0Tafadzwa Project Final for Binding.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld. -
Stomach Contents of the Indian Pangolin Manis Crassicaudata (Mammalia: Pholidota: Manidae) in Tropical Forests of Southern India
OPEN ACCESS The Journal of Threatened Taxa fs dedfcated to bufldfng evfdence for conservafon globally by publfshfng peer-revfewed arfcles onlfne every month at a reasonably rapfd rate at www.threatenedtaxa.org . All arfcles publfshed fn JoTT are regfstered under Creafve Commons Atrfbufon 4.0 Internafonal Lfcense unless otherwfse menfoned. JoTT allows unrestrfcted use of arfcles fn any medfum, reproducfon, and dfstrfbufon by provfdfng adequate credft to the authors and the source of publfcafon. Journal of Threatened Taxa Bufldfng evfdence for conservafon globally www.threatenedtaxa.org ISSN 0974-7907 (Onlfne) | ISSN 0974-7893 (Prfnt) Note Stomach contents of the Indfan Pangolfn Manfs crassfcaudata (Mammalfa: Pholfdota: Manfdae) fn tropfcal forests of southern Indfa Mohanarangan Ashokkumar, Dfpfka Valsarajan, M. Arjun Suresh, Anuraj R. Kafmal & George Chandy 26 May 2017 | Vol. 9| No. 5 | Pp. 10246–10248 10.11609/jot. 2873 .9. 5.10246-10248 For Focus, Scope, Afms, Polfcfes and Gufdelfnes vfsft htp://threatenedtaxa.org/About_JoTT For Arfcle Submfssfon Gufdelfnes vfsft htp://threatenedtaxa.org/Submfssfon_Gufdelfnes For Polfcfes agafnst Scfenffc Mfsconduct vfsft htp://threatenedtaxa.org/JoTT_Polfcy_agafnst_Scfenffc_Mfsconduct For reprfnts contact <[email protected]> Publfsher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2017 | 9(5): 10246–10248 Note Pangolins are scaly anteaters and Stomach contents of the are unique in being the world’s only Indian Pangolin Manis crassicaudata true scaly mammals, distributed in (Mammalia: Pholidota: Manidae) ISSN 0974-7907 (Online) Asia and Africa. Of the eight species in tropical forests of southern India ISSN 0974-7893 (Print) of pangolin, four species are found in Asia, the Chinese Pangolin Manis Mohanarangan Ashokkumar 1, Dipika Valsarajan 2, OPEN ACCESS pentadactyla, Indian Pangolin M. -
Use of Sugar Dispensers to Disrupt Ant Attendance and Improve Biological Control of Mealybugs in Vineyard
insects Article Use of Sugar Dispensers to Disrupt Ant Attendance and Improve Biological Control of Mealybugs in Vineyard Martina Parrilli 1,*, Marco Profeta 2, Luca Casoli 2, Fabio Gambirasio 2, Antonio Masetti 1 and Giovanni Burgio 1 1 Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum-Università di Bologna (UNIBO), Viale G. Fanin 42, 40127 Bologna, Italy; [email protected] (A.M.); [email protected] (G.B.) 2 Consorzio Fitosanitario Provinciale di Reggio Emilia, via F. Gualerzi 32, 42124 Reggio Emilia, Italy; [email protected] (M.P.); [email protected] (L.C.); [email protected] (F.G.) * Correspondence: [email protected] Simple Summary: Management methods for mealybugs (Hemiptera: Pseudococcidae) alternative to insecticides have been explored in vineyards. Biological control by either wild or released natural enemies can be disrupted by tending ants, which create a strong association with mealybugs. In this paper, sugar dispensers were investigated as an ant management method to enhance parasitization and predation and eventually to reduce mealybug infestations. Field trials showed a reduction of ant activity, an enhancement of the ecosystem services provided by both parasitoids and predators and a decrease of mealybug infestation on grapes. The use of sugar dispensers provided promising results, highlighting its potential to be integrated with inoculative releases for a more sustainable management of mealybugs. Citation: Parrilli, M.; Profeta, M.; Abstract: Planococcus ficus (Signoret) and Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococ- Casoli, L.; Gambirasio, F.; Masetti, A.; cidae) are economically important pests occurring in vineyards, causing severe economic losses Burgio, G. -
Title Lorem Ipsum Dolor Sit Amet, Consectetur
