Effect of Structure and Plasticizer on the Glass Transition of Adsorbed Polymer

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Structure and Plasticizer on the Glass Transition of Adsorbed Polymer Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2010 Effect of structure and plasticizer on the glass transition of adsorbed polymer Boonta Hetayothin Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Chemistry Commons Department: Chemistry Recommended Citation Hetayothin, Boonta, "Effect of structure and plasticizer on the glass transition of adsorbed polymer" (2010). Doctoral Dissertations. 1901. https://scholarsmine.mst.edu/doctoral_dissertations/1901 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. EFFECT OF STRUCTURE AND PLASTICIZER ON THE GLASS TRANSITION OF ADSORBED POLYMER by BOONTA HETAYOTHIN A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in CHEMISTRY 2010 Approved by Frank D. Blum, Advisor Michael Van De Mark Jay A. Switzer Prakash Reddy Douglas Ludlow 2010 Boonta Hetayothin All Rights Reserved iii PUBLICATION DISSERTATION OPTION The papers included in this dissertation have been prepared in the style of the journal, Macromolecules. Paper I (pages 29-47), Paper II (pages 48-64), Paper III (pages 65-88) and Paper IV (pages 89-111). The Paper V (pages 112-119) has been published by Polymer Preprints and added as the supporting document for Paper I and II. Appendices have been added to include additional characterization and simulation information. iv ABSTRACT The effect of molecular mass on adsorbed poly(methyl methacrylate) (PMMA) on silica was determined using temperature-modulated differential scanning calorimetry (TMDSC). A two-component model, based on loosely-bound polymer (glass transition temperature, Tg, similar to that of bulk) and tightly-bound polymer (Tg higher than that of bulk) was used to interpret the thermograms. Similar amounts of tightly-bound polymer were found for 450 and 85 kDa PMMA (0.78 mg/m2), while the 32 kDa sample had a smaller amount (0.48mg/m2). A comparison of adsorbed PMMA, poly(vinyl acetate) (PVAc), and poly(methyl acrylate) (PMA) on silica was made using the same technique. The amounts of tightly-bound PMMA (0.78 mg/m2), PVAc (0.78 mg/m2), and PMA (0.72 mg/m2), adsorbed on silica surfaces did not differ much. The ratios of heat capacity increments of the loosely- and tightly-bound components (ΔCpA/ΔCpB) at Tg, indicating the relative mobility of the two components, were also estimated to be about 1.8. The dynamics of the phenyl-deuterated plasticizer di(propylene glycol) dibenzoate in bulk and adsorbed PVAc on silica were probed using solid-state 2H NMR. The dynamics of this plasticizer in the plasticized-bulk polymer system were found to be heterogeneous. For adsorbed PVAc on silica, the dynamics of the plasticizer was found to be even more motionally heterogeneous than that observed in bulk samples. The NMR results provided solid evidence that, when there is only a small amount of adsorbed polymer (i.e., 0.8 mg/m2), the plasticizer has very little or almost no effect on the dynamics of that polymer. The plasticizer was observed to be effective at higher adsorbed amounts. v ACKNOWLEDGMENTS I would like to thank Dr. Frank D. Blum for all of his patience, forgiveness, and advising during my graduate career at Missouri S&T. I thank my committee members, Dr. Michael Van De Mark and Dr. Prakash Reddy for being encouraging and advising me, and Dr. Jay A. Switzer and Dr. Douglas Ludlow for their thoughtful comments and suggestions. I thank the both present and past members of the Blum research group, Dr. Manikantan Nair, Dr. Piyawan Krisanangkura, Dr. Zhefei Li, Krunal Waghela, Xiaoming Cheng, Tan Zhang, Jong-Sik Moon and summer students Mark Hickle and Adam Daily. I also thank Dr. Robert O’ Connor for his useful discussion on NMR project. I thank Ms. Barbara Harris for all of her assistance with editing. I also thank Raymond Kendrick and Joe Council for technical support with NMR and TMDSC projects. I thank my great collaborator Roy Cabaniss from the Computer Science Department for his assistance with the NMR simulation program. I thank Dr. Cyriac Kandoth and Waraporn Viyanon for their help on Fortran programming. I also thank Dr. Tadashi Tokuhiro, Dr. Terry Bone, Dr. Pericles Stavropoulos, Dr. Woelk Klaus, Dr. Jeff Winiarz and staff members