................. 34 Table 11. Lengths of suitably-sized fish sampled with different gear types in San Francisco Bay and in different breeding periods, April-August, 2000-2006................................................................ 35 Table 12. Two-factor ANOVA results for Bay fish sizes, 2000-2006................................................ 36 Table 13. Three-factor ANOVA results comparing dropped fish and Bay fish sizes, 2000-2006. ........................................................................................................................................................................... 37 Table 14. Spearman correlations by species between species compositions from dropped fish at the colony to fish sampled in San Francisco Bay. ................................................................................... 38 Table 15. Spearman correlations by year between species compositions from dropped fish at the colony to fish sampled in San Francisco Bay. ................................................................................... 39 Table 16. Rank preference indices for fish species. ............................................................................... 40 Table 17. Sizes of northern anchovy and jacksmelt sampled in San Francisco Bay, April-August, 2000-2006........................................................................................................................................................ 41 4 FIGURES Figure 1. Fish sampling stations of CDFG’s San Francisco Study........................................................ 42 Figure 2. Dropped prey composition by familiy, 1981-2006................................................................ 43 Figures 3. Mean midwater trawl CPUE values of suitably-sized fish, April-August, 1980-2006... 44 Figure 4. Mean otter trawl CPUE values of suitably-sized fish, April-August, 1980-2006............. 45 5 INTRODUCTION The Least Tern (Sterna antillarum browni) is a federal and state endangered species (Thompson et al. 1997). The Alameda Point Least Tern colony is the largest colony in California north of San Luis Obsipo County, and data on population size and breeding
Recommended publications
  • A New Species of the Bay Goby Genus Eucyclogobius, Endemic to Southern California: Evolution, Conservation, and Decline
    RESEARCH ARTICLE A New Species of the Bay Goby Genus Eucyclogobius, Endemic to Southern California: Evolution, Conservation, and Decline Camm C. Swift1¤, Brenton Spies2, Ryan A. Ellingson2,3, David K. Jacobs2* 1 Emeritus, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, United States of America, 2 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, United States of America, 3 Department of Biological Sciences, California State University, Los Angeles, California 90032, United States of America ¤ Current address: 6465 Elmo Road, Cumming, Georgia 30028–4720, United States of America * [email protected] a11111 Abstract A geographically isolated set of southern localities of the formerly monotypic goby genus Eucyclogobius is known to be reciprocally monophyletic and substantially divergent in mito- chondrial sequence and nuclear microsatellite-based phylogenies relative to populations to OPEN ACCESS the north along the California coast. To clarify taxonomic and conservation status, we con- ducted a suite of analyses on a comprehensive set of morphological counts and measures Citation: Swift CC, Spies B, Ellingson RA, Jacobs DK (2016) A New Species of the Bay Goby Genus from across the range of Eucyclogobius and describe the southern populations as a new Eucyclogobius, Endemic to Southern California: species, the Southern Tidewater Goby, Eucyclogobius kristinae, now separate from the Evolution, Conservation, and Decline. PLoS ONE Northern Tidewater Goby Eucyclogobius newberryi (Girard 1856). In addition to molecular 11(7): e0158543. doi:10.1371/journal.pone.0158543 distinction, adults of E. kristinae are diagnosed by: 1) loss of the anterior supratemporal lat- Editor: Tzen-Yuh Chiang, National Cheng-Kung eral-line canals resulting in higher neuromast counts, 2) lower pectoral and branched caudal University, TAIWAN ray counts, and 3) sets of measurements identified via discriminant analysis.
    [Show full text]
  • Fish Bulletin No. 109. the Barred Surfperch (Amphistichus Argenteus Agassiz) in Southern California
    UC San Diego Fish Bulletin Title Fish Bulletin No. 109. The Barred Surfperch (Amphistichus argenteus Agassiz) in Southern California Permalink https://escholarship.org/uc/item/9fh0623k Authors Carlisle, John G, Jr. Schott, Jack W Abramson, Norman J Publication Date 1960 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME MARINE RESOURCES OPERATIONS FISH BULLETIN No. 109 The Barred Surfperch (Amphistichus argenteus Agassiz) in Southern Califor- nia By JOHN G. CARLISLE, JR., JACK W. SCHOTT and NORMAN J. ABRAMSON 1960 1 2 3 4 ACKNOWLEDGMENTS The Surf Fishing Investigation received a great deal of help in the conduct of its field work. The arduous task of beach seining all year around was shared by many members of the California State Fisheries Laboratory staff; we are particularly grateful to Mr. Parke H. Young and Mr. John L. Baxter for their willing and continued help throughout the years. Mr. Frederick B. Hagerman was project leader for the first year of the investigation, until his recall into the Air Force, and he gave the project an excellent start. Many others gave help and advice, notably Mr. John E. Fitch, Mr. Phil M. Roedel, Mr. David C. Joseph, and Dr. F. N. Clark of this laboratory. Dr. Carl L. Hubbs of Scripps Institution of Oceanography at La Jolla gave valuable advice, and we are indebted to the late Mr. Conrad Limbaugh of the same institution for accounts of his observations on surf fishes, and for SCUBA diving instructions. The project was fortunate in securing able seasonal help, particularly from Mr.