Volume 25: 5–10 METAMORPHOSIS ISSN 1018–6490 (PRINT) LEPIDOPTERISTS’ SOCIETY OF AFRICA ISSN 2307–5031 (ONLINE) Uncovering secrets of the ‘cuckoo’ butterfly species Chrysoritis dicksoni (Gabriel, 1947), a social parasite of Crematogaster ants: A summary to the end of the 20th century with current conclusions Published online: 31 May 2014 Alan Heath IZIKO South African Museum, Cape Town E-mail: [email protected] Copyright © Lepidopterists’ Society of Africa Abstract: Current evidence suggests that juvenile stages of Chrysoritis dicksoni may rely on acoustic as well as chemical signals to survive as a parasite within the Crematogaster peringueyi ant nest. It is hypothesized that the sounds produced by the C. dicksoni larva may be mimicking those of a queen ant in order to enhance its hierarchical status and trophic priority within the nest. Interactions between C. dicksoni larvae and their host ants observed in captivity are summarized and illustrated. There is no evidence of ant brood being the larva’s diet as proposed by Clark & Dickson (1971), indeed the larvae repeatedly refused to feed on brood. In view of the strictly sedentary nature of all three larval instars studied and the trophallaxis observed, parsimony would suggest that trophallaxis is the main or sole source of food for all larval instars of this butterfly. No explanation could be found for the demise of the population of C. dicksoni near Mamre in the 1990s but it is suggested that excessive veld fires may have contributed. It is postulated that the species of scale insect associated with the host ant might delimit the range of C. -
Acacia Flat Mite (Brevipalpus Acadiae Ryke & Meyer, Tenuipalpidae, Acarina): Doringboomplatmyt
Creepie-crawlies and such comprising: Common Names of Insects 1963, indicated as CNI Butterfly List 1959, indicated as BL Some names the sources of which are unknown, and indicated as such Gewone Insekname SKOENLAPPERLYS INSLUITENDE BOSLUISE, MYTE, SAAMGESTEL DEUR DIE AALWURMS EN SPINNEKOPPE LANDBOUTAALKOMITEE Saamgestel deur die MET MEDEWERKING VAN NAVORSINGSINSTITUUT VIR DIE PLANTBESKERMING TAALDIENSBURO Departement van Landbou-tegniese Dienste VAN DIE met medewerking van die DEPARTEMENT VAN ONDERWYS, KUNS EN LANDBOUTAALKOMITEE WETENSKAP van die Taaldiensburo 1959 1963 BUTTERFLY LIST Common Names of Insects COMPILED BY THE INCLUDING TICKS, MITES, EELWORMS AGRICULTURAL TERMINOLOGY AND SPIDERS COMMITTEE Compiled by the IN COLLABORATION WiTH PLANT PROTECTION RESEARCH THE INSTITUTE LANGUAGE SERVICES BUREAU Department of Agricultural Technical Services OF THE in collaboration with the DEPARTMENT OF EDUCATION, ARTS AND AGRICULTURAL TERMINOLOGY SCIENCE COMMITTEE DIE STAATSDRUKKER + PRETORIA + THE of the Language Service Bureau GOVERNMENT PRINTER 1963 1959 Rekenaarmatig en leksikografies herverwerk deur PJ Taljaard e-mail enquiries: [email protected] EXPLANATORY NOTES 1 The list was alphabetised electronically. 2 On the target-language side, ie to the right of the :, synonyms are separated by a comma, e.g.: fission: klowing, splyting The sequence of the translated terms does NOT indicate any preference. Preferred terms are underlined. 3 Where catchwords of similar form are used as different parts of speech and confusion may therefore -
The Forgotten Predators: Ant- and Termite-Eating Mammals Acknowledgements
The forgotten predators: ant- and termite-eating mammals Acknowledgements Patchy Ubiquitous Prof. William Bond (ideas); Prof. Mark Robertson; Prof. Kate Parr and Dr. Paul Eggleton top-down bottom-up “Population density (of ants) is constrained by kinds of food and nest sites, as well as by predation.” “Predators, especially visually searching vertebrate predators, play a key role ... rivalling the maximization of net energetic yield as a natural selection factor.” Holldobler and Wilson. 