of Chemistry Department; Dean Lenz, Mike Myers, Dave Satterfield, Kathy Eudaly, Donna Riggs, Carol Rodman and Dr. Eric Bohannan at Materials Research Center. I thank Jeanine Bruening at the Writing Center and Dr. Neil Book at Chemical & Biological Engineering Department. I acknowledge the Chemistry Department, the Materials Research Center of Missouri University of Science and Technology and the National Science Foundation (NSF) for financial support of this research. I also acknowledge the ACS South Central Missouri Local Section for the travel grant to the ACS national meeting. Finally, I thank my husband Floyd, my parents and siblings in Thailand, my parents in law Elaine & Floyd, my friends Rolla and Sierra for being tremendous supportive throughout my graduate career and to make this work is possible. vi TABLE OF CONTENTS Page PUBLICATION DISSERTATION OPTION.................................................................... iii ABSTRACT ....................................................................................................................... iv ACKNOWLEDGMENTS .................................................................................................. v LIST OF ILLUSTRATIONS .............................................................................................. x LIST OF TABLES ........................................................................................................... xiv NOMENCLATURE ......................................................................................................... xv SECTION 1. INTRODUCTION ................................................................................................. 1 REFERENCES ...................................................................................................... 3 2. BACKGROUND ................................................................................................... 4 2.1. ADSORPTION ............................................................................................... 4 2.1.1. Polymer Conformations in Solution. .................................................... 4 2.1.2. Thermodynamics of Polymer Solution................................................. 5 2.1.3. Surface Tension of Polymer Solutions, ............................................ 7 2.1.4. Polymers at Interfaces. ......................................................................... 8 2.1.5. Important Features of Interfacial Polymers (Adsorbed Amounts and Interfacial Structures). ................................ 10 2.2. GLASS TRANSITION TEMPERATURE, Tg ............................................. 10 2.2.1. Free Volume Theories on Tg. .............................................................. 11 2.2.2. Factors That Affect The Tg. ................................................................ 11 2.3. CHARACTERIZATION TECHNIQUES FOR POLYMERIC MATERIALS ................................................................................................ 14 2.3.1. Differential Scanning Calorimetry (DSC) .......................................... 16 2.3.2. Temperature Modulated Differential Scanning Calorimetry (TMDSC) ....................................................................... 18 2.3.3. Solid State Deuterium (2H) NMR ...................................................... 20 2.4. REFERENCES ............................................................................................. 26 vii PAPER 1. THERMAL ANALYSIS OF ADSORBED POLY(METHYL METHACRYLATE) ON SILICA: EFFECT OF MOLECULAR MASS .............. 29 ABSTRACT ......................................................................................................... 29 1. INTRODUCTION ........................................................................................... 30 2. EXPERIMENTAL ........................................................................................... 32 2.1. Model........................................................................................................ 34 3. RESULTS ........................................................................................................ 35 4. DISCUSSION .................................................................................................. 39 5. CONCLUSIONS.............................................................................................. 44 6. ACKNOWLEDGEMENTS ............................................................................. 45 7. REFERENCES ................................................................................................ 45 2. COMPARISON OF HYDROGEN-BONDED POLYMERS ON SILICA USING TEMPERATURE-MODULATED DIFFERENTIAL SCANNING CALORIMETRY..................................................................................................... 48 ABSTRACT ......................................................................................................... 48 1. INTRODUCTION
