Unit (11) Molecules of Life: Lipids and Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Bioactive Molecules in Palm Oil Pulp
139 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 79, 2020 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Enrico Bardone, Antonio Marzocchella, Marco Bravi Copyright © 2020, AIDIC Servizi S.r.l. DOI: 10.3303/CET2079024 ISBN 978-88-95608-77-8; ISSN 2283-9216 Characterization of Bioactive Molecules in Palm Oil Pulp (Elaeis Guineensis Jacq.) a b* Selvin Antonio Saravia Maldonado , Ismael Montero Fernández , Bernardo de c d e Morais Linhares , Jhunior Abrahan Marcia Fuentes , Ricardo Santos Alemán , Vanny Perpetua Ferrazf a Faculty of Earth Sciences and Conservation, National University of Agriculture, Highway to Dulce Nombre de Culmi, km 215, Neighborhood El Espino, Catacamas-Olancho, Honduras. bUniversity of Extremadura. Department of Organic and Inorganic Chemistry. Polytechnic School, University Avenue s/n, Cáceres, Spain. cFederal Institute of Roraima. Campus Boa Vista, Av. Glaycon de Paiva, 2496 - Pricumã, Boa Vista - RR, 69303-340. d Faculty of Technological Sciences, National University of Agriculture, Highway to Dulce Nombre de Culmi, km 215, Neighborhood El Espino, Catacamas-Olancho, Honduras. eDepartment of Food Science, Louisiana State University, U.S. fChromatography Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte-MG-Brazil. [email protected] Oil palm (Elaeis guineensis Jacq.) is a crop that has great economic potential, since its productive potential is extremely high. It is grown in several countries in Asia, Africa and South America, with the main purpose of producing biodiesel raw material for the cosmetics and food industry. In Brazil, its cultivation is concentrated in only a few small regions, distributed mainly in the Northeast and North of the country. -
Study of Hydrogenation Derived Renewable Diesel As a Renewable Fuel Option in North America
Study of Hydrogenation Derived Renewable Diesel as a Renewable Fuel Option in North America Final Report Natural Resources Canada 580 Booth Street Ottawa, Ontario K1A 0E4 For additional information, please contact: Natalie Lambert Project Manager, Energy Telephone: 514 562-8651 Email: [email protected] March 30,2012 Experts in environment and natural resource economics ■stHSfesa ■ 825, Raoul-Jobin, Quebec (Quebec) Canada GIN 1S6 1097, St-Alexandre, Suite 201, Montreal (Quebec) Canada H2Z IPS www.ecoressources.com • [email protected] Study of Hydrogenation Derived Renewable Diesel as a Renewable Fuel Option in North America - Final Report Executive Summary As of 2011, 27 national governments and 29 state/province governments have implemented policies that mandate the use of a minimum amount of renewable alternatives to diesel, including Europe, six South American countries, six Asian countries, Canada, the United States, Costa Rica and the Dominican Republic. On June 29, 2011, the government of Canada registered regulations amending the Renewable Fuels Regulations which were then published on July 20, 201 11. These amendments stated that the coming into force date of the 2% requirement of renewable content in diesel and heating oil would be July 1st, 2011. Under the Renewable Fuels Regulations, both ester-based biodiesel and hydrogenation-derived renewable diesel (HDRD) are admissible as renewable content that can be used to meet the requirements of the Regulations. While biodiesel is the most widely available diesel fuel alternative, there has been increasing interest by the regulated parties in using HDRD to meet the requirements, even though HDRD is currently only produced in Europe, Southeast Asia and the United States 23. -
Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. -
Blood Fats Explained
Blood Fats Explained HEART UK – The Cholesterol Charity providing expert support, education and influence 2 | Fats in the blood At risk of cardiovascular disease? | 3 Fats in the blood At risk of cardiovascular disease? Fats that circulate in the blood are called lipids. Very low density lipoproteins (VLDL) transport Cardiovascular disease (CVD) is the medical Blood pressure is a measure of the resistance Cholesterol and triglycerides are both lipids. mainly triglycerides made by the liver to where name for circulatory diseases such as coronary to the flow of blood around your body. It is They have essential roles in the body. In excess they are either used to fuel our muscles or stored heart disease (CHD), stroke, mini stroke (transient measured in millimetres of mercury (mmHg). Your