A Comparison Between Lorentz's Ether Theory And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalization of Lorentz-Poincare Ether Theory to Quantum Gravity
Abstract We present a quantum theory of gravity which is in agreement with observation in the relativistic domain. The theory is not rel- ativistic, but a Galilean invariant generalization of Lorentz-Poincare ether theory to quantum gravity. If we apply the methodological rule that the best available theory has to be preferred, we have to reject the relativistic paradigm and return to Galilean invariant ether theory. arXiv:gr-qc/9706055v1 18 Jun 1997 1 Generalization Of Lorentz-Poincare Ether Theory To Quantum Gravity Ilja Schmelzer∗ September 12, 2021 ... die bloße Berufung auf k¨unftig zu entdeckende Ableitungen bedeutet uns nichts. Karl Popper In quantum gravity, as we shall see, the space-time manifold ceases to exist as an objective physical reality; geometry becomes relational and contextual; and the foundational conceptual categories of prior science – among them, existence itself – become problematized and relativized. Alan Sokal Contents 1 The Problem Of Quantum Gravity 3 2 Introduction 4 3 Generalization Of Lorentz-Poincare Ether Theory To Gra- vity 6 3.1 Elementary Properties Of Post-Relativistic Gravity . 8 3.2 TheCosmologicalConstants . 9 3.2.1 The Observation Of The Cosmological Constants . 9 3.2.2 The Necessity Of Cosmological Constants . 10 3.3 TheGlobalUniverse ....................... 11 3.4 Gravitational Collapse . 12 ∗WIAS Berlin 2 3.5 A Post-Relativistic Lattice Theory . 13 3.6 BetterAtomicEtherTheories . 15 4 Canonical Quantization 16 5 Discussion 17 5.1 Conclusion............................. 18 1 The Problem Of Quantum Gravity We believe that there exists a unique physical theory which allows to describe the entire universe. That means, there exists a theory — quantum gravity — which allows to describe quantum effects as well as relativistic effects of strong gravitational fields. -
Interaction Energy of a Charged Medium and Its EM Field in a Curved Spacetime Mayeul Arminjon
Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon To cite this version: Mayeul Arminjon. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime. Proceedings of the Twentieth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Jun 2018, Varna, Bulgaria. pp.88-98. hal-01881100 HAL Id: hal-01881100 https://hal.archives-ouvertes.fr/hal-01881100 Submitted on 25 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interaction Energy of a Charged Medium and its EM Field in a Curved Spacetime Mayeul Arminjon Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR lab., F-38000 Grenoble, France Abstract In the electrodynamics of special relativity (SR) or general relativ- ity (GR), the energy tensors of the charged medium and its EM field add to give the total energy tensor that obeys the dynamical equation without external force. In the investigated scalar theory of gravitation (\SET"), this assumption leads to charge non-conservation, hence an additional, \interaction" energy tensor T inter has to be postulated. The present work aims at constraining this tensor. -
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Unification of the Maxwell- Einstein-Dirac Correspondence
Unification of the Maxwell- Einstein-Dirac Correspondence The Origin of Mass, Electric Charge and Magnetic Spin Author: Wim Vegt Country: The Netherlands Website: http://wimvegt.topworld.center Email: [email protected] Calculations: All Calculations in Mathematica 11.0 have been printed in a PDF File Index 1 “Unified 4-Dimensional Hyperspace 5 Equilibrium” beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces 1.2 The 4th term in the Unified 4-Dimensional 12 Hyperspace Equilibrium Equation 1.3 The Impact of Gravity on Light 15 2.1 EM Radiation within a Cartesian Coordinate 23 System in the absence of Gravity 2.1.1 Laser Beam with a Gaussian division in the x-y 25 plane within a Cartesian Coordinate System in the absence of Gravity 2.2 EM Radiation within a Cartesian Coordinate 27 System under the influence of a Longitudinal Gravitational Field g 2.3 The Real Light Intensity of the Sun, measured in 31 our Solar System, including Electromagnetic Gravitational Conversion (EMGC) 2.4 The Boundaries of our Universe 35 2.5 The Origin of Dark Matter 37 3 Electromagnetic Radiation within a Spherical 40 Coordinate System 4 Confined Electromagnetic Radiation within a 42 Spherical Coordinate System through Electromagnetic-Gravitational Interaction 5 The fundamental conflict between Causality and 48 Probability 6 Confined Electromagnetic Radiation within a 51 Toroidal Coordinate System 7 Confined Electromagnetic Radiation within a 54 Toroidal Coordinate System through Electromagnetic-Gravitational -
In Defence of Classical Physics Abstract Classical Physics Seeks To