Recommended publications
  • Lecture Notes on Structure and Properties of Engineering Polymers
    Structure and Properties of Engineering Polymers Lecture: Microstructures in Polymers Nikolai V. Priezjev Textbook: Plastics: Materials and Processing (Third Edition), by A. Brent Young (Pearson, NJ, 2006). Microstructures in Polymers • Gas, liquid, and solid phases, crystalline vs. amorphous structure, viscosity • Thermal expansion and heat distortion temperature • Glass transition temperature, melting temperature, crystallization • Polymer degradation, aging phenomena • Molecular weight distribution, polydispersity index, degree of polymerization • Effects of molecular weight, dispersity, branching on mechanical properties • Melt index, shape (steric) effects Reading: Chapter 3 of Plastics: Materials and Processing by A. Brent Strong https://www.slideshare.net/NikolaiPriezjev Gas, Liquid and Solid Phases At room temperature Increasing density Solid or liquid? Pitch Drop Experiment Pitch (derivative of tar) at room T feels like solid and can be shattered by a hammer. But, the longest experiment shows that it flows! In 1927, Professor Parnell at UQ heated a sample of pitch and poured it into a glass funnel with a sealed stem. Three years were allowed for the pitch to settle, and in 1930 the sealed stem was cut. From that date on the pitch has slowly dripped out of the funnel, with seven drops falling between 1930 and 1988, at an average of one drop every eight years. However, the eight drop in 2000 and the ninth drop in 2014 both took about 13 years to fall. It turns out to be about 100 billion times more viscous than water! Pitch, before and after being hit with a hammer. http://smp.uq.edu.au/content/pitch-drop-experiment Liquid phases: polymer melt vs.
    [Show full text]
  • Depletion Interactions in Colloid-Polymer Mixtures
    PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996 Depletion interactions in colloid-polymer mixtures X. Ye, T. Narayanan, and P. Tong* Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 J. S. Huang and M. Y. Lin Exxon Research and Engineering Company, Route 22 East, Annandale, New Jersey 08801 B. L. Carvalho Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 L. J. Fetters Exxon Research and Engineering Company, Route 22 East, Annandale, New Jersey 08801 ~Received 10 May 1996! We present a neutron-scattering study of depletion interactions in a mixture of a hard-sphere-like colloid and a nonadsorbing polymer. By matching the scattering length density of the solvent with that of the polymer, we measured the partial structure factor Sc(Q) for the colloidal particles. It is found that the measured Sc(Q) for different colloid and polymer concentrations can be well described by an effective interaction potential U(r) for the polymer-induced depletion attraction between the colloidal particles. The magnitude of the attraction is found to increase linearly with the polymer concentration, but it levels off at higher polymer concentrations. This reduction in the depletion attraction presumably arises from the polymer-polymer interactions. The ex- periment demonstrates the effectiveness of using a nonadsorbing polymer to control the magnitude as well as the range of the interaction between the colloidal particles. @S1063-651X~96!10911-9# PACS number~s!: 82.70.Dd, 61.12.Ex, 65.50.1m, 61.25.Hq I. INTRODUCTION faces through a loss of conformational entropy. Colloidal surfaces are then maintained at separations large enough to Microscopic interactions between colloidal particles in damp any attractions due to the depletion effect or London– polymer solutions control the phase stability of many van der Waals force and the colloidal suspension is stabilized colloid-polymer mixtures, which are directly of interest to @5,6#.
