L15 X86 Calling Conventions

Total Page:16

File Type:pdf, Size:1020Kb

L15 X86 Calling Conventions Binghamton CS-220 University Spring 2019 X86/64 Calling Conventions Computer Systems Section 3.7 Binghamton CS-220 University Spring 2019 ISA “Application Binary Interface” (ABI) • How Binary Machine code interacts with other machine code • Think of a single program made up of code in two different languages • Architecture standard for: • Size, layout, endian-ness, and alignment of data types and structures • Calling Conventions – how functions are called, parameters passed, etc. • Object File and Debug Formats • ABI Often includes Conventions for: • Register Usage (integer, floating point, vector) • Flag Usage • Interrupt and Exception Handling • Name mangling (for C++, etc.) • Code Relocation Binghamton CS-220 University Spring 2019 ABI vs. API By Shmuel Csaba Otto Traian, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=33816823 Binghamton CS-220 University Spring 2019 Calling Conventions • When invoking a lower level function • How are parameters provided • How is return address specified • How is return value accessed • What registers can the function change? • When invoked by a higher level function • How are arguments accessed? • What registers can I use? • How should I use the stack? • How do I return values? Binghamton CS-220 University Spring 2019 Calling Convention Terminology Caller Callee int main(int argc, char **argv) { int add(int x, int y) { Return Address* … Arguments int op1=x; ans=add(ans,4); int op2=y; term=subtract(x,2); Parameters int res=op1+op2; … return res; return 0; } } Return Value Binghamton CS-220 University Spring 2019 Control Flow Conventions pushq %rip • Caller will invoke using “callq” instruction jmp add • callq add ; Invoke add function • %rip points to instruction AFTER the callq instruction! • Upon return, callee will invoke “retq” instruction popq %rip • retq ; Return to caller • Next instruction will be the instruction after the callq instruction • Assumes stack conventions have been followed! Binghamton CS-220 University Spring 2019 Parameter Passing Conventions • Parameters are put into the following registers by the caller: • (Parameters which don’t fit are pushed on the stack) Parm 1 Parm 2 Parm 3 Parm 4 Parm 5 Parm 6 %rdi %rsi %rdx %rcx %r8 %r9 Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6 • Arguments are read from these registers by the callee • (Parameters which don’t fit are read from caller’s stack frame) Binghamton CS-220 University Spring 2019 Return Value Convention • Callee will put return value in %rax before return • Caller can read return value from %rax after return Binghamton CS-220 University Spring 2019 Resource Sharing • All functions use the same set of registers • If I use a register, does it clobber the value that my caller expects to be in that register? • If I call a lower level function, will the my callee clobber the values in my registers? • Resolve the problem by pushing register values on the stack before or at the beginning of a call, and popping the values from the stack after or at the end of a call • Who is responsible… caller or callee? • Do I need to save/restore all registers, or just the ones I’m using? Binghamton CS-220 University Spring 2019 Example Register Sharing • On entry to a function, save all the register values on the stack • Requires copying 16*8=96 bytes of data to memory • Use any register you want • Very flexible… no need to think about register sharing • On exit, restore all registers from the stack • Requires copying 16*8=96 bytes of data from memory • Result: Slow function calls, but flexible register sharing Binghamton CS-220 University Spring 2019 X86 Register Modification Conventions • Caller may assume blue regs are not changed by the callee • If callee wants to use these registers, he must push the callers value in the callee invocation