Environmental Impact Statement

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Impact Statement U.S. Department of the Interior Bureau of Land Management North Bank Habitat Management Area and Area of Critical Environmental Concern Final Environmental Impact Statement Prepared by Roseburg District Office September 2000 i ii United States Department of the Interior BUREAU OF LAND MANAGEMENT Roseburg District Office 777 NE Garden Valley Blvd Roseburg, Oregon 97470 IN REPLY REFER TO: Dear Reader: This is the final environmental impact statement (FEIS) for the North Bank Habitat Management Area (NBHMA)/Area of Critical Environmental Concern (ACEC). This document has been developed in cooperation with the U.S. Fish and Wildlife Service and the Oregon Department of Fish and Wildlife. The FEIS analyzes the environmental effects of three alternatives. Each alternative has a different emphasis. The action alternatives were designed to accomplish the purpose and need and resolve the issues that have been identified for the NBHMA. Alternative A is the no action alternative that would continue management as outlined in the Dunning Ranch Exchange environmental assessment (EA) Decision Record. Alternative B proposes to manage the NBHMA through more passive and less intru­ sive management, while Alternative C proposes more active management of the NBHMA. Alternative C has been identified as the preferred alternative. The purpose of this FEIS is to examine probable environmental impacts and to assure that those impacts are considered along with technical, regulatory, legal and other factors in the decision making process. Although the analysis in this FEIS will be the basis for the final decisions, there are several distinct steps which must be undertaken prior to final decisions being made. Formal consultation will be undertaken with both the U.S. Fish and Wildlife Service and the National Marine Fisheries Service. The results of these consultations will be incorporated into the Record of Decision (ROD). The ROD will be issued as a separate document. The analysis provided here has been refined and updated based on public comment, scientific commu­ nity, interagency review and internal review of the Draft EIS (DEIS). We received 28 letters containing 124 specific comments during the public comment period for the DEIS. The interdisciplinary team assessed these comments using available information, and made changes to the alternatives and analysis. We sincerely appreciate the efforts of those who took the time to provide us with their comments. We feel that your efforts have resulted in improved and stronger alternatives and environmental effects analysis. We believe that you will find that the FEIS has improved clarity, greater specificity, and evidence to support analytical conclusions. Overall, it is more understandable. The Purpose and Need in Chapter 1 has been clarified, refined and additional specificity has been added. The description of the alternatives in Chapter 2 has been refined to better capture the themes suggested by public comment and more specificity regarding proposed management actions has been added. The description of the affected environment in Chapter 3 has been refined to add additional background information to provide a more solid basis for understanding the environmental effects analysis. The environmental effects analysis in Chapter 4 is more specific and comprehensive, and is better described in quantitative and qualitative terms. iii There are two proposals, grazing and timber management, contained in the alternatives that deserve some discussion because of their public interest and sensitivity in relation to management of an ACEC and habitat for the Columbia white-tailed deer (CWTD). Timber management for commercial purposes is not proposed on the over 6,000-acre North Bank ACEC. However, there are 342 acres of the Connec­ tivity/Diversity Block land use allocation within the NBHMA on which timber management would occur. The forest stands on these 342 acres are relatively young and, therefore, active timber manage­ ment would not occur for at least 30 years. As a result, the environmental analysis and decisions regard­ ing any specific timber management is not ripe for consideration because of the high likelihood that changed circumstances or new information would occur prior to the timber management activity actu­ ally being implemented. NEPA analysis will be completed for timber management activities at the time they are proposed and ripe for consideration. Grazing is also of interest in this EIS. Grazing is normally seen as an activity for the purpose of com­ modity production. However, in this EIS our use of grazing is different. Based on what we feel is good scientific evidence, grazing has been proposed for the sole purpose of accomplishing ecological objec­ tives related to management of habitat for CWTD. We invite the reader to carefully examine the envi­ ronmental analysis related to grazing to see why we feel grazing could be a tool in successfully accom­ plishing the goals of maintaining, protecting and restoring habitat for the CWTD. We would like to briefly mention stream and watershed restoration activities that are proposed for the NBHMA. We feel that the evidence contained in our analysis and which is illustrated by photographs in this document is dramatic. The streams and riparian ecosystems and associated problems and opportuni­ ties on NBHMA are different from those that the Roseburg District typically manages. However, we believe that you will find that the specialists’ analyses have been thorough and that the proposals for management are compelling. If you desire assistance in understanding this document, you may contact Jay Carlson or Ralph Klein at (541) 440-4930. Thank you for your continued interest in the management of your public lands and resources. Sincerely, Jay K. Carlson Field Manager Swiftwater Resource Area iv Roseburg District North Bank Habitat Management Area Final Environmental Impact Statement Draft ( ) Final (X) Department of the Interior Bureau of Land Management Roseburg District 1. Type of Action: Administrative (X) Legislative ( ) 2. Abstract: This Final Environmental Impact Statement describes and analyzes the environmental impacts of implementing three alternatives for managing the 6,581 acre North Bank Habitat Manage­ ment Area. The alternatives include: A) no action alternative, B) passive and less active management alternative, and C) active management alternative. The action alternatives respond to the need for managing habitats on the North Bank Habitat Management Area to maintain or enhance Columbia white-tailed deer, the need to restore and maintain water quality, and the need to manage lands in accor­ dance with existing land use plan decisions. The action alternatives propose different levels of a variety of management actions including planting, seeding, in-stream restoration, upland watershed restoration, development of water sources, development of forage plots, and the maintenance or enhancement of habitat through burning, fertilization, mowing and grazing. 3. For further information contact: Ralph Klein or Jay Carlson Bureau of Land Management 777 NW Garden Valley Blvd. Roseburg, Oregon 97470 (541) 440-4930 v vi Table of Contents Summary ............................................................................................................................. xiii Introduction ............................................................................................................................. xiii Purpose and Need ........................................................................................................................ xiii The Alternatives .......................................................................................................................... xiii Environmental Consequences of the Alternatives ........................................................................ xv Vegetation Management ................................................................................................... xv Noxious Weeds ................................................................................................................ xvi Timber ............................................................................................................................. xvi Aquatic Resources .......................................................................................................... xvii Wildlife .......................................................................................................................... xviii Recreation ........................................................................................................................ xix Soil Productivity .............................................................................................................. xix Air Quality ....................................................................................................................... xix Cultural Resources........................................................................................................... xix Chapter One - Purpose and Need ............................................................................................................... 1 Introduction ................................................................................................................................ 2 Need for the Action ........................................................................................................................ 3 Purpose ...............................................................................................................................