    [Show full text]
  • List of Species Likely to Benefit from Marine Protected Areas in The
    Appendix C: Species Likely to Benefit from MPAs andSpecial-Status Species This appendix contains two sections: C.1 Species likely to benefit from marine protected areas in the MLPA South Coast Study Region C.2 Special status species likely to occur in the MLPA South Coast Study Region C.1 Species Likely to Benefit From MPAs The Marine Life Protection Act requires that species likely to benefit from MPAs be identified; identification of these species will contribute to the identification of habitat areas that will support achieving the goals of the MLPA. The California Marine Life Protection Act Master Plan for Marine Protected Areas (DFG 2008) includes a broad list of species likely to benefit from protection within MPAs. The master plan also indicates that regional lists will be developed by the MLPA Master Plan Science Advisory Team (SAT) for each study region described in the master plan. A list of species likely to benefit for the MLPA South Coast Study Region (Point Conception in Santa Barbara County to the California/Mexico border in San Diego County) has been compiled and approved by the SAT. The SAT used a scoring system to develop the list of species likely to benefit. This scoring system was developed to provide a metric that is more useful when comparing species than a simple on/off the list metric. Each species was scored using “1” to indicate a criterion was met or “0” to indicate a criterion was not met. Species on the list meet the following filtering criteria: they occur in the study region, they must score a “1” for either
    [Show full text]
  • Watershed Summaries
    Appendix A: Watershed Summaries Preface California’s watersheds supply water for drinking, recreation, industry, and farming and at the same time provide critical habitat for a wide variety of animal species. Conceptually, a watershed is any sloping surface that sheds water, such as a creek, lake, slough or estuary. In southern California, rapid population growth in watersheds has led to increased conflict between human users of natural resources, dramatic loss of native diversity, and a general decline in the health of ecosystems. California ranks second in the country in the number of listed endangered and threatened aquatic species. This Appendix is a “working” database that can be supplemented in the future. It provides a brief overview of information on the major hydrological units of the South Coast, and draws from the following primary sources: • The California Rivers Assessment (CARA) database (http://www.ice.ucdavis.edu/newcara) provides information on large-scale watershed and river basin statistics; • Information on the creeks and watersheds for the ESU of the endangered southern steelhead trout from the National Marine Fisheries Service (http://swr.ucsd.edu/hcd/SoCalDistrib.htm); • Watershed Plans from the Regional Water Quality Control Boards (RWQCB) that provide summaries of existing hydrological units for each subregion of the south coast (http://www.swrcb.ca.gov/rwqcbs/index.html); • General information on the ecology of the rivers and watersheds of the south coast described in California’s Rivers and Streams: Working
    [Show full text]
  • California Least Tern (Sternula Antillarum Browni)
    California least tern (Sternula antillarum browni) 5-Year Review Summary and Evaluation u.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office Carlsbad, California September 2006 5-YEARREVIEW California least tern (Sternula antillarum browni) TABLE OF CONTENTS 1. GENERAL INFORMATION 1 1.1. REVIEWERS 1 1.2. METHODOLOGY USED TO COMPLETE THE REVIEW: 1 1.3. BACKGROUND: 1 2. REVIEW ANALYSIS 2 2.1. ApPLICATION OF THE 1996 DISTINCT POPULATION SEGMENT (DPS) POLICY 2 2.2. RECOVERY CRITERIA 2 2.3. UPDATED INFORMATION AND CURRENT SPECIES STATUS 5 2.4. SyNTHESIS 22 3. RESULTS 22 3.1. RECOMMENDED CLASSIFICATION 22 3.2. NEW RECOVERY PRIORITY NUMBER 22 3.3. LISTING AND RECLASSIFICATION PRIORITY NUMBER, IF RECLASSIFICATION IS RECOMMENDED 23 4.0 RECOMMENDATIONS FOR FUTURE ACTIONS 23 5.0 REFERENCES •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 24 11 5-YEAR REVIEW California least tern (Sternula antillarum browni) 1. GENERAL INFORMATION 1.1. Reviewers Lead Region: Diane Elam and Mary Grim, California-Nevada Operations Office, 916- 414-6464 Lead Field Office: Jim A. Bartel, Carlsbad Fish and Wildlife Service, 760-431-9440 1.2. Metnodoiogy used to complete the review: This review was compiled by staffofthe Carlsbad Fish and Wildlife Office (CFWO). The review was completed using documents from office files as well as available literature on the California least tern. 1.3. Background: 1.3.1. FR Notice citation announcing initiation of this review: The notice announcing the initiation ofthis 5-year review and opening ofthe first comment period for 60 days was published on July 7, 2005 (70 FR 39327). A notice reopening the comment period for 60 days was published on November 3, 2005 (70 FR 66842).