In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is “real” physics. This is in the sense that it relates to mechanical physics. I suggest that if physics is ever to succeed in determining a theory of everything it needs to introduce a more satisfactory invariant medium in order to do this. This is describing the laws of nature and retain the elementary foundational conditions of universal symmetry. [email protected] Quote: “Classical physics describes an inertial frame of reference within which bodies (objects) whose net force acting upon them is zero. These objects are not accelerated. They are either at rest or they move at a constant velocity in a straight line” [1] This means that classical physics is a model that describes time and space homogeneously. Classical physics seeks to find the laws of nature. Experiments and testing have traditionally found it difficult to isolate the conditions, influences and effects to achieve this objective. If scientists could do this they would discover the laws of nature and be able to describe these laws. Today I will discuss the relationship between classical Newtonian physics and Einstein’s Special Relativity model. I will share ideas as to why some scientists suggests there may be shortcomings in Einstein’s Special Relativity theory that might be able to successfully addressed, using my interpretation of both of these theories. The properties of the laws of nature are the most important invariants [2] of the universe and universal reality. -
Dersica NOTAS DE FÍSICA É Uma Pré-Publicaçso De Trabalhos Em Física Do CBPF
CBPF deRsica NOTAS DE FÍSICA é uma pré-publicaçSo de trabalhos em Física do CBPF NOTAS DE FÍSICA is a series of preprints from CBPF Pedidos de copies desta publicação devem ser enviados aos autores ou à: Requests for free copies of these reports should be addressed to: Drvbèo de Publicações do CBPF-CNPq Av. Wenceslau Braz, 71 - Fundos 22.290 - Rio de Janeiro - RJ. Brasil CBPF-NF-38/82 ON EXPERIMENTS TO DETECT POSSIBLE FAILURES OF RELATIVITY THEORY by U. A. Rodrigues1 and J. Tioano Ctntro BratiitirO dê Ptsquisas Físicas - CBPF/CNPq Rua XavUr Sigaud, ISO 22290 - Rfo dt Jantiro, RJ. - BRASIL * Instituto dt MatMitica IMECC - ONICAMP Caixa Postal 61SS 13100 - Canpinas, SP. - BRASIL ABSTRACT: condition* under which 41 may expect failure of Einstein's Relativity, ^^also give a comple te analysis of a recently proposed experiment by Kolen— Torr showing that it must give a negative result, ta 1. INTRODUCTION A number of experiments have been proposed or reported which supposedly would detect the motion of the laboratory relative to a preferential frame SQ (the ether), thus provinding an experi- mental distinction between the so called "Lorentz" Ether Theory and Einstein Theory of Relativity. Much of the confusion on the subject, as correctly identified (2) by Tyapkin . (where references until 1973 can be found) is pos- 3 nesiblw possibility due to Miller*y to tes* twh expexrifipentallo 4# 1957 startey relativityd a discussio. nH eo f asuggeste seeminglyd comparing the Doppler shift of two-maser beams whose atoms move in opposite directions. His calculation of the Doppler shift on the basis of pre-relativistic physics/ gave rise to the appearance of a term linearly dependent upon the velocity v of the labora- tory sytem moving with respect to the ether. -
The Controversy on the Conceptual Foundation of Space-Time Geometry
한국수학사학회지 제22권 제3호(2009년 8월), 273 - 292 The Controversy on the Conceptual Foundation of Space-Time Geometry Yonsei University Yang, Kyoung-Eun [email protected] According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics. key words: Space-Time Geometry, Substantivalism, Curved Space-Time, The Theory-Change from Newtonian Physics to Einsteinian Physics 1. Introduction The theory-change from Newtonian to Einsteinian physics is viewed by philosophers of science, historians and even physicists as an eloquent example of scientific revolution. According to the physicist Max Born, it signifies the ‘Einsteinian revolution,’ (Born 1965, 2) while the philosopher Karl Popper is of the view that Einstein ‘revolutionised physics.’ (Withrow 1967, 25) Thomas Kuhn, on his part, holds in his Structure of Scientific Revolutions, that the theory-change from Newtonian to Einsteinian physics provides a strong case for the occurrence of a revolution with obvious ‘paradigm changes.’ (Kuhn 1962): One [set of scientists] is embedded in a flat, the other in a curved, matrix of space. Practicing in different worlds, the two groups of - 273 - The Controversy on the Conceptual Foundation of Space-Time Geometry scientists see different things when they look from the same point in the same direction. -
Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation
JOHN D. NORTON EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE OF SCALAR, LORENTZ COVARIANT THEORIES OF GRAVITATION 1. INTRODUCTION The advent of the special theory of relativity in 1905 brought many problems for the physics community. One, it seemed, would not be a great source of trouble. It was the problem of reconciling Newtonian gravitation theory with the new theory of space and time. Indeed it seemed that Newtonian theory could be rendered compatible with special relativity by any number of small modifications, each of which would be unlikely to lead to any significant deviations from the empirically testable conse- quences of Newtonian theory.1 Einstein’s response to this problem is now legend. He decided almost immediately to abandon the search for a Lorentz covariant gravitation theory, for he had failed to construct such a theory that was compatible with the equality of inertial and gravitational mass. Positing what he later called the principle of equivalence, he decided that gravitation theory held the key to repairing what he perceived as the defect of the special theory of relativity—its relativity principle failed to apply to accelerated motion. He advanced a novel gravitation theory in which the gravitational potential was the now variable speed of light and in which special relativity held only as a limiting case. It is almost impossible for modern readers to view this story with their vision unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to his greatest scientific success, the general theory of relativity. Yet, as we shall see, in 1 In the historical period under consideration, there was no single label for a gravitation theory compat- ible with special relativity. -
Abstract the Paper Is an Introduction Into General Ether Theory (GET
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Abstract The paper is an introduction into General Ether Theory (GET). We start with few assumptions about an universal “ether” in a New- tonian space-time which fulfils i @tρ + @i(ρv )=0 j i j ij @t(ρv )+@i(ρv v + p )=0 For an “effective metric” gµν we derive a Lagrangian where the Einstein equivalence principle is fulfilled: −1 00 11 22 33 √ L = LGR − (8πG) (Υg − Ξ(g + g + g )) −g We consider predictions (stable frozen stars instead of black holes, big bounce instead of big bang singularity, a dark matter term), quan- tization (regularization by an atomic ether, superposition of gravita- tional fields), related methodological questions (covariance, EPR cri- terion, Bohmian mechanics). 1 General Ether Theory Ilja Schmelzer∗ February 5, 2000 Contents 1 Introduction 2 2 General Ether Theory 5 2.1Thematerialpropertiesoftheether............... 5 2.2Conservationlaws......................... 6 2.3Lagrangeformalism........................ 7 3 Simple properties 9 3.1Energy-momentumtensor.................... 9 3.2Constraints............................ 10 4 Derivation of the Einstein equivalence principle 11 4.1 Higher order approximations in a Lagrange formalism . 13 4.2 Weakening the assumptions about the Lagrange formalism . 14 4.3Explanatorypowerofthederivation............... 15 5 Does usual matter fit into the GET scheme? 15 5.1TheroleoftheEinsteinLagrangian............... 16 5.2TheroleofLorentzsymmetry.................. 16 5.3Existingresearchaboutthesimilarity.............. 17 6 Comparison with RTG 18 ∗WIAS Berlin 2 7 Comparison with GR with four dark matter fields 19 8 Comparison with General Relativity 20 8.1Darkmatterandenergyconditions............... 20 8.2Homogeneousuniverse:nobigbangsingularity........ 21 8.3Isthereindependentevidenceforinflationtheory?....... 22 8.4Anewdarkmatterterm.................... -
Ether and Electrons in Relativity Theory (1900-1911) Scott Walter
Ether and electrons in relativity theory (1900-1911) Scott Walter To cite this version: Scott Walter. Ether and electrons in relativity theory (1900-1911). Jaume Navarro. Ether and Moder- nity: The Recalcitrance of an Epistemic Object in the Early Twentieth Century, Oxford University Press, 2018, 9780198797258. hal-01879022 HAL Id: hal-01879022 https://hal.archives-ouvertes.fr/hal-01879022 Submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ether and electrons in relativity theory (1900–1911) Scott A. Walter∗ To appear in J. Navarro, ed, Ether and Modernity, 67–87. Oxford: Oxford University Press, 2018 Abstract This chapter discusses the roles of ether and electrons in relativity the- ory. One of the most radical moves made by Albert Einstein was to dismiss the ether from electrodynamics. His fellow physicists felt challenged by Einstein’s view, and they came up with a variety of responses, ranging from enthusiastic approval, to dismissive rejection. Among the naysayers were the electron theorists, who were unanimous in their affirmation of the ether, even if they agreed with other aspects of Einstein’s theory of relativity. The eventual success of the latter theory (circa 1911) owed much to Hermann Minkowski’s idea of four-dimensional spacetime, which was portrayed as a conceptual substitute of sorts for the ether. -
Lorentz's Electromagnetic Mass: a Clue for Unification?
