Abstract the Paper Is an Introduction Into General Ether Theory (GET

Total Page:16

File Type:pdf, Size:1020Kb

Abstract the Paper Is an Introduction Into General Ether Theory (GET View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Abstract The paper is an introduction into General Ether Theory (GET). We start with few assumptions about an universal “ether” in a New- tonian space-time which fulfils i @tρ + @i(ρv )=0 j i j ij @t(ρv )+@i(ρv v + p )=0 For an “effective metric” gµν we derive a Lagrangian where the Einstein equivalence principle is fulfilled: −1 00 11 22 33 √ L = LGR − (8πG) (Υg − Ξ(g + g + g )) −g We consider predictions (stable frozen stars instead of black holes, big bounce instead of big bang singularity, a dark matter term), quan- tization (regularization by an atomic ether, superposition of gravita- tional fields), related methodological questions (covariance, EPR cri- terion, Bohmian mechanics). 1 General Ether Theory Ilja Schmelzer∗ February 5, 2000 Contents 1 Introduction 2 2 General Ether Theory 5 2.1Thematerialpropertiesoftheether............... 5 2.2Conservationlaws......................... 6 2.3Lagrangeformalism........................ 7 3 Simple properties 9 3.1Energy-momentumtensor.................... 9 3.2Constraints............................ 10 4 Derivation of the Einstein equivalence principle 11 4.1 Higher order approximations in a Lagrange formalism . 13 4.2 Weakening the assumptions about the Lagrange formalism . 14 4.3Explanatorypowerofthederivation............... 15 5 Does usual matter fit into the GET scheme? 15 5.1TheroleoftheEinsteinLagrangian............... 16 5.2TheroleofLorentzsymmetry.................. 16 5.3Existingresearchaboutthesimilarity.............. 17 6 Comparison with RTG 18 ∗WIAS Berlin 2 7 Comparison with GR with four dark matter fields 19 8 Comparison with General Relativity 20 8.1Darkmatterandenergyconditions............... 20 8.2Homogeneousuniverse:nobigbangsingularity........ 21 8.3Isthereindependentevidenceforinflationtheory?....... 22 8.4Anewdarkmatterterm..................... 24 8.5Stablefrozenstarsinsteadofblackholes............ 24 9 General-relativistic quantization problems 25 9.1Causality............................. 26 9.2Informationlossproblem..................... 27 10 Atomic ether theory 28 11 Canonical atomic ether quantization 30 11.1Regularizationusingamovinggrid............... 31 11.2 Constraints and conservation laws in a moving grid . 33 11.3Universality............................ 34 12 Comparison with canonical quantization of general relativity 35 12.1ADMformalism.......................... 35 12.2Tetradandtriadformalism.................... 36 12.3Ashtekarvariables......................... 36 12.4Discretemodelsofgeometry................... 37 12.5Summary............................. 37 13 Quantum field theory 38 13.1Semi-classicalquantizationofascalarfield........... 39 13.2Particleoperatorsandvacuumstate............... 40 13.3Differentrepresentations..................... 42 13.4Gaugefieldquantization..................... 43 13.5Non-abeliangaugefieldquantization.............. 45 13.6Hawkingradiation........................ 45 14 Methodology 46 14.1TheinsightsofBohmianmechanics............... 47 14.2Relativityasatheoryaboutobservables............ 48 3 15 The violation of Bell’s inequality 49 15.1 Bell’s inequality for schoolboys .................. 50 15.2 The difference between special relativity and Lorentz ether . 51 15.3Aspect’sdevice.......................... 52 15.4Shouldwequestioneverything?................. 53 15.5Noapplicationfortheviolation................. 54 15.6 Objections against a preferred frame .............. 55 15.7Nocontradictionwithquantummechanics........... 55 15.8ObjectionsinconflictwithEinsteincausality.......... 56 15.9Discussion............................. 58 16 Conclusions 58 A Covariant description for theories with preferred coordinates 60 A.1MakingtheLagrangiancovariant................ 61 A.2Conservationlawsinthecovariantformalism.......... 62 B Relationalism 63 B.1Whatisthetrue“insight”ofgeneralrelativity?........ 65 B.2 What are insights which are “forever”? ............. 66 C The problem of time 67 C.1clocktimevs.truetime..................... 68 C.2 About positivistic arguments against true time ......... 69 C.3Relativityasaninsightabouttruetime............. 70 C.4Technicalaspectsoftheproblemoftime............ 71 D Quantum gravity requires a common background 72 D.1Anon-relativisticquantumgravityobservable......... 73 D.2 The problem: generalization to relativistic quasi-classical gravity 76 D.3Thesolution:afixedspace-timebackground.......... 77 D.4 Comparison of Regge calculus and dynamical triangulation . 79 E Realism as a methodological concept 80 E.1Principlesofdifferentimportance................ 