    [Show full text]
  • Glass Transition Behavior of Thin Poly(Methyl Methacrylate) Films on Silica
    Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2002 Glass transition behavior of thin poly(methyl methacrylate) films on silica Moses T. Kabomo Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Kabomo, Moses T., "Glass transition behavior of thin poly(methyl methacrylate) films on silica" (2002). Masters Theses. 2151. https://scholarsmine.mst.edu/masters_theses/2151 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. GLASS TRANSITION BEHAVIOR OF THIN POLY(METHYL METHACRYLATE) FILMS ON SILICA by MOSES TLHABOLOGO KABOMO A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI-ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN CHEMISTRY 2002 T8066 81 pages Approved by iii PUBLICATION THESIS OPTION This thesis has been prepared in the style utilized by the ACS journal Macromolecules. Pages 30-57 will be submitted for publication in that journal or one of ACS journals. Appendices A and B have been added for purposes normal to thesis writing. IV ABSTRACT Modulated Differential Scanning Calorimetry (MDSC) was used to study the glass transition behavior of poly(methyl methacrylate) (PMMA) adsorbed onto silica substrates from toluene. Untreated fumed amorphous silica and silica treated with hexamethyldisilazane were used for the adsorption to probe the effect of polymer- substrate interactions.
    [Show full text]
  • Bulk and Solution Processes
    13 BULK AND SOLUTION PROCESSES Marco A. Villalobos and Jon Debling 13.1 DEFINITION the American Waldo Semon, working for B.F. Goodrich, invented plasticized PVC [1–3]. Bulk and solution polymerizations refer to polymerization In 1839, the German apothecary Eduard Simon first systems where the polymer produced is soluble in the isolated polystyrene (PS) from a natural resin. More than monomer. This is in contrast to heterogeneous polymeriza- 85 years later, in 1922, German organic chemist Hermann tion where the polymer phase is insoluble in the reaction Staudinger realized that Simon’s material comprised long medium. In bulk polymerization, only monomer provides chains of styrene molecules. He described that materials the liquid portion of the reactor contents, whereas in solu- manufactured by the bulk thermal processing of styrene tion processes, additional solvent can be added to control were polymers. The first commercial bulk polymerization viscosity and temperature. In both processes, small amounts process for the production of PS is attributed to the of additional ingredients such as initiators, catalysts, chain German company Badische Anilin & Soda-Fabrik (BASF) transfer agents, and stabilizers can be added to the pro- working under trust to IG Farben in 1930. In 1937, the cess, but in all cases, these are also soluble in the reactor Dow Chemical company introduced PS products to the US medium. As described in more detail below, the viscos- market [1, 4–5]. ity of the reaction medium and managing the energetics of Between 1930 and the onset of World War II (WWII) the polymerization pose the most significant challenges to in 1939, several polymer families were invented and operation of bulk and solution processes.
    [Show full text]
  • Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer
    polymers Article Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer Tuqeer Nasir 1 , Bum Jun Kim 1, Muhammad Hassnain 2, Sang Hoon Lee 2, Byung Joo Jeong 2, Ik Jun Choi 2, Youngho Kim 3, Hak Ki Yu 3,* and Jae-Young Choi 1,2,* 1 SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea; tuqeernasir166@gmail.com (T.N.); kbj454@gmail.com (B.J.K.) 2 School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea; hassnain.edu@gmail.com (M.H.); alfhdj@gmail.com (S.H.L.); jbj929@gmail.com (B.J.J.); cksoon16@gmail.com (I.J.C.) 3 Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; kimyh9347@naver.com * Correspondence: hakkiyu@ajou.ac.kr (H.K.Y.); jy.choi@skku.edu (J.-Y.C.) Received: 19 June 2020; Accepted: 14 August 2020; Published: 17 August 2020 Abstract: Chemical vapor deposition of graphene on transition metals is the most favored method to get large scale homogenous graphene films to date. However, this method involves a very critical step of transferring as grown graphene to desired substrates. A sacrificial polymer film is used to provide mechanical and structural support to graphene, as it is detached from underlying metal substrate, but, the residue and cracks of the polymer film after the transfer process affects the properties of the graphene. Herein, a simple mixture of polystyrene and low weight plasticizing molecules is reported as a suitable candidate to be used as polymer support layer for transfer of graphene synthesized by chemical vapor deposition (CVD).