Recommended publications
  • Bromfield Garden Plant List - 2009
    BROMFIELD GARDEN PLANT LIST - 2009 BOTANICAL NAME COMMON NAME Acer circinatum vine maple Achillea millefolium yarrow Achillea millefolium 'Judity' yarrow 'Judity' Achillea millefolium 'La Luna' yarrow 'La Luna' Achillea millefolium 'Paprika' yarrow 'Paprika' Achillea millefolium 'Salmon' yarrow 'Salmon' Achillea millefolium 'Sonoma Coast' yarrow 'Sonoma Coast' Aesculus californica California buckeye Aquilegia formosa western columbine Arctostaphylos 'Pacific Mist' manzanita 'Pacific Mist' Arctostaphylos hookeri 'Ken Taylor' manzanita 'Ken Taylor' Aristolochia californica California pipevine Armeria maritima sea pink Artemisia pycnocephala sandhill sage Asarum caudatum wild ginger Aster chilensis California aster Aster chilensis dwarf California aster Baccharis pilularis 'Twin Peaks' dwarf coyote brush 'Twin Peaks' Berberis aquifolium var repens creeping Oregon-grape Berberis nervosa dwarf Oregon-grape Blechnum spicant deer fern Calycanthus occidentalis spice bush Camissonia cheiranthifolia beach evening primrose Carex tumulicola Berkeley sedge Carpenteria californica bush anenome Ceanothus 'Concha' wild lilac 'Concha' Ceanothus 'Tilden Park' wild lilac 'Tilden Park' Cercis occidentalis western redbud Cercocarpus betuloides mountain mahogany Clematis lasiantha chaparral clematis Cornus sericea creek dogwood Corylus cornuta western hazelnut Dicentra formosa western bleeding heart Dichondra donneliana pony's foot Dryopteris arguta coastal wood fern Dudleya caespitosa sea lettuce Dudleya farinosa bluff lettuce Dudleya pulverulenta chalk liveforever
    [Show full text]
  • Green Diamond Forest Habitat Conservation Plan Appendix B
    B-1 Appendix B. Profile of the Covered Species TABLE OF CONTENTS APPENDIX B. PROFILE OF THE COVERED SPECIES ................................................... B-1 B.1 NORTHERN SPOTTED OWL (STRIX OCCIDENTALIS CAURINA) .......................................... B-3 B.2 LISTING STATUS ......................................................................................................... B-3 B.2.1 Range and Distribution .......................................................................................... B-3 B.2.2 Life History ............................................................................................................ B-4 B.2.3 Habitat Requirements ............................................................................................ B-5 B.3 FISHER (PEKANIA PENNANTI) ....................................................................................... B-5 B.3.1 Listing Status ......................................................................................................... B-5 B.3.2 Range and Distribution .......................................................................................... B-6 B.3.3 Life History ............................................................................................................ B-8 B.3.4 Habitat Requirements ............................................................................................ B-9 B.3.5 Resting and Denning Habitat ............................................................................... B-10 B.3.6 Foraging Habitat .................................................................................................
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • DICOTS Aceraceae Maple Family Anacardiaceae Sumac Family
    FLOWERINGPLANTS Lamiaceae Mint family (ANGIOSPERMS) Brassicaceae Mustard family Prunella vulgaris - Self Heal Cardamine nutallii - Spring Beauty Satureja douglasii – Yerba Buena Rubiaceae Madder family DICOTS Galium aparine- Cleavers Boraginaceae Borage family Malvaceae Mallow family Galium trifidum – Small Bedstraw Aceraceae Maple family Cynoglossum grande – Houndstongue Sidalcea virgata – Rose Checker Mallow Acer macrophyllum – Big leaf Maple Oleaceae Olive family MONOCOTS Anacardiaceae Sumac family Fraxinus latifolia - Oregon Ash Toxicodendron diversilobum – Poison Oak Cyperaceae Sedge family Plantaginaceae Plantain family Carex densa Apiaceae Carrot family Plantago lanceolata – Plantain Anthriscus caucalis- Bur Chervil Iridaceae Iris family Daucus carota – Wild Carrot Portulacaceae Purslane family Iris tenax – Oregon Iris