80 E.2 A definition of reality and causal influence ........... 81 E.3 Bell’s inequality as a fundamental property ........... 82 E.4Themethodologicalcharacterofthisdefinition......... 83 4 E.5Causalityrequiresapreferredframe............... 84 E.6 Relation between our definition and the EPR criterion . 85 E.7 Methodological principles as the most fundamental part of sci- ence................................ 86 E.8ThemethodologicalroleofLorentzsymmetry......... 87 E.9Discussion............................. 88 F Bohmian mechanics 89 F.1SimplicityofBohmianmechanics................ 89 F.2Clarityoftheinterpretation................... 90 F.3Relativisticgeneralization.................... 91 F.4Discussion............................. 92 1 Introduction The purpose of the present work is to present an alternative metric theory of gravity. The Lagrangian of the theory −1 00 11 22 33 √ L = LGR − (8πG) (Υg − Ξ(g + g + g )) −g is very close to the GR Lagrangian, and in the limit Ξ, Υ → 0weobtain the classical Einstein equations. The key point is that this Lagrangian may be derived starting with a few assumptions about the “ether” – a classical medium in a classical Newtonian background with Euclidean space and absolute time R3 ⊗ R.We need only a few general principles: a Lagrange formalism and its relation with standard conservation laws. The gravitational field gµν is defined by the “general” steps of freedom of the ether – density ρ,velocityvi, pressure pij.1 The matter fields describe its material properties. What explains the Einstein equivalence principle is that the ether is universal: all fields describe properties of the ether, there is no external matter. Therefore, observers are also only excitations of the ether, unable to observe some of the ether properties. This explains that we are unable to observe all steps of freedom of the ether. We need no artificial conspiracy or highly sophisticated model to obtain relativistic symmetry in an ether theory. 1 As usual, we use latin indices for three-dimensional indices√ and greek indices for four- dimensional indices. We also use the notationg ˆµν = gµν −g. 5 The only difference to GR are two additional terms which depend on the preferred coordinates Xi,T. In “weak” covariant formulation (with the preferred coordinates handled as “fields” Xi(x),T(x)) we obtain: √ − −1 µν − µν i j − L = LGR (8πG) (Υg T,µT,ν Ξg δijX,µX,ν) g Instead of no equation for the preferred coordinates, we obtain a well- defined general equation for these coordinates: the classical conservation laws, which appear to be the harmonic coordinate condition. But this changes a lot. It is, essentially, a paradigm shift as described by Kuhn [44]. We revive the metaphysics of Lorentz ether theory in its full beauty. This requires the reconsideration of the whole progress made in fundamental physics in this century. Therefore, after derivation of the theory and their comparison with existing theories of gravity we reconsider different domains of science from point of view of the new paradigm. Of course, this may be only a raw overview, a program for future research instead of a summary of results. But this raw overview does not suggest serious problems for the new paradigm, while essential problems of the relativistic paradigm disappear. The preferred background leads to well-defined local energy and momen- tum conservation laws. Moreover, the additional terms seem to be useful to solve cosmological problems. The Ξ-term defines a nice homogeneous dark matter candidate. The Υ-term is even more interesting: it avoids the big bang singularity and leads instead to a bounce. Such a bounce makes the cosmological horizon much larger and therefore solves the cosmological hori- zon problem without inflation. This term stops also the gravitational collapse immediately before horizon formation. Because of the underlying Euclidean symmetry, the flat universe is the only homogeneous universe. Therefore, GET is not only in agreement with observation, but allows to solve some serious cosmological problems solved today by inflation theory. A very strong argument in favour of GET is the violation of Bell’s inequal- ity. In our opinion, it is a very simple and decisive proof of the existence of a preferred foliation – as simple and decisive as possible in fundamental physics. Only if we try to avoid this simple conclusion, the issue becomes complicate – we have to reject simple fundamental principles like the EPR criterion of reality or causality. In our opinion, there is a lot of confusion in this question. For example, it is often assumed that the EPR criterion is in contradiction 6 with quantum theory. But the existence of Bohmian mechanics proves that there is no such contradiction. In quantum field theory the reintroduction of a preferred frame does not lead to problems. Instead, it allows to generalize Bohmian mechanics into the relativistic domain and clarifies the choice of