1990. The Ants. 113 3 1 leaf-cutter ant nest size control exclosure Hirsch et al., 2014 1 VERY LARGE LARGE MEDIUM SMALL Hirsch et al., 2014 Terborgh et al., 2001 2 Terborgh et al., 2001 Trophic Cascade 2 Chinese Pangolin Nine-banded Armadillo Common Echidna Giant Anteater Aardvark Orycteropus afer Redford (1987) 216 extant species cross-continental comparison Our database (2019) 291 extant + 40 extinct species = 331 extinct mammals extant extinct # of species mass (kg) ANT DEFENCE AGAINST MAMMALS 1. Bites & Stings 2. Nest Design 3. Flight Response 2. NEST DESIGN Predator Digging Depth 0.18m Echidna Numbat Opiang, 2009 2.25m Aardvark Pangolin Aardwolf Taylor & Skinner, 2003 Milewski et al., 1994 Echidna Numbat Tschinkel, 2004; 2011 Nest design where predators only scratch the surface? Aardvark Pangolin Aardwolf Tschinkel, 2004; 2011 Nest design where predators are large and dig deep? FORMICINE DOLICHODERINE Anoplolepis custodiens Iridomyrmex purpureus 40cm 400cm Longitudinal section through A.custodiens nest on the island of Zanzibar Ettershank, 1968 TERMITE DEFENCE AGAINST MAMMALS 1. Mound Hardness 2. Soldier 3. Digging Morphology distance to the queen 1. MOUND HARDNESS Echidna Giant Anteater 50 x harder than soil at the base Cornitermes cumulans Negret and Redford CONCLUSIONS different 1. -
Lycaenidae): Phylogeny, Ecology, and Conservation John Mathew Old Dominion University
Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2003 Aphytophagy in the Miletinae (Lycaenidae): Phylogeny, Ecology, and Conservation John Mathew Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Genetics Commons Recommended Citation Mathew, John. "Aphytophagy in the Miletinae (Lycaenidae): Phylogeny, Ecology, and Conservation" (2003). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/v7rh-mb21 https://digitalcommons.odu.edu/biology_etds/74 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. APHYTOPHAGY IN THE MILETINAE (LYCAENIDAE): PHYLOGENY, ECOLOGY, AND CONSERVATION by John Mathew B.Sc. June 1990, Madras Christian College M.Sc. June 1992, Madras Christian College M.Phil. May 1994, Madras University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY August 2003 Approved by: Deborah A. Waller (Co-Director) »mi E. Pierce (Co-Director) H. Savitzky (Member) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT APHYTOPHAGY IN THE MILETINAE (LYCAENIDAE): PHYTOGENY, ECOLOGY AND CONSERVATION John Mathew Old Dominion University, 2003 Co-Directors of Advisory Committee: Dr. Deborah A. Waller Dr. Naomi E. Pierce Less than 1% of all Lepidoptera are aphytophagous; of these, a considerable proportion is found in the family Lycaenidae. -
Proceedings of the 6Th National Small Farm Conference Promoting the Successes of Small Farmers and Ranches
Proceedings of the 6th National Small Farm Conference Promoting the Successes of Small Farmers and Ranches Microsoft account MEMPHIS COOK CONVENTION CENTER SEPTEMBER 18 - 20, 2012 MEMPHIS, TN Proceedings of the 6th National Small Farm Conference The 6th National Small Farm Conference, "Promoting the Successes of Small Farmers and Ranchers", was hosted by Tennessee State University, College of Agricultural Human and Natural Sciences and the University of Tennessee. Successes in small farm activities were shared, as well as innovative ideas in research, extension and outreach to strengthen collaboration and partnership among state specialists who work to ensure that small farmers and ranchers not only survive, but also thrive in today’s economy. The conference was also served as a forum to discuss the results of research geared towards addressing challenges facing small farmers and ranchers. Strengthening partnerships created at the five previous National Small Farm Conferences was a priority for the Memphis meeting. This conference was consisted of short courses, oral and poster paper presentations, exhibits, success stories and educational tours within Memphis and vicinity 1 Dear Conference Participants: On behalf of the conference planning committees, our hosts Tennessee State University, the University of Tennessee, conference sponsors, land grant colleges and