record on the stack on entry, and pop the callers value from the callee invocation record when returning • blue registers are callee saved (non-volatile) registers • Caller may assume red regs may be changed by the callee • If caller wants to preserve these registers, he must push their value on the caller’s invocation record on the stack before the call, and pop their value from the caller’s invocation record after the call • Red registers are caller saved (volatile) registers %rax %rbx %rcx %rdx %rsp %rbp %rsi %rdi %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 Binghamton CS-220 University Spring 2019 Suppose main wants to preserveAddress %Valuerdi (64 bit) (OS) stack frame 0000 7FFF FFFF E870 0000 0000 0000 0000 %rbp 0000 7FFF FFFF E868 0000 7FFF F7A5 2B45 0000 7FFF FFFF E860 0000 7FFF FFFF E88C … main’s 0000 7FFF FFFF E858 0000 0004 0000 0000 4005D0 pushq %rdi stack frame 0000 7FFF FFFF E850 0000 0010 FFFF E940 4005D4 callq add ; at 400621 0000 7FFF FFFF E848 0000 0002 0040 0450 4005D9 mov %eax,-08x(%rbp) 4005DB popq %rdi 0000 7FFF FFFF E840 0000 7FFF FFFF E948 … %rsp 0000 7FFF FFFF E838 0000 0000 0040 05D9 0000 7FFF FFFF E830 (main’s %rdi value) 0000 7FFF FFFF E828 0000 0010 0000 0010 pushq %rip jmp add 0000 7FFF FFFF E820 0000 0000 0000 0000 0000 7FFF FFFF E818 0000 0010 0000 0010 0000 7FFF FFFF E810 0000 7FFF FFFF E940 …. Binghamton CS-220 University Spring 2019 Suppose main wants to preserveAddress %Valuerdi (64 bit) (OS) stack frame 0000 7FFF FFFF E870 0000 0000 0000 0000 pushq %rip %rbp 0000 7FFF FFFF E868 0000 7FFF F7A5 2B45 jmp add 0000 7FFF FFFF E860 0000 7FFF FFFF E88C … main’s 0000 7FFF FFFF E858 0000 0004 0000 0000 4005D0 pushq %rdi stack frame 0000 7FFF FFFF E850 0000 0010 FFFF E940 4005D4 callq addem ; at 400621 0000 7FFF FFFF E848 0000 0002 0040 0450 4005D9 mov %eax,-08x(%rbp) 4005DB popq %rdi 0000 7FFF FFFF E840 0000 7FFF FFFF E948 … %rsp 0000 7FFF FFFF E838 0000 0000 0040 05D9 0000 7FFF FFFF E830 (main’s %rdi value) 0000 7FFF FFFF E828 0000 0010 0000 0010 0000 7FFF FFFF E820 0000 0000 0000 0000 0000 7FFF FFFF E818 0000 0010 0000 0010 0000 7FFF FFFF E810 0000 7FFF FFFF E940 …. Binghamton CS-220 University Spring 2019 Suppose “addem” wants to use %rbx pushq %rbp movq %rsp, %rbp pushq %rbx int addem(int x, int y) { movl %edi, -20(%rbp) … movl %esi, -24(%rbp) … } popq %rbx popq %rbp ret Binghamton CS-220 University Spring 2019 (OS) addem’s preamblestack frame Address Value (64 bit) 0000 7FFF FFFF E870 0000 0000 0000 0000 0000 7FFF FFFF E868 0000 7FFF F7A5 2B45 0000 7FFF FFFF E860 0000 7FFF FFFF E88C pushq %rbp main’s 0000 7FFF FFFF E858 0000 0004 0000 0000 movq %rsp, %rbp stack frame 0000 7FFF FFFF E850 0000 0010 FFFF E940 pushq %rbx 0000 7FFF FFFF E848 0000 0002 0040 0450 … %rbp add can use %rbx here 0000 7FFF FFFF E840 0000 7FFF FFFF E948 addem’s 0000 7FFF FFFF E838 0000 0000 0040 05D9 stack frame 0000 7FFF FFFF E830 0000 7FFF FFFF E860 %rsp 0000 7FFF FFFF E828 (main’s %rbx value) 0000 7FFF FFFF E820 0000 0000 0000 0000 the 0000 7FFF FFFF E818 0000 0010 0000 0010 “red zone” 0000 7FFF FFFF E810 0000 7FFF FFFF E940 …. Binghamton CS-220 University Spring 2019 (OS) addem’s return stack frame Address Value (64 bit) 0000 7FFF FFFF E870 0000 0000 0000 0000 main’s 0000 7FFF FFFF E868 0000 7FFF F7A5 2B45 stack frame 0000 7FFF FFFF E860 0000 7FFF FFFF E88C addem can use %rbx here 0000 7FFF FFFF E858 0000 0004 0000 0000 %rbp … 0000 7FFF FFFF E850 0000 0010 FFFF E940 movl -12(%rbp), %eax; save return value 0000 7FFF FFFF E848 0000 0002 0040 0450 popq %rbx addem’s popq %rbp ; restore main’s stack frame 0000 7FFF FFFF E840 0000 7FFF FFFF E948 stack frame ret 0000 7FFF FFFF E838 0000 0000 0040 05D9 %rsp 0000 7FFF FFFF E830 0000 7FFF FFFF E860 0000 7FFF FFFF E828 (main’s %rbx value) 0000 7FFF FFFF E820 0000 0000 0000 0000 the 0000 7FFF FFFF E818 0000 0010 0000 0010 “red zone” 0000 7FFF FFFF E810 0000 7FFF FFFF E940 …. Binghamton CS-220 