Recommended publications
  • Generalization of Lorentz-Poincare Ether Theory to Quantum Gravity
    Abstract We present a quantum theory of gravity which is in agreement with observation in the relativistic domain. The theory is not rel- ativistic, but a Galilean invariant generalization of Lorentz-Poincare ether theory to quantum gravity. If we apply the methodological rule that the best available theory has to be preferred, we have to reject the relativistic paradigm and return to Galilean invariant ether theory. arXiv:gr-qc/9706055v1 18 Jun 1997 1 Generalization Of Lorentz-Poincare Ether Theory To Quantum Gravity Ilja Schmelzer∗ September 12, 2021 ... die bloße Berufung auf k¨unftig zu entdeckende Ableitungen bedeutet uns nichts. Karl Popper In quantum gravity, as we shall see, the space-time manifold ceases to exist as an objective physical reality; geometry becomes relational and contextual; and the foundational conceptual categories of prior science – among them, existence itself – become problematized and relativized. Alan Sokal Contents 1 The Problem Of Quantum Gravity 3 2 Introduction 4 3 Generalization Of Lorentz-Poincare Ether Theory To Gra- vity 6 3.1 Elementary Properties Of Post-Relativistic Gravity . 8 3.2 TheCosmologicalConstants . 9 3.2.1 The Observation Of The Cosmological Constants . 9 3.2.2 The Necessity Of Cosmological Constants . 10 3.3 TheGlobalUniverse ....................... 11 3.4 Gravitational Collapse . 12 ∗WIAS Berlin 2 3.5 A Post-Relativistic Lattice Theory . 13 3.6 BetterAtomicEtherTheories . 15 4 Canonical Quantization 16 5 Discussion 17 5.1 Conclusion............................. 18 1 The Problem Of Quantum Gravity We believe that there exists a unique physical theory which allows to describe the entire universe. That means, there exists a theory — quantum gravity — which allows to describe quantum effects as well as relativistic effects of strong gravitational fields.
    [Show full text]
  • Interaction Energy of a Charged Medium and Its EM Field in a Curved Spacetime Mayeul Arminjon
    Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon To cite this version: Mayeul Arminjon. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime. Proceedings of the Twentieth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Jun 2018, Varna, Bulgaria. pp.88-98. hal-01881100 HAL Id: hal-01881100 https://hal.archives-ouvertes.fr/hal-01881100 Submitted on 25 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR lab., F-38000 Grenoble, France Abstract In the electrodynamics of special relativity (SR) or general relativ- ity (GR), the energy tensors of the charged medium and its EM field add to give the total energy tensor that obeys the dynamical equation without external force. In the investigated scalar theory of gravitation (\SET"), this assumption leads to charge non-conservation, hence an additional, \interaction" energy tensor T inter has to be postulated. The present work aims at constraining this tensor.
    [Show full text]
  • In Defence of Classical Physics Abstract Classical Physics Seeks To
    In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is “real” physics. This is in the sense that it relates to mechanical physics. I suggest that if physics is ever to succeed in determining a theory of everything it needs to introduce a more satisfactory invariant medium in order to do this. This is describing the laws of nature and retain the elementary foundational conditions of universal symmetry. [email protected] Quote: “Classical physics describes an inertial frame of reference within which bodies (objects) whose net force acting upon them is zero. These objects are not accelerated. They are either at rest or they move at a constant velocity in a straight line” [1] This means that classical physics is a model that describes time and space homogeneously. Classical physics seeks to find the laws of nature. Experiments and testing have traditionally found it difficult to isolate the conditions, influences and effects to achieve this objective. If scientists could do this they would discover the laws of nature and be able to describe these laws. Today I will discuss the relationship between classical Newtonian physics and Einstein’s Special Relativity model. I will share ideas as to why some scientists suggests there may be shortcomings in Einstein’s Special Relativity theory that might be able to successfully addressed, using my interpretation of both of these theories. The properties of the laws of nature are the most important invariants [2] of the universe and universal reality.