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Habitat Preference of Leopard Sharks (​Triakis Semifasciata)
    Habitat Preference of Leopard Sharks (Triakis ​ semifasciata) at Chicago Zoological Society Based ​ on Bottom Substrate Amanda (Williams) Flannery Miami University, Oxford, OH 2016 Chicago Zoological Society Cohort Abstract Much like several other species of near shore elasmobranchs, the leopard shark (Triakis ​ semifasciata), relies on estuaries in the wild throughout their life histories to hide from predators, ​ reproduce, and to use as pupping grounds and nurseries. However due to anthropogenic forces, these habitats have been subjected to development, pollution and agriculture which have led to destruction or alteration of nearly 90% of these environments along the Californian coastline. The objective of this study was to observe the Triakis semifasciata at Chicago Zoological Society ​ in Brookfield, Illinois to determine how this social group of females use their habitat space based on bottom substrate. The sharks were observed for 6 days for 2 ½ hour periods in the morning (10:00am - 12:30pm) and early afternoon (12:30pm - 2:00pm) with a timer set to five minute intervals, at which point the position of each shark within the habitat was recorded. A behavioral ethogram was developed to capture behaviors relevant to habitat use. An ANOVA indicated there was statistical significance of habitat preference of sharks based on bottom substrate (F= 5.00, p= 0.049, F crit= 4.96), while a two-way ANOVA indicated there was no statistical significance between the time of observation and habitat bottom substrate preference by T.semifasciata ​ females (F= 0.03, p= 0.84, F crit= 5.31). There was no statistical significance between the two observation periods and behaviors, as the standard errors overlapped significantly, indicating a great deal of variance in behaviors.
    [Show full text]
  • FINAL REPORT Foraging Study Least Terns 2009 No Appendices
    FORAGING STUDY of California Least Terns in San Diego Bay 2009 Prepared for Naval Base Coronado under Cooperative Agreement # N62473-08-2-0027 with Naval Facilities Engineering Command Southwest San Diego, California by Patricia Baird, Ph.D. Kahiltna Research Group Simon Fraser University Centre for Wildlife Ecology Burnaby, B.C. Citation: Baird, Patricia. 2010. Foraging study of California Least Terns in San Diego Bay and Near Ocean Waters, San Diego, California. Unpublished Rept. U.S. NAVFACENGCOM, San Diego Part 1 Foraging Study of California Least Terns in San Diego Bay and Near ocean Waters Appendix I Detailed Methods and Data Sheets Appendix II Banding Data submitted to the U.S. Geological Survey Patricia Baird, Ph.D. Part 2 Analysis of Fecal Samples of California Least Terns Collected on U.S. Navy Least Tern Colonies, San Diego Bay 2008 Appendix III Detailed Methods and Data Sheets Daniel J. Pondella, II, MA, Ph.D. and Jonathan P. Williams, MS. Part 3 Summary and Analysis of Past Fish Collection Data, with Comparison to past Tern Productivity, San Diego Bay Appendix IV Detailed Methods and Data Sheets Daniel J. Pondella, II, MA, Ph.D. and Jonathan P. Williams, MS. Project managed by Friends of Colorado Lagoon 1 Part I FORAGING STUDY of CALIFORNIA LEAST TERNS IN SAN DIEGO BAY AND NEAR OCEAN WATERS SAN DIEGO, CALIFORNIA, 2009 FINAL REPORT Patricia Baird, Ph.D. Kahiltna Research Group Centre for Wildlife Ecology Simon Fraser University 125A-1030 Denman Street Vancouver, B.C. V6G 2M6 Canada Photo: Center for Biological Diversity Citation: Baird, P. 2010. Part 1.
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • USFWS 1990 Least Tern Recovery Plan.Pdf
    DEPARTMENT OF THE INTERIOR. U.S. FISH AND WILDLIFE SERVICE RECOVERY PLAN FOR THE INTERIOR POPULATION OF THE LEAST TERN (Sterna antillarum September i~~o Prepared by John G. Sidle U. S. Fish and Wildlife Service 203 West Second Street Grand Island, Nebraska 68801 and William F. Harrison U. S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111 Regional Director ) EXECUTIVE SUMMARY OF THE RECOVERY PLAN FOR THE LEAST TERN CURRENT STATUS: The interior population of the least tern (Sterna antillarum), a breeding migratory bird in mid-America, was listed as endangered on June 27, 1985 (50 Federal Register 21,784-21,792). Census data currently indicate about 5,000 interior least terns. Habitat Reauirements and Limiting Factors: Interior least terns breed in the Mississippi and Rio Grande River Basins from Montana to Texas and from eastern New Mexico and Colorado to Indiana and Louisiana. From late April to August they occur primarily on barren to sparsely vegetated riverine sandbars, dike field sandbar islands, sand and gravel pits, and lake and reservoir shorelines. Threats to the survival of the species include the actual and functional loss of riverine sandbar habitat. Channelization and impoundment of rivers have directly eliminated nesting habitat. This recovery plan outlines recovery strategies to increase the interior population of the least tern to approximately 7,000 birds throughout its range. Recovery Objective: Delisting Recovery Criteria: Assure the protection of essential habitat by removal of current threats and habitat enhancement, establish agreed upon management plans, and attain a population of 7,000 birds at the levels listed below.
    [Show full text]