University Spring 2019 Register Conventions for %rsp/%rbp • %rbp (stack base pointer) treated just like %rbx… • Callee pushes caller’s %rbp value onto callee’s stack on entry • Callee pops caller’s %rbp value from callee’s stack on return • %rsp (stack pointer) is a special case • Caller’s %rsp value is callee’s %rbp+8 • To restore caller’s %rsp, just copy %rbp to %rsp before popping %rbp • If %rbp==%rsp, don’t even need to copy • The x86 “leaveq” instruction restores both callers %rbp and %rsp Binghamton CS-220 University Spring 2019 Redundancy? • If you know the length of each function’s stack frame, keeping a pointer to both the top and the bottom of the stack frame is redundant • gcc parameter “-fomit-frame-pointer” removes use of %rbp, but then all references are relative to %rsp, which can change, so the code works, but becomes confusing Binghamton CS-220 University Spring 2019 Register Usage Summary %rax Return value %r8 Fifth parameter %rbx %r9 Sixth parameter %rcx Fourth parameter %r10 %rdx Third parameter %r11 %rsp stack & frame low address ptr %r12 %rbp frame high address ptr %r13 %rdi First parameter %r14 %rsi Second parameter %r15 Callee saved/restored Caller saved/restored Binghamton CS-220 University Spring 2019 Caller invocation of Callee • If you need to maintain value in any of the caller saved (volatile, red) registers, push their values on the stack • Copy parameter values into parameter registers • Push parameters that don’t fit in registers onto stack • Invoke callee with the “callq” instruction • Pushes return address onto stack • Puts address of callee’s first instruction into %rip Binghamton CS-220 University Spring 2019 (OS) In main’s code stack frame Address Value (64 bit) 0000 7FFF FFFF E870 0000 0000 0000 0000 pushq %rip %rbp 0000 7FFF FFFF E868 0000 7FFF F7A5 2B45 jmp addem 0000 7FFF FFFF E860 0000 7FFF FFFF E88C … main’s 0000 7FFF FFFF E858 0000 0004 0000 0000 4005D4 callq addem ; at 400621 stack frame 0000 7FFF FFFF E850 0000 0010 FFFF E940 4005D9 mov %eax,-08x(%rbp) 0000 7FFF FFFF E848 0000 0002 0040 0450 … 0000 7FFF FFFF E840 0000 7FFF FFFF E948 %rsp 0000 7FFF FFFF E838 0000 0000 0040 05D9 0000 7FFF FFFF E830 0000 7FFF FFFF E860 0000 7FFF FFFF E828 0000 0010 0000 0010 0000 7FFF FFFF E820 0000 0000 0000 0000 0000 7FFF FFFF E818 0000 0010 0000 0010 0000 7FFF FFFF E810 0000 7FFF FFFF E940 ….
Recommended publications
  • X86-64 Calling Conventions
    CSE 351: The Hardware/Software Interface Section 4 Procedure calls Procedure calls In x86 assembly, values are passed to function calls on the stack Perks: Concise, easy to remember Drawbacks: Always requires memory accesses In x86-64 assembly, values are passed to function calls in registers Perks: Less wasted space, faster Drawbacks: Potentially requires a lot of register manipulation 2/23/2014 2 x86 calling conventions Simply push arguments onto the stack in order, then “call” the function! Suppose we define the following function: int sum(int a, int b) { return a + b; } (See also sum.c from the provided code) 2/23/2014 3 x86 calling conventions int sum(int a, int b) { return a + b; } In assembly, we have something like this: sum: pushl %ebp # Save base pointer movl %esp, %ebp # Save stack pointer movl 12(%ebp), %eax # Load b movl 8(%ebp), %edx # Load a addl %edx, %eax # Compute a + b popl %ebp # Restore base pointer ret # Return 2/23/2014 4 x86 calling conventions What is happening with %ebp and %esp? pushl %ebp The base pointer %ebp is the address of the caller, which is the location to which “ret” returns. The function pushes it into the stack so that it won’t be overwritten movl %esp, %ebp Functions often shift the stack pointer to allocate temporary stack space, so this instruction makes a backup of the original location. In the body of the function, %ebp is now the original start of the stack ret When sum() returns, execution picks up at the stored base pointer address.