    [Show full text]
  • Dersica NOTAS DE FÍSICA É Uma Pré-Publicaçso De Trabalhos Em Física Do CBPF
    CBPF deRsica NOTAS DE FÍSICA é uma pré-publicaçSo de trabalhos em Física do CBPF NOTAS DE FÍSICA is a series of preprints from CBPF Pedidos de copies desta publicação devem ser enviados aos autores ou à: Requests for free copies of these reports should be addressed to: Drvbèo de Publicações do CBPF-CNPq Av. Wenceslau Braz, 71 - Fundos 22.290 - Rio de Janeiro - RJ. Brasil CBPF-NF-38/82 ON EXPERIMENTS TO DETECT POSSIBLE FAILURES OF RELATIVITY THEORY by U. A. Rodrigues1 and J. Tioano Ctntro BratiitirO dê Ptsquisas Físicas - CBPF/CNPq Rua XavUr Sigaud, ISO 22290 - Rfo dt Jantiro, RJ. - BRASIL * Instituto dt MatMitica IMECC - ONICAMP Caixa Postal 61SS 13100 - Canpinas, SP. - BRASIL ABSTRACT: condition* under which 41 may expect failure of Einstein's Relativity, ^^also give a comple te analysis of a recently proposed experiment by Kolen— Torr showing that it must give a negative result, ta 1. INTRODUCTION A number of experiments have been proposed or reported which supposedly would detect the motion of the laboratory relative to a preferential frame SQ (the ether), thus provinding an experi- mental distinction between the so called "Lorentz" Ether Theory and Einstein Theory of Relativity. Much of the confusion on the subject, as correctly identified (2) by Tyapkin . (where references until 1973 can be found) is pos- 3 nesiblw possibility due to Miller*y to tes* twh expexrifipentallo 4# 1957 startey relativityd a discussio. nH eo f asuggeste seeminglyd comparing the Doppler shift of two-maser beams whose atoms move in opposite directions. His calculation of the Doppler shift on the basis of pre-relativistic physics/ gave rise to the appearance of a term linearly dependent upon the velocity v of the labora- tory sytem moving with respect to the ether.
    [Show full text]
  • The Controversy on the Conceptual Foundation of Space-Time Geometry
    한국수학사학회지 제22권 제3호(2009년 8월), 273 - 292 The Controversy on the Conceptual Foundation of Space-Time Geometry Yonsei University Yang, Kyoung-Eun [email protected] According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics. key words: Space-Time Geometry, Substantivalism, Curved Space-Time, The Theory-Change from Newtonian Physics to Einsteinian Physics 1. Introduction The theory-change from Newtonian to Einsteinian physics is viewed by philosophers of science, historians and even physicists as an eloquent example of scientific revolution. According to the physicist Max Born, it signifies the ‘Einsteinian revolution,’ (Born 1965, 2) while the philosopher Karl Popper is of the view that Einstein ‘revolutionised physics.’ (Withrow 1967, 25) Thomas Kuhn, on his part, holds in his Structure of Scientific Revolutions, that the theory-change from Newtonian to Einsteinian physics provides a strong case for the occurrence of a revolution with obvious ‘paradigm changes.’ (Kuhn 1962): One [set of scientists] is embedded in a flat, the other in a curved, matrix of space. Practicing in different worlds, the two groups of - 273 - The Controversy on the Conceptual Foundation of Space-Time Geometry scientists see different things when they look from the same point in the same direction.
    [Show full text]
  • Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation
    JOHN D. NORTON EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE OF SCALAR, LORENTZ COVARIANT THEORIES OF GRAVITATION 1. INTRODUCTION The advent of the special theory of relativity in 1905 brought many problems for the physics community. One, it seemed, would not be a great source of trouble. It was the problem of reconciling Newtonian gravitation theory with the new theory of space and time. Indeed it seemed that Newtonian theory could be rendered compatible with special relativity by any number of small modifications, each of which would be unlikely to lead to any significant deviations from the empirically testable conse- quences of Newtonian theory.1 Einstein’s response to this problem is now legend. He decided almost immediately to abandon the search for a Lorentz covariant gravitation theory, for he had failed to construct such a theory that was compatible with the equality of inertial and gravitational mass. Positing what he later called the principle of equivalence, he decided that gravitation theory held the key to repairing what he perceived as the defect of the special theory of relativity—its relativity principle failed to apply to accelerated motion. He advanced a novel gravitation theory in which the gravitational potential was the now variable speed of light and in which special relativity held only as a limiting case. It is almost impossible for modern readers to view this story with their vision unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to his greatest scientific success, the general theory of relativity. Yet, as we shall see, in 1 In the historical period under consideration, there was no single label for a gravitation theory compat- ible with special relativity.