Lorentz’s Electromagnetic Mass: A Clue for Unification? Saibal Ray Department of Physics, Barasat Government College, Kolkata 700 124, India; Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India; e-mail: [email protected] Abstract We briefly review in the present article the conjecture of electromagnetic mass by Lorentz. The philosophical perspectives and historical accounts of this idea are described, especially, in the light of Einstein’s special relativistic formula E = mc2. It is shown that the Lorentz’s elec- tromagnetic mass model has taken various shapes through its journey and the goal is not yet reached. Keywords: Lorentz conjecture, Electromagnetic mass, World view of mass. 1. Introduction The Nobel Prize in Physics 2004 has been awarded to D. J. Gross, F. Wilczek and H. D. Politzer [1,2] “for the discovery of asymptotic freedom in the theory of the strong interaction” which was published three decades ago in 1973. This is commonly known as the Standard Model of mi- crophysics (must not be confused with the other Standard Model of macrophysics - the Hot Big Bang!). In this Standard Model of quarks, the coupling strength of forces depends upon distances. Hence it is possible to show that, at distances below 10−32 m, the strong, weak and electromagnetic interactions are “different facets of one universal interaction”[3,4]. This instantly reminds us about another Nobel Prize award in 1979 when S. Glashow, A. Salam and S. Weinberg received it “for their contributions to the theory of the unified weak and electro- magnetic interaction between elementary particles, including, inter alia, the prediction of the arXiv:physics/0411127v4 [physics.hist-ph] 31 Jul 2007 weak neutral current”. -
Special Relativity for Economics Students
Special Relativity for Economics Students Takao Fujimoto, Dept of Econ, Fukuoka University (submitted to this Journal: 28th, April, 2006 ) 1Introduction In this note, an elementary account of special relativity is given. The knowledge of basic calculus is enough to understand the theory. In fact we do not use differentiation until we get to the part of composition of velocities. If you can accept the two hypotheses by Einstein, you may skip directly to Section 5. The following three sections are to explain that light is somehow different from sound, and thus compels us to make further assumptions about the nature of matter, if we stick to the existence of static ubiquitous ether as the medium of light. There is nothing original here. I have collected from various sources the parts which seem within the capacity of the average economics students. I heavily draws upon Harrison ([4]). And yet, something new in the way of exposition may be found in the subsections 5.4 and 6.1. Thus the reader can reach an important formula by Einstein that E = mc2 with all the necessary mathematical steps displayed explicitly. Thanks are due to a great friend of mine, Makoto Ogawa, for his comments. He read this note while he was travelling on the train between Tokyo and Niigata at an average speed of 150km/h. 2 An Experiment Using Sound We use the following symbols: c =speedoflight; s = speed of sound; V = velocity of another frame; x =positioninx-coordinate; t =time; 0 = value in another frame; V 2 β 1 2 ≡ r − c (Occasionally, some variables observed in another frame(O0) appear without a prime (0) to avoid complicated display of equations.) 1 2 Consider the following experiment depicted in Fig.1.