    [Show full text]
  • Sample Applications User Guides Release 20.05.0
    Sample Applications User Guides Release 20.05.0 May 26, 2020 CONTENTS 1 Introduction to the DPDK Sample Applications1 1.1 Running Sample Applications...............................1 1.2 The DPDK Sample Applications..............................1 2 Compiling the Sample Applications3 2.1 To compile all the sample applications...........................3 2.2 To compile a single application..............................3 2.3 To cross compile the sample application(s)........................4 3 Command Line Sample Application5 3.1 Overview..........................................5 3.2 Compiling the Application.................................5 3.3 Running the Application..................................6 3.4 Explanation.........................................6 4 Ethtool Sample Application8 4.1 Compiling the Application.................................8 4.2 Running the Application..................................8 4.3 Using the application....................................8 4.4 Explanation.........................................9 4.5 Ethtool interface......................................9 5 Hello World Sample Application 11 5.1 Compiling the Application................................. 11 5.2 Running the Application.................................. 11 5.3 Explanation......................................... 11 6 Basic Forwarding Sample Application 13 6.1 Compiling the Application................................. 13 6.2 Running the Application.................................. 13 6.3 Explanation........................................
    [Show full text]
  • X86 Assembly Language Reference Manual
    x86 Assembly Language Reference Manual Part No: 817–5477–11 March 2010 Copyright ©2010 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms setforth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
    [Show full text]
  • Essentials of Compilation an Incremental Approach
    Essentials of Compilation An Incremental Approach Jeremy G. Siek, Ryan R. Newton Indiana University with contributions from: Carl Factora Andre Kuhlenschmidt Michael M. Vitousek Michael Vollmer Ryan Scott Cameron Swords April 2, 2019 ii This book is dedicated to the programming language wonks at Indiana University. iv Contents 1 Preliminaries 5 1.1 Abstract Syntax Trees and S-expressions . .5 1.2 Grammars . .7 1.3 Pattern Matching . .9 1.4 Recursion . 10 1.5 Interpreters . 12 1.6 Example Compiler: a Partial Evaluator . 14 2 Integers and Variables 17 2.1 The R1 Language . 17 2.2 The x86 Assembly Language . 20 2.3 Planning the trip to x86 via the C0 language . 24 2.3.1 The C0 Intermediate Language . 27 2.3.2 The dialects of x86 . 28 2.4 Uniquify Variables . 28 2.5 Remove Complex Operators and Operands . 30 2.6 Explicate Control . 31 2.7 Uncover Locals . 32 2.8 Select Instructions . 32 2.9 Assign Homes . 33 2.10 Patch Instructions . 34 2.11 Print x86 . 35 3 Register Allocation 37 3.1 Registers and Calling Conventions . 38 3.2 Liveness Analysis . 39 3.3 Building the Interference Graph . 40 3.4 Graph Coloring via Sudoku . 42 3.5 Print x86 and Conventions for Registers . 48 v vi CONTENTS 3.6 Challenge: Move Biasing∗ .................... 48 4 Booleans and Control Flow 53 4.1 The R2 Language . 54 4.2 Type Checking R2 Programs . 55 4.3 Shrink the R2 Language . 58 4.4 XOR, Comparisons, and Control Flow in x86 . 58 4.5 The C1 Intermediate Language .