    [Show full text]
  • Special Relativity for Economics Students
    Special Relativity for Economics Students Takao Fujimoto, Dept of Econ, Fukuoka University (submitted to this Journal: 28th, April, 2006 ) 1Introduction In this note, an elementary account of special relativity is given. The knowledge of basic calculus is enough to understand the theory. In fact we do not use differentiation until we get to the part of composition of velocities. If you can accept the two hypotheses by Einstein, you may skip directly to Section 5. The following three sections are to explain that light is somehow different from sound, and thus compels us to make further assumptions about the nature of matter, if we stick to the existence of static ubiquitous ether as the medium of light. There is nothing original here. I have collected from various sources the parts which seem within the capacity of the average economics students. I heavily draws upon Harrison ([4]). And yet, something new in the way of exposition may be found in the subsections 5.4 and 6.1. Thus the reader can reach an important formula by Einstein that E = mc2 with all the necessary mathematical steps displayed explicitly. Thanks are due to a great friend of mine, Makoto Ogawa, for his comments. He read this note while he was travelling on the train between Tokyo and Niigata at an average speed of 150km/h. 2 An Experiment Using Sound We use the following symbols: c =speedoflight; s = speed of sound; V = velocity of another frame; x =positioninx-coordinate; t =time; 0 = value in another frame; V 2 β 1 2 ≡ r − c (Occasionally, some variables observed in another frame(O0) appear without a prime (0) to avoid complicated display of equations.) 1 2 Consider the following experiment depicted in Fig.1.
    [Show full text]
  • A Solution of the Interpretation Problem of Lorentz Transformations
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2020 doi:10.20944/preprints202007.0705.v1 Article A Solution of the Interpretation Problem of Lorentz Transformations Grit Kalies* HTW University of Applied Sciences Dresden; 1 Friedrich-List-Platz, D-01069 Dresden, [email protected] * Correspondence: [email protected], Tel.: +49-351-462-2552 Abstract: For more than one hundred years, scientists dispute the correct interpretation of Lorentz transformations within the framework of the special theory of relativity of Albert Einstein. On the one hand, the changes in length, time and mass with increasing velocity are interpreted as apparent due to the observer dependence within special relativity. On the other hand, real changes are described corresponding to the experimental evidence of mass increase in particle accelerators or of clock delay. This ambiguity is accompanied by an ongoing controversy about valid Lorentz-transformed thermodynamic quantities such as entropy, pressure and temperature. In this paper is shown that the interpretation problem of the Lorentz transformations is genuinely anchored within the postulates of special relativity and can be solved on the basis of the thermodynamic approach of matter-energy equivalence, i.e. an energetic distinction between matter and mass. It is suggested that the velocity-dependent changes in state quantities are real in each case, in full agreement with the experimental evidence. Keywords: interpretation problem; Lorentz transformation; special relativity; thermodynamics; potential energy; space; time; entropy; non-mechanistic ether theory © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2020 doi:10.20944/preprints202007.0705.v1 2 of 25 1.
    [Show full text]
  • MURPHY, Alice. Thought Experiments and the Scientific Imagination. Phd
    i Thought Experiments and the Scientific Imagination Alice Murphy Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Philosophy, Religion, and History of Science September 2020 ii The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Alice Murphy to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2020 The University of Leeds and Alice Murphy iii Acknowledgements Firstly, a huge thank you to my supervisors, Steven French and Aaron Meskin. It’s hard to do justice to the support and insights that you have each provided over the past four years. Steven has been endlessly generous, and has an open minded approach to research that is a constant source of inspiration. Aaron’s meticulous attention to detail has made me a more careful writer and thinker. You’ve both enabled me to form sketchy ideas into arguments, spurred me on when I’ve been lacking in confidence, and have made the whole process energising and, dare I say it, fun. At the risk of causing too high of expectations of the thesis that follows, I also want to say thank you to Milena Ivanova, Andrea Blomqvist, Mike Stuart, Max Jones, Fiora Salis, Karim Thébault and Adrian Currie for incredibly valuable conversations and feedback.