they are harmful. for later use. ischaemic attack or TIA), angina and peripheral doctor or nurse will measure both your systolic vascular disease (PVD). You are more likely to (upper figure) and diastolic (lower figure) blood Cholesterol is needed to build cell walls and Low density lipoproteins (LDL) carry most of the develop CVD the more risk factors you have. pressure. About a third of adults have high blood to make hormones and vitamin D. Some of our cholesterol in our body from the liver to the cells pressure. If untreated it increases the risk of cholesterol comes from the food we eat; but most that need it. The cholesterol that is carried on LDLs There are two types of risk factors: heart attack and stroke. High blood pressure is is made in the liver. -
Current Knowledge on Interspecific Hybrid Palm Oils As Food and Food
foods Review Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient Massimo Mozzon , Roberta Foligni * and Cinzia Mannozzi * Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy; m.mozzon@staff.univpm.it * Correspondence: r.foligni@staff.univpm.it (R.F.); c.mannozzi@staff.univpm.it (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.) Received: 6 April 2020; Accepted: 10 May 2020; Published: 14 May 2020 Abstract: The consumers’ opinion concerning conventional palm (Elaeis guineensis) oil is negatively affected by environmental and nutritional issues. However, oils extracted from drupes of interspecific hybrids Elaeis oleifera E. guineensis are getting more and more interest, due to their chemical and × nutritional properties. Unsaturated fatty acids (oleic and linoleic) are the most abundant constituents (60%–80% of total fatty acids) of hybrid palm oil (HPO) and are mainly acylated in position sn-2 of the glycerol backbone. Carotenes and tocotrienols are the most interesting components of the unsaponifiable matter, even if their amount in crude oils varies greatly. The Codex Committee on Fats and Oils recently provided HPO the “dignity” of codified fat substance for human consumption and defined the physical and chemical parameters for genuine crude oils. However, only few researches have been conducted to date on the functional and technological properties of HPO, thus limiting its utilization in food industry. Recent studies on the nutritional effects of HPO softened the initial enthusiasm about the “tropical equivalent of olive oil”, suggesting that the overconsumption of HPO in the most-consumed processed foods should be carefully monitored. -
Types of Gene Effects Governing the Inheritance of Oleic and Linoleic Acids in Peanut (Arachis Hypogaea L.)
African Journal of Biotechnology Vol. 11(67), pp. 13147-13152, 21 August, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897/AJB12.1498 ISSN 1684-5315 ©2012 Academic Journals Full Length Research Paper Types of gene effects governing the inheritance of oleic and linoleic acids in peanut (Arachis hypogaea L.) Nattawut Singkham1, Sanun Jogloy1*, Bhalang Suriharn1, Thawan Kesmala1, Prasan Swatsitang2, Prasit Jaisil1, Naveen Puppala3 and Aran Patanothai1 1Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. 2Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. 3Agricultural Science Center at Clovis, New Mexico State University, Clovis, New Mexico, 88101, USA. Accepted 3 August, 2012 Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio of oleic to linoleic acids (O/L ratio) and percentage oil (% oil) in peanut. Georgia- 02C, SunOleic 97R (high-oleic genotypes) and KKU 1 (low-oleic genotypes) were used as parents to generate P1, P2, F2, F3, BC11S and BC12S. The entries were planted in a randomized complete block design with four replications in the rainy season (2008) and the dry season (2008/2009). Gas liquid chromatography (GLC) was used to analyze fatty acid compositions. The data were used in generation means analysis to understand gene effects. The differences in season, generation and generation season interactions were significant for oleic acid in the crosses Georgia-02C KKU 1 and SunOleic 97R KKU 1. -
Use of Gamma-Linolenic Acid and Related Compounds for the Manufacture of a Medicament for the Treatment of Endometriosis