    [Show full text]
  • Usuba, Optimizing Bitslicing Compiler Darius Mercadier
    Usuba, Optimizing Bitslicing Compiler Darius Mercadier To cite this version: Darius Mercadier. Usuba, Optimizing Bitslicing Compiler. Programming Languages [cs.PL]. Sorbonne Université (France), 2020. English. tel-03133456 HAL Id: tel-03133456 https://tel.archives-ouvertes.fr/tel-03133456 Submitted on 6 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` DE DOCTORAT DE SORBONNE UNIVERSITE´ Specialit´ e´ Informatique Ecole´ doctorale Informatique, Tel´ ecommunications´ et Electronique´ (Paris) Present´ ee´ par Darius MERCADIER Pour obtenir le grade de DOCTEUR de SORBONNE UNIVERSITE´ Sujet de la these` : Usuba, Optimizing Bitslicing Compiler soutenue le 20 novembre 2020 devant le jury compose´ de : M. Gilles MULLER Directeur de these` M. Pierre-Evariste´ DAGAND Encadrant de these` M. Karthik BHARGAVAN Rapporteur Mme. Sandrine BLAZY Rapporteur Mme. Caroline COLLANGE Examinateur M. Xavier LEROY Examinateur M. Thomas PORNIN Examinateur M. Damien VERGNAUD Examinateur Abstract Bitslicing is a technique commonly used in cryptography to implement high-throughput parallel and constant-time symmetric primitives. However, writing, optimizing and pro- tecting bitsliced implementations by hand are tedious tasks, requiring knowledge in cryptography, CPU microarchitectures and side-channel attacks. The resulting programs tend to be hard to maintain due to their high complexity.
    [Show full text]
  • Differentiating Code from Data in X86 Binaries
    Differentiating Code from Data in x86 Binaries Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani Thuraisingham Computer Science Department, University of Texas at Dallas, Richardson, TX 75080 {rhw072000,yan.zhou2,hamlen,muratk,bhavani.thuraisingham}@utdallas.edu Abstract. Robust, static disassembly is an important part of achieving high coverage for many binary code analyses, such as reverse engineering, malware analysis, reference monitor in-lining, and software fault isola- tion. However, one of the major difficulties current disassemblers face is differentiating code from data when they are interleaved. This paper presents a machine learning-based disassembly algorithm that segments an x86 binary into subsequences of bytes and then classifies each subse- quence as code or data. The algorithm builds a language model from a set of pre-tagged binaries using a statistical data compression technique. It sequentially scans a new binary executable and sets a breaking point at each potential code-to-code and code-to-data/data-to-code transition. The classification of each segment as code or data is based on the min- imum cross-entropy. Experimental results are presented to demonstrate the effectiveness of the algorithm. Keywords: statistical data compression, segmentation, classification, x86 binary disassembly. 1 Introduction Disassemblers transform machine code into human-readable assembly code. For some x86 executables, this can be a daunting task in practice. Unlike Java byte- code and RISC binary formats, which separate code and data into separate sections or use fixed-length instruction encodings, x86 permits interleaving of code and static data within a section and uses variable-length, unaligned in- struction encodings.
    [Show full text]
  • 8. Procedures
    8. Procedures X86 Assembly Language Programming for the PC 71 Stack Operation A stack is a region of memory used for temporary storage of information. Memory space should be allocated for stack by the programmer. The last value placed on the stack is the 1st to be taken off. This is called LIFO (Last In, First Out) queue. Values placed on the stack are stored from the highest memory location down to the lowest memory location. SS is used as a segment register for address calculation together with SP. X86 Assembly Language Programming for the PC 72 Stack Instructions Name Mnemonic and Description Format Push onto push src (sp)(sp)-2 Stack ((sp))(src) Pop from pop dst (dst)((sp)) Stack (sp)(sp)+2 Push Flags pushf (sp)(sp)-2 ((sp))(psw) Pop Flags popf (psw)((sp)) (sp)(sp)+2 Flags: Only affected by the popf instruction. Addressing Modes: src & dst should be Words and cannot be immediate. dst cannot be the ip or cs register. X86 Assembly Language Programming for the PC 73 Exercise: Fill-in the Stack Stack: Initially: (ss) = F000, (sp)=0008 . F0010 pushf F000E mov ax,2211h F000C push ax F000A add ax,1111h F0008 push ax F0006 . F0004 . F0002 . F0000 pop cx . pop ds . popf . X86 Assembly Language Programming for the PC 74 Procedure Definition PROC is a statement used to indicate the beginning of a procedure or subroutine. ENDP indicates the end of the procedure. Syntax: ProcedureName PROC Attribute . ProcedureName ENDP ProcedureName may be any valid identifier. Attribute is NEAR if the Procedure is in the same code segment as the calling program; or FAR if in a different code segment.