universities, community-based organizations, USDA Agencies, small farmers and ranchers, foundations, State Small Farm Program Coordinators, USDA Small Farm Coordinators and others, welcome to the Sixth National Small Farm Conference. The conference’s theme, “Promoting the Successes of Small Farmers and Ranchers,” provides a forum to promote the successes of small farmers and ranchers as well as discuss local, state, regional and national small farm research, extension and outreach issues identified by stakeholders from land grant colleges and universities, community-based organizations, farm communities and others working with small farmers and ranchers. -
Ecological Factors Affecting the Feeding Behaviour of Pangolins (Manis Temminckii)
J. Zool., Lond. (1999) 247, 281±292 # 1999 The Zoological Society of London Printed in the United Kingdom Ecological factors affecting the feeding behaviour of pangolins (Manis temminckii) J. M. Swart, P. R. K. Richardson and J. W. H. Ferguson Department of Zoology and Entomology, Pretoria University, Pretoria 0001, South Africa (Accepted 27 May 1998) Abstract The diet and foraging behaviour of 15 radio-tagged pangolins were studied in the Sabi Sand Wildtuin for 14 months, together with the community composition and occurrence of epigaeic ants and termites. Fifty- ®ve ant and termite species of 25 genera were trapped in pitfalls of which Pheidole sp. 2 was the most common (27% occurrence). Five termite and 15 ant species were preyed on by pangolins. Six of these species constituted 97% of the diet while ants formed 96% of the diet. Anoplolepis custodiens constituted the major component of the pangolins' diet (77% occurrence) while forming only 5% of the trapped ants. Above-ground ant and termite activity was higher during summer than during winter (an 11-fold difference for A. custodiens), and the above-ground activity was also higher during the day than at night. Pangolins fed for 16% of their foraging time. However, 99% of the observed feeding bouts (mean duration 40 s) were on subterranean prey. The mean dig depth was 3.8 cm. Prey from deeper digs were fed upon for longer periods. A model taking into account various ant characteristics suggests that ant abundance and ant size are the two most important factors determining the number of feeding bouts that pangolins undertake on a particular ant species. -
Ant Management in Western Cape Vineyards
ANT MANAGEMENT IN WESTERN CAPE VINEYARDS By Pia Addison (nee Ueckermann) Submitted in partial fulfilment of the requirements for the degree of Doctor in Philosophy, in the School of Botany and Zoology University of KwaZulu-Natal Pietermaritzburg 2004 2 DECLARATION This study represents original work by the author and has not been submitted in any form to another University. Where use was made of the work of others it has been duly acknowledged in the text. P. ADDISON 3 CONTENTS Page ACKNOWLEDGEMENTS 4 GENERAL INTRODUCTION 5 CHAPTER 1 A survey of ants (Hymenoptera: Formicidae) that forage in vineyards in the Western Cape Province, South Africa 18 CHAPTER 2 Chemical stem barriers for the control of ants (Hymenoptera: Formicidae) in Western Cape vineyards.......................................................................................... 36 CHAPTER 3 Integrated pest management using cover crops for managing the ant-mealybug (Formicidae - Pseudococcidae) mutualism in Western Cape vineyards 55 CHAPTER 4 Variation in ant (Hymenoptera: Formicidae) diversity, foraging behaviour and morphology in different structural habitats associated with vineyards 85 GENERAL DISCUSSION 102 CONCLUSiONS 113 4 ACKNOWLEDGEMENTS lam most grateful to Ms E.C. du Toit (ARC Infruitec-Nietvoorbij) for all her technical assistance in collecting and sorting traps and with all the field trials. Without her it would not have been possible to work through all the samples. Many thanks also to the following people: Dr. H.G. Robertson (South African Museum, Cape Town) for identifying the many ant species and advice with trapping methods; Dr. I. Millar (ARC Biosystematics Division) for identifying mealybug species; Dr. V.M. Walton and Mr. Levocia Williams for sorting and identifying mealybug natural enemies; Or. -