    [Show full text]
  • Physical Models of Diffusion for Polymer Solutions, Gels and Solids
    Prog. Polym. Sci. 24 (1999) 731–775 Physical models of diffusion for polymer solutions, gels and solids L. Masaro, X.X. Zhu* De´partement de chimie, Universite´ de Montre´al, C.P. 6128, succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7 Received 3 February 1999; accepted 10 May 1999 Abstract Diffusion in polymer solutions and gels has been studied by various techniques such as gravimetry, membrane permeation, fluorescence and radioactive labeling. These studies have led to a better knowledge on polymer morphology, transport phenomena, polymer melt and controlled release of drugs from polymer carriers. Various theoretical descriptions of the diffusion processes have been proposed. The theoretical models are based on different physical concepts such as obstruction effects, free volume effects and hydrodynamic interactions. With the availability of pulsed field gradient NMR techniques and other modern experimental methods, the study of diffusion has become much easier and data on diffusion in polymers have become more available. This review article summarizes the different physical models and theories of diffusion and their uses in describing the diffusion in polymer solutions, gels and even solids. Comparisons of the models and theories are made in an attempt to illustrate the applicability of the physical concepts. Examples in the literature are used to illustrate the application and applicability of the models in the treatment of diffusion data in various systems. ᭧ 1999 Elsevier Science Ltd. All rights reserved. Keywords: Diffusion theories; Diffusion models; Self-diffusion; Diffusant diffusion; Polymers; Gels Contents 1. Introduction .................................................................. 733 1.1. Fickian diffusion .......................................................... 734 1.2. Non-Fickian diffusion ...................................................... 735 1.3. Self-diffusion and mutual diffusion coefficients ...................................
    [Show full text]
  • Drying, Film Formation and Open Time of Aqueous Polymer Dispersions an Investigation of Different Aspects by Rheometry and Inverse-Micro-Raman-Spectroscopy (IMRS)
    Imke Ludwig Drying, Film Formation and Open Time of Aqueous Polymer Dispersions An Investigation of Different Aspects by Rheometry and Inverse-Micro-Raman-Spectroscopy (IMRS) Drying, Film Formation and Open Time of Aqueous Polymer Dispersions An Investigation of Different Aspects by Rheometry and Inverse-Micro-Raman-Spectroscopy (IMRS) by Imke Ludwig Dissertation, Universität Karlsruhe (TH) Fakultät für Chemieingenieurwesen und Verfahrenstechnik, 2008 Impressum Universitätsverlag Karlsruhe c/o Universitätsbibliothek Straße am Forum 2 D-76131 Karlsruhe www.uvka.de Dieses Werk ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/ Universitätsverlag Karlsruhe 2008 Print on Demand ISBN: 978-3-86644-284-9 Drying, Film Formation and Open Time of Aqueous Polymer Dispersions -An Investigation of Different Aspects by Rheometry and Inverse-Micro-Raman-Spectroscopy (IMRS)- Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) der Fakultät für Chemieingenieurwesen und Verfahrenstechnik der Universität Fridericiana Karlsruhe (Technische Hochschule) genehmigte Dissertation von Dipl.-Ing. Imke Ludwig geboren in Berlin-Wilmersdorf Tag des Kolloquiums: 8. Juli 2008 Referent: Prof. Dr.-Ing. Matthias Kind Korreferent: Prof. Dr. Norbert Willenbacher I Preface This thesis is the final work of my Ph.D. study at the Institute of Thermal Process Engineering at the University of Karlsruhe (TH), which has been made from fall 2002 until spring 2007. The project is the result of a longlasting cooperation with the Rhodia Research and Technology Centers in Aubervilliers and Lyon (France): I started working on the new project entitled “Drying and Film Formation of Aqueous Dispersion Formulations” in October of 2002. It required the use of the measurement technique of Inverse-Micro-Raman- Spectroscopy (IMRS) that was brought to the institute by Wilhelm Schabel shortly before.