    [Show full text]
  • Hacking the Abacus: an Undergraduate Guide to Programming Weird Machines
    Hacking the Abacus: An Undergraduate Guide to Programming Weird Machines by Michael E. Locasto and Sergey Bratus version 1.0 c 2008-2014 Michael E. Locasto and Sergey Bratus All rights reserved. i WHEN I HEARD THE LEARN’D ASTRONOMER; WHEN THE PROOFS, THE FIGURES, WERE RANGED IN COLUMNS BEFORE ME; WHEN I WAS SHOWN THE CHARTS AND THE DIAGRAMS, TO ADD, DIVIDE, AND MEASURE THEM; WHEN I, SITTING, HEARD THE ASTRONOMER, WHERE HE LECTURED WITH MUCH APPLAUSE IN THE LECTURE–ROOM, HOW SOON, UNACCOUNTABLE,I BECAME TIRED AND SICK; TILL RISING AND GLIDING OUT,I WANDER’D OFF BY MYSELF, IN THE MYSTICAL MOIST NIGHT–AIR, AND FROM TIME TO TIME, LOOK’D UP IN PERFECT SILENCE AT THE STARS. When I heard the Learn’d Astronomer, from “Leaves of Grass”, by Walt Whitman. ii Contents I Overview 1 1 Introduction 5 1.1 Target Audience . 5 1.2 The “Hacker Curriculum” . 6 1.2.1 A Definition of “Hacking” . 6 1.2.2 Trust . 6 1.3 Structure of the Book . 7 1.4 Chapter Organization . 7 1.5 Stuff You Should Know . 8 1.5.1 General Motivation About SISMAT . 8 1.5.2 Security Mindset . 9 1.5.3 Driving a Command Line . 10 II Exercises 11 2 Ethics 13 2.1 Background . 14 2.1.1 Capt. Oates . 14 2.2 Moral Philosophies . 14 2.3 Reading . 14 2.4 Ethical Scenarios for Discussion . 15 2.5 Lab 1: Warmup . 16 2.5.1 Downloading Music . 16 2.5.2 Shoulder-surfing . 16 2.5.3 Not Obeying EULA Provisions .
    [Show full text]
  • 1. (5 Points) for the Following, Check T If the Statement Is True, Or F If the Statement Is False
    CS-220 Spring 2019 Test 2 Version Practice Apr. 22, 2019 Name: 1. (5 points) For the following, Check T if the statement is true, or F if the statement is false. (a) T F : The Gnu Debugger (gdb) works at the C level. If you did not compile with the -g option, the Gnu Debugger is virtually useless. (b) T F : If the zero flag (ZF) is true, then the instruction "jne LINE3" will branch to LINE3. (c) T F : In X86-64 assembler, the memory referenced by -0x1C(%rbp) is the same as the memory referenced by -0x1C(%rbp,%rax,16) if the %rax register contains a zero. (d) T F : The x86/64 "push" instruction always decreases the value in the %rsp register. The "pop" isntruction always increases the value in the %rsp register. (e) T F : After executing a conditional jump instruction, the %rip register always points at the instruction after the jump instruction. (f) T F : In the X86-64 ISA instruction processing cycle, there are four phases of the cycle which potentially read or write from memory: the "fetch instruction" phase, the "evaluate address" phase, the "fetch operands" phase, and the "store results" phase. (g) T F : It is important that an older version of an ISA support everyting in a newer version of the same ISA so that new software can be run on both old and new hardware. (h) T F : The concept of dividing registers into caller-saved registers and callee-saved registers makes the resulting code much more efficient because we never have to save and restore registers that don't need to be saved and restored, and most of the time, no registers need to be saved or restored.