A Pugnacious Ant (Anoplolepis Custodiens)
A Pugnacious ant (Anoplolepis custodiens) confounds ant assemblage responses to bush encroachment Thinandavha Munyai1, Stefan Foord2, Rob Slotow1, and Nomathamsanqa Mkhize1 1University of KwaZulu-Natal College of Agriculture Engineering and Science 2University of Venda November 25, 2020 Abstract Habitat structure is a key determinant of variation in biodiversity. The effects of increased vertical and horizontal vegetation structure can result in marked shifts in animal communities. This is particularly true for ants in response to woody thickening, with predicted negative impacts on ant diversity. We used pitfall traps to study the response of epigeic ants in two co-occurring dominant habitats (closed and open) of an African savanna biome experiencing extensive woody thickening. Although species richness was higher in open habitats, evenness was significantly lower. Thickening explained significant amounts of variation in ant composition, but site-specific characteristics and seasonality were more important. These site-specific characteristics were largely linked to Anoplolepis custodiens, a species that were locally abundant in open habitats with clayey soils, where they often accounted for more than 90% of all ant activity. As A. custodiens also responds positively to disturbance, indiscriminate bush clearing could lead to knock on effects associated with the numerical and behavioural dominance of this species. Introduction The savanna biome dominates southern Africa, and is characterised by continuous grassy understory, a discontinuous woody overstory (Archer et al., 2017; Bond, 2019), and, therefore, considered a largely open ecosystem (Pausas & Bond, 2020). However, various anthropogenic activities (Osborne et al., 2018) pose a threat to this biome. One pervasive threat is that of woody plant encroachment into savannas and grasslands, linked to climate change in particular (Criado, Myers-Smith, Bjorkman, Lehmann, & Stevens, 2020). -
The Influence of Ants on the Insect Fauna of Broad
THE INFLUENCE OF ANTS ON THE INSECT FAUNA OF BROAD - LEAVED, SAVANNA TREES. by SUSAN GRANT Thesis submitted to Rhodes University in partial fulfilment for the degree of Master of Science Department of Zoology and Entomology Rhodes University Grahamstown SOUTH AFRICA May 1984 TO MY PARENTS AND SISTER, ROSEMARY ---- '.,. ... .... ...... ;; ............. .... :.:..:.: " \ ... .:-: ..........~.~ . .... ~ ... .... ......... • " ".! . " \ ......... :. ........ .................... FRONTISPIECE TOP RIGHT - A map of Southern Africa indicating the position of the Nylsvley Provincial Nature Reserve. TOP LEFT One of the dominant ant species, Crematogaster constructor, housed in a carton nest in a Terminalia sericea tree. R BOTTOM RIGHT - A sticky band of Formex which was applied to the trunk of trees to exclude ants. BOTTOM LEFT - Populations of the scale insect Ceroplastes rusci on the leaves of an unbanded Ochna pulchra shrub. CONTENTS Page ACKNOWLEDGEMENTS 1. ABSTRACT 2. INTRODUCTION 1 - 4 3. STUDY AREA 5 - 10 3.1 Abiotic components 3.2 Biotic components 4. GENERAL MATERIALS AND METHODS 11 - 14 4.1 Ant exclusion 4.2 Effect of banding 5. THE RESULTS OF BANDING 15 - 17 5.1 Effect on plant phenology 5.2 Effect on the insect fauna 6. THE ANT COMMUNITY 18 - 29 6.1 The ant species 6.2 Ant distribution and nesting sites 6.3 Field observations 7. SAMPLING OF BANDED AND UNBANDED TREES 30 - 44 7.1 Non-destructive sampling 7.2 Destructive pyrethrum sampling 8. ASSESSMENT OF HERBIVORY 45 - 55 8.1 Damage records on .banded and unbanded trees 9. DISCUSSION 56 - 60 APPENDICES 61 - 81 REFERENCES 82 - 90 ACKNOWLEDGEMENTS I would like to express my sincere thanks to Professor V.C.