    [Show full text]
  • Measuring the Rheology of Polymer Solutions
    WHITEPAPER Measuring the rheology of polymer solutions John Duffy, Product Marketing Manager, Rheology Polymers are versatile materials that play an important role in a diverse range of industrial applications. Polymeric solutions or suspensions provide joint lubrication RHEOLOGY AND VISCOSITY in the human body, make foods appear rich and creamy, and impart stability to inks and paints. In these and many other applications the rheological characteristics of the MICRORHEOLOGY polymer solution have a defining influence on product performance and functionality. Rheology is the study of material deformation and flow, and it can be used to establish a direct link between polymer characteristics - such as molecular weight (MW), molecular size and structure - and product performance. Working towards rheological targets defined in terms of viscosity or viscoelasticity to achieve performance targets is an efficient formulation strategy but relies on measuring relevant rheological data1. This whitepaper examines the key rheological characteristics of polymer solutions and the techniques that are available to measure them. These include rotational and microfluidic rheometry and microrheology. Case studies illustrate the data that can be generated and its potential application. Understanding the role of rheology in formulation Formulators apply two complementary strategies when working towards defined product performance targets. The first is to change the composition of the formulation; the second is to alter the physical characteristics of the ingredients. In the specific case of formulations incorporating polymers the two most commonly manipulated variables are polymer concentration (composition) and MW (a physical characteristic of the polymer). However, there are a number of other factors that can also impact how polymer solutions behave.
    [Show full text]
  • Chapter 7. Polymer Solutions 7.1. Criteria for Polymers Solubility 7.2
    Chapter 7. Polymer solutions 7.1. Criteria for polymers solubility 7.2. Conformations of dissolved polymer chains 7.3. Thermodynamics of polymer solutions 7.4. Phase equilibrium in polymer solutions 7.5. Fractionation of polymers by solubility Ariadne L Juwono Semester I 2006/2007 Departemen Fisika FMIPA UI 7.1. Criteria of polymer solubility The solution process The polymer dissolving occurs very slow and consists in 2 steps: 1. Solvent molecules slowly diffuse into the polymer a swolen gel. This process is very slow because of crosslinking, crytallinity, or strong hydrogen bonding. 2. The gel gradually disintegrates into a true solution. Agitation can speed up this process. For very high molecular weight, the solution process takes days or weeks. Ariadne L. Juwono Semester I 2006/2007 Departemen Fisika FMIPA UI Polymer texture and solubility Solubility relations in polymer systems are complex, because of •The size differences between polymer and solvent molecules, •The viscosity of the system, •The effects of the texture •The molecular weight of the polymer. Solubility depends on the nature of the solvent, the temperature of the solution, the topology of the polymer, and the crystallinity. Cross-linked polymers do not dissolve, but only swell with the solvent when an interaction between the polymer and the solvent occurs. Examples: •Light cross-linked rubbers swell, •Unvulcanized materials would dissolve, •Hard rubbers and thermosetting materials may not swell in any solvent. Ariadne L. Juwono Semester I 2006/2007 Departemen Fisika FMIPA UI Many non-polar crystalline polymers do not dissolve, except at the temperature near their crystalline melting points. Explanation: Crystallinity decreases as the melting point is approached and the melting point is depressed by the presence of the solvent, thus solubility can often achieved at temperatures below melting point.