    [Show full text]
  • Sample Applications User Guides Release 18.11.11
    Sample Applications User Guides Release 18.11.11 Jan 20, 2021 CONTENTS 1 Introduction to the DPDK Sample Applications1 1.1 Running Sample Applications............................1 1.2 The DPDK Sample Applications...........................1 2 Compiling the Sample Applications3 2.1 To compile all the sample applications........................3 2.2 To compile a single application............................3 2.3 To cross compile the sample application(s).....................4 3 Command Line Sample Application5 3.1 Overview........................................5 3.2 Compiling the Application...............................5 3.3 Running the Application................................6 3.4 Explanation.......................................6 4 Ethtool Sample Application8 4.1 Compiling the Application...............................8 4.2 Running the Application................................8 4.3 Using the application.................................8 4.4 Explanation.......................................9 4.5 Ethtool interface....................................9 5 Exception Path Sample Application 11 5.1 Overview........................................ 11 5.2 Compiling the Application............................... 12 5.3 Running the Application................................ 12 5.4 Explanation....................................... 12 6 Hello World Sample Application 16 6.1 Compiling the Application............................... 16 6.2 Running the Application................................ 16 6.3 Explanation......................................
    [Show full text]
  • Secure Compilation for Memory Protection Alexandre Dang
    Secure compilation for memory protection Alexandre Dang To cite this version: Alexandre Dang. Secure compilation for memory protection. Cryptography and Security [cs.CR]. Université Rennes 1, 2019. English. NNT : 2019REN1S111. tel-02972693 HAL Id: tel-02972693 https://tel.archives-ouvertes.fr/tel-02972693 Submitted on 20 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE RENNES 1 COMUE UNIVERSITÉ BRETAGNE LOIRE ÉCOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l’Information et de la Communication Spécialité : (voir liste des spécialités) Par Alexandre DANG Compilation Sécurisée pour la Protection de la Mémoire Thèse présentée et soutenue à Rennes, le 10 Décembre 2020 Unité de recherche : Celtique Thèse N° : Rapporteurs avant soutenance : Tamara Rezk Inria Sofia Antipolis Alejandro Russo Chalmers University of Technology Composition du Jury : Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du Jury ne comprend que les membres présents Président : Prénom Nom Fonction et établissement d’exercice (à préciser après la soutenance) Examinateurs : Frédéric Besson Inria Rennes Tamara Rezk Inria Sofia Antipolis Alejandro Russo Chalmers University of Technology Heydemann Karine Université Pierre et Marie Curie Viet Triem Tong Valérie CentraleSupélec Dir.
    [Show full text]
  • United States Patent (10) Patent No.: US 7,111.290 B1 Yates, Jr
    US007 111290B1 (12) United States Patent (10) Patent No.: US 7,111.290 B1 Yates, Jr. et al. (45) Date of Patent: Sep. 19, 2006 (54) PROFILING PROGRAM EXECUTION TO 4,779,187 A 10, 1988 Letwin ....................... 71.2/229 IDENTIFY FREQUENTLY-EXECUTED 4,812,975 A 3, 1989 Adachi ... ... 364/300 PORTIONS AND TO ASSIST BINARY 5,043,878 A 8, 1991 Ooi ........ ... 712/42 TRANSLATON 5,115,500 A 5/1992 Larsen ... ... 711,202 5,127,092 A 6/1992 Gupta ... ... 712/234 (75) Inventors: John S. Yates, Jr., Needham, MA (US); 5,155,835 A 10, 1992 Belsan ....................... 711 114 David L. Reese, Westborough, MA (US); Paul H. Hohensee, Nashua, NH (Continued) (US) FOREIGN PATENT DOCUMENTS (73) Assignee: ATI International SRL. Hastings (BB) EP O 324308 7, 1989 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Magnusson et al., Efficient Memory Simulation in SimICS, 1995, (21) Appl. No.: 09/425,401 IEEE, p. 62-73.* (22) Filed: Oct. 22, 1999 (Continued) O O Primary Examiner—John Chavis Related U.S. Application Data (74) Tony Agent, or Firm—David E. Boundy; Willkie (63) Continuation of application No. 09/385.394, filed on Farr & Gallagher LLP Aug. 30, 1999, which is a continuation-in-part of application No. 09/322,443, filed on May 28, 1999, (57) ABSTRACT which is a continuation-in-part of application No. 09/239,194, filed on Jan. 28, 1999. A method and a computer with circuitry configured for performance of the method are disclosed.
    [Show full text]