    [Show full text]
  • The Origins of Length Contraction: I. the Fitzgerald-Lorentz Deformation Hypothesis
    The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis Harvey R Brown Sub-Faculty of Philosophy, University of Oxford, 10 Merton Street, Oxford OX1 4JJ, U.K. “Can there be some point in the theory of Mr. Michelson’s experiment which has yet been overlooked?” H.A. Lorentz, letter to Lord Rayleigh, August 1892. One of the widespread confusions concerning the history of the 1887 Michelson- Morley experiment has to do with the initial explanation of this celebrated null result due independently to FitzGerald and Lorentz. In neither case was a strict, longitudinal length contraction hypothesis invoked, as is commonly supposed. Lorentz postulated, particularly in 1895, any one of a certain family of possible deformation effects for rigid bodies in motion, including purely transverse alteration, and expansion as well as contraction; FitzGerald may well have had the same family in mind. A careful analysis of the Michelson-Morley experiment (which reveals a number of serious inadequacies in many text-book treatments) indeed shows that strict contraction is not required. 1. Introduction It is well-known that in providing a derivation of the inertial coordinate transformations based on the relativity principle and his light postulate, Albert Einstein obtained in 1905 a not unfamiliar result in a novel way. The same transformations had already effectively appeared in the context of the electron theory in the 1900 work of Joseph Larmor, and the independent 1904 work of H.A. Lorentz. Einstein showed in his celebrated 1905 relativity paper1 that what Henri Poincaré had dubbed the “Lorentz transformations” lead to a longitudinal contraction for rigid bodies in motion.
    [Show full text]
  • Relativity; Einstein; Lorentz; Empirical Equivalence, Empirical Evidence, Non-Empirical Virtues
    On the Empirical Equivalence between Special Relativity and Lorentz’s Ether Theory Pablo Acuña L. Institute for History and Foundations of Science, Utrecht University Budapestlaan 6, 3584 CD, Utrecht [email protected] ABSTRACT. In this paper I argue that the case of Einstein‘s special relativity vs. Hendrik Lorentz‘s ether theory can be decided in terms of empirical evidence, in spite of the predictive equivalence between the theories. In the historical and philosophical literature this case has been typically addressed focusing on non-empirical features (non-empirical virtues in special relativity and/or non-empirical flaws in the ether theory). I claim that non-empirical features are not enough to provide a fully objective and uniquely determined choice in instances of empirical equivalence. However, I argue that if we consider arguments proposed by Richard Boyd and by Larry Laudan and Jarret Leplin, a choice based on non-consequential empirical evidence favoring Einstein‘s theory can be made. Keywords: relativity; Einstein; Lorentz; empirical equivalence, empirical evidence, non-empirical virtues. 1 Introduction Albert Einstein presented his special theory of relativity in 1905. As it is widely known, the adoption of this theory implied a revolutionary change in our views of space and time. Not so widely known is the fact that in 1904 the Dutch physicist Hendrik Lorentz proposed a theory that accounted for the same corpus of phenomena that Einstein‘s theory explained, but that was grounded on a conceptual framework in which the description of space and time was the traditional, Newtonian one. In 1905-6 Henri Poincaré introduced some amendments in Lorentz‘s theory that resulted in the full predictive equivalence between this theory and special relativity.
    [Show full text]
  • Michelson, Fitzgerald and Lorentz: the Origins of Relativity Revisited
    Michelson, FitzGerald and Lorentz: the origins of relativity revisited Harvey R Brown∗ February 10, 2003 Abstract It is argued that an unheralded moment marking the beginnings of relativity theory occurred in 1889, when G. F. FitzGerald, no doubt with the puzzling 1887 Michelson-Morley experiment fresh in mind, wrote to Heaviside about the possible effects of motion on inter-molecular forces in bodies. Emphasis is placed on the difference between FitzGerald’s and Lorentz’s independent justification of the shape distortion effect in- volved. Finally, the importance of the their ‘constructive’ approach to kinematics—stripped of any commitment to the physicality of the ether— will be defended, in the spirit of Pauli, Swann and Bell. 1 Introduction The claim that a particular theory in science had its true origins at this or that moment of time, in the emergence of this or that fundamental insight, is bound to be contentious. But there are developments, sometimes in the unpublished writings of a key figure, which deserve more recognition and fanfare in the litera- ture as being seminal moments in the path to a given theory. In my opinion such a moment occurred in early 1889, when George Francis FitzGerald, Professor of Natural and Experimental Philosophy at Trinity College Dublin, wrote a letter to the remarkable English auto-didact, Oliver Heaviside, concerning a result the latter had just obtained in the field of Maxwellian electrodynamics. Heaviside had shown that the electric field surrounding a spherical distribution of charge should cease to have spherical symmetry once the charge is in motion relative to the ether.
    [Show full text]