    [Show full text]
  • Polymer Science and Technology
    Chapter 10 Polymer Reaction Engineering I. INTRODUCTION Several important differences exist between the industrial production of polymers and low-molecular- weight compounds:6,7 • Generally, polymers of industrial interest have high molecular weights, usually in the range of 104 to 107. Also, in contrast to simple compounds, the molecular weight of a polymer does not have a unique value but, rather, shows a definite distribution. The high molecular weight of polymers results in high solution or melt viscosities. For example, in solution polymerization of styrene, the viscosity can increase by over six orders of magnitude as the degree of conversion increases from zero to 60%. • The formation of a large polymer molecule from small monomer results in a decrease in entropy. It follows therefore from elementary thermodynamic considerations that the driving force in the conver- sion process is the negative enthalpy gradient. This means, of course, that most polymerization reactions are exothermic. Consequently, heat removal is imperative in polymerization reactions — a problem that is accentuated by the high medium viscosity that leads to low heat transfer coefficients in stirred reactors. • In industrial formulations, the steady-state concentration of chain carriers in chain and ionic polymer- ization is usually low. These polymerization reactions are therefore highly sensitive to impurities that could interfere with the chain carriers. Similarly, in step-growth polymerization, a high degree of conversion is required in order to obtain a product of high molecular weight (Chapters 6 and 7). It is therefore necessary to prevent extraneous reactions of reactants and also exclude interference of impurities like monofunctional compounds.
    [Show full text]
  • Characterization of Plasticizer-Polymer Coatings for the Detection of Benzene in Water Using Sh- Saw Devices Jude Coompson Marquette University
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Characterization of Plasticizer-Polymer Coatings for the Detection of Benzene in Water Using Sh- Saw Devices Jude Coompson Marquette University Recommended Citation Coompson, Jude, "Characterization of Plasticizer-Polymer Coatings for the Detection of Benzene in Water Using Sh-Saw Devices" (2015). Master's Theses (2009 -). Paper 315. http://epublications.marquette.edu/theses_open/315 CHARACTERIZATION OF PLASTICIZER-POLYMER COATINGS FOR THE DETECTION OF BENZENE IN WATER USING SH-SAW DEVICES by Jude K Coompson, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, WI CHARACTERIZATION OF PLASTICIZER-POLYMER COATINGS FOR THE DETECTION OF BENZENE IN WATER USING SH-SAW DEVICES ABSTRACT Jude K. Coompson, B.S. Marquette University, 2014 Benzene is a constituent component of crude oil that has been classified as a carcinogen by the EPA with a maximum contamination level (MCL) of 5ppb in drinking water. However, of the aromatic compounds, benzene has one of the lowest polymer-water partition coefficients using commercially available polymers as sensor coatings, resulting in poor limits of detection. This work investigates new coating materials based on polymer/plasticizer mixtures coated onto a shear horizontal surface acoustic wave (SH-SAW) sensor to detect benzene in water. There are many polymers which are unavailable for use as a sensing polymer due to their glassy nature. The use of plasticizers allows the polymer properties to be modified to give a more sensitive polymer by reducing the glass transition temperature, Tg, and increasing the free volume creating a more rubbery polymer which will absorb benzene.
    [Show full text]
  • Interactions in Mixtures of Colloid and Polymer P
    Interactions in mixtures of colloid and polymer P. Tong, T.A. Witten, J.S. Huang, L.J. Fetters To cite this version: P. Tong, T.A. Witten, J.S. Huang, L.J. Fetters. Interactions in mixtures of colloid and polymer. Jour- nal de Physique, 1990, 51 (24), pp.2813-2827. 10.1051/jphys:0199000510240281300. jpa-00212573 HAL Id: jpa-00212573 https://hal.archives-ouvertes.fr/jpa-00212573 Submitted on 1 Jan 1990 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Phys. France 51 (1990) 2813-282? 15 DÉCEMBRE 1990, 2813 Classification Physics Abstracts 82.70D - 61.25H - 42.10 Interactions in mixtures of colloid and polymer P. Tong (1, *), T. A. Witten (1, 2), J. S. Huang (1) and L. J. Fetters (1) (1) Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, U.S.A. (2) The James Franck Institute, the University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, U.S.A. (Received 12 June 1990, revised 20 August 1990, accepted 27 August 1990) Résumé. 2014 Nous étudions la solution d’un colloïde stabilisé par des molécules tensioactives et d’un polymère 2014 le polyisoprène hydrogéné.
    [Show full text]