~" ' MM II II II II I II Ml Ml Ml I II I II J European Patent Office ooo Ats*% n i © Publication number: 0 222 483 B1 Office_„. europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 18.03.92 © Int. CI.5: A61 K 31/20, A61 K 31/1 6, A61K 31/23 © Application number: 86307533.9 @ Date of filing: 01.10.86 Use of gamma-linolenic acid and related compounds for the manufacture of a medicament for the treatment of endometriosis. © Priority: 02.10.85 GB 8524276 © Proprietor: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows @ Date of publication of application: Guildford Surrey GU1 1BA(GB) 20.05.87 Bulletin 87/21 @ Inventor: Horrobin, David Frederick © Publication of the grant of the patent: c/o Efamol Ltd, Efamol House Woodbridge 18.03.92 Bulletin 92/12 Meadows Guildford, Surrey, GU1 1BA(GB) © Designated Contracting States: Inventor: Casper, Robert AT BE CH DE ES FR GB GR IT LI LU NL SE University Hospital 339 Windermere Road London Ontario N6A 5AS(CA) © References cited: EP-A- 0 003 407 EP-A- 0 115 419 © Representative: Miller, Joseph EP-A- 0 132 089 J. MILLER & CO. Lincoln House 296-302 High EP-A- 0 181 689 Holborn London WC1V 7JH(GB) J. GYNECOL. OBSTET. BIOL. REPROD. vol. 10, no. 5, 1981, pages 465-471 Masson, Paris, FR PH. CALLGARIS et al.: "Endometriose de la paroi abdominale" 00 00 CLINICAL OBSTETRICS AND GYNECOLOGY, 00 vol. 23, no. 3, Sept. 1980, pages 895-900 J.C. WEED: "Prostaglandins as related to en- CM dometriosis" CM CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. -
Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome
International Journal of Molecular Sciences Review Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome Stefano Turolo 1,* , Alberto Edefonti 1 , Alessandra Mazzocchi 2, Marie Louise Syren 2, William Morello 1, Carlo Agostoni 2,3 and Giovanni Montini 1,2 1 Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; [email protected] (A.E.); [email protected] (W.M.); [email protected] (G.M.) 2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; [email protected] (A.M.); [email protected] (M.L.S.); [email protected] (C.A.) 3 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy * Correspondence: [email protected] Abstract: Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, Citation: Turolo, S.; Edefonti, A.; we describe the main fields where they may play a significant role, particularly as it pertains to their Mazzocchi, A.; Syren, M.L.; effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell Morello, W.; Agostoni, C.; Montini, G. -
On Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2
Alinteri J. of Agr. Sci. (2020) 35(1): 29-35 http://dergipark.gov.tr/alinterizbd e-ISSN: 2587-2249 http://www.alinteridergisi.com/ [email protected] DOI: 10.28955/alinterizbd.737995 RESEARCH ARTICLE The Influence of Turmeric Powder (Curcuma longa) on Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2 1Atatürk University, Erzurum Vocational High School, Department of Plant and Animal Production, Erzurum/Turkey 2Atatürk University, Faculty of Agriculture, Department of Animal Science, Erzurum/Turkey ARTICLE INFO ABSTRACT Article History: The objective of this study was to determine the appropriate concentration of dietary Received: 21.03.2019 supplementation of turmeric powder, and its effect on thiobarbituric acid reactive substance (TBARS) Accepted: 03.02.2020 and fatty acid composition in thigh and breast meat of broiler chickens. Three hundred fifty (175 Available Online: 15.05.2020 male and 175 female), one day old Ross-308 broiler chicks were used in this study. A corn-soybean Keywords: meal based diet containing different levels of turmeric powder (0, 2, 4, 6, 8, 10 g/kg) and a single dose of chlortetracycline (10 mg/kg) was used. The result revealed that dietary supplementation of Broiler 2, 4, 6, 8 and 10 g/kg of turmeric powder decreased TBARS in thigh meat at 5th day when compared Turmeric with control. The addition of 4 g/kg turmeric powder to the basal diet increased DHA, SFA and omega- TBARS 3 in breast meat. DHA and SFA were increased by dietary 2 g/kg turmeric powder in thigh meats. Fatty acid composition Under the conditions of this experiment, it was concluded that turmeric powder may positive effects Antioxidant on tissue fatty acid compositions and shelf life of meat (TBARS). -
Synthesis of High-Titer Alka(E)Nes in Yarrowia Lipolytica Is Enabled by a Discovered Mechanism
ARTICLE https://doi.org/10.1038/s41467-020-19995-0 OPEN Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism Jingbo Li 1, Yongshuo Ma 1, Nian Liu 1, Bekir E. Eser 2, Zheng Guo 2, Peter Ruhdal Jensen3 & ✉ Gregory Stephanopoulos 1 Alka(e)nes are ideal fuel components for aviation, long-distance transport, and shipping. They are typically derived from fossil fuels and accounting for 24% of difficult-to-eliminate 1234567890():,; greenhouse gas emissions. The synthesis of alka(e)nes in Yarrowia lipolytica from CO2- neutral feedstocks represents an attractive alternative. Here we report that the high-titer synthesis of alka(e)nes in Yarrowia lipolytica harboring a fatty acid photodecarboxylase (CvFAP) is enabled by a discovered pathway. We find that acyl-CoAs, rather than free fatty acids (FFAs), are the preferred substrate for CvFAP. This finding allows us to debottleneck the pathway and optimize fermentation conditions so that we are able to redirect 89% of acyl-CoAs from the synthesis of neutral lipids to alka(e)nes and reach titers of 1.47 g/L from glucose. Two other CO2-derived substrates, wheat straw and acetate, are also demonstrated to be effective in producing alka(e)nes. Overall, our technology could advance net-zero emissions by providing CO2-neutral and energy-dense liquid biofuels. 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. 2 Department of Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark. 3 National Food Institute, Technical University of Denmark, Kongens Lyngby 2800, Denmark. -
Omega-3 Fatty Acids Fact Sheet for Consumers
Omega-3 Fatty Acids Fact Sheet for Consumers What are omega-3 fatty acids and what do they do? Omega-3 fatty acids are found in foods, such as fish and flaxseed, and in dietary supplements, such as fish oil. The three main omega-3 fatty acids are alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA is found mainly in plant oils such as flaxseed, soybean, and canola oils. DHA and EPA are found in fish and other seafood. ALA is an essential fatty acid, meaning that your body can’t make it, so you must get it from the foods and beverages you consume. Your body can convert some ALA into EPA and then to DHA, but only in very small amounts. Therefore, getting EPA and DHA from foods (and dietary supplements if you take them) is the only practical way to increase levels of these omega-3 fatty acids in your body. Omega-3s are important components of the membranes that surround each cell in your body. DHA levels are especially high in retina (eye), brain, and sperm cells. Omega-3s also provide calories to give your body energy and have many functions in your heart, blood vessels, lungs, immune system, and endocrine system (the network of hormone-producing glands). How much omega-3s do I need? Omega-3s are found in foods Experts have not established recommended amounts for omega-3 fatty acids, except such as fatty fish and plant oils. for ALA. Average daily recommended amounts for ALA are listed below in grams (g). -
April 9, 2020 Replacement of Primex Brand Hydrogenated Vegetable
April 9, 2020 Replacement of Primex Brand Hydrogenated Vegetable Shortening In June of 2018 the FDA banned the use of trans fats in human foods. Due to the ban, Envigo was no longer able to source Primex brand hydrogenated vegetable oil (HVO) containing trans fats. Beginning on April 11th of 2018, Primex was replaced with an USP grade HVO made to a food-grade standard that has a similar texture and fatty acid profile (see table). Manufacturing tests revealed no appreciable differences in physical qualities of finished diets. Although diet numbers did not change, you may have noticed an updated diet title and ingredient description on the diet datasheet. Depending on your research goals and desire for relevance to human diets, you may wish to use a source of HVO without trans fats such as Crisco. Crisco is a proprietary HVO with minimal trans fats (see table). Envigo also offers several popular obesity inducing diets with alternate fat sources like lard or milkfat that may be suitable for your research. Contact a nutritionist to discuss alternate options. Comparison of the fatty acid profile of Primex, Envigo Teklad’s Replacement HVO and Crisco. Fatty Acids, % Primex HVO1 Replacement HVO2 Crisco3 Trans fatty acids 23.9 - 36.1 26 - 35.6 0.6 Saturated fatty acids 25.3 - 27.1 22.6 - 29.3 25.8 Monounsaturated fatty acids 25.3 - 33.3 24.8 - 32.6 18.7 Polyunsaturated fatty acids 5.6 - 9.0 7.1 - 9.4 49.5 16:0 palmitic acid 14.0 - 17.4 11.0 - 14.8 16.9 18:0 stearic acid 9.1 - 11.5 10.7 - 14.2 9.6 18:1 n9T elaidic acid 22.2 - 34.7 24.4 - 32.6 0 18:1 n9C oleic acid 16.6 - 26.5 17.2 - 25.7 18.1 18:1 n7C vaccenic acid 2.2 - 2.4 2.0 - 2.2 1.2 18:1 other cis isomers 6.3 - 7.8 6.1 - 6.7 0 18:2 n6 linoleic acid 5.8 - 9.1 7.0 - 9.2 44.8 18:2 other trans isomers 3.2 - 4.0 3.5 - 5.0 0.5 18:3 n3 linolenic acid 0.3 - 0.5 0.1 - 0.3 6.1 19:0 nonadecanoic acid 0.6 - 0.7 0.4 - 0.7 0 20:0 arachidic acid 0.3 - 0.4 0.4 0.4 1Range for Primex HVO represents the average ± 1 standard deviation (soybean and cottonseed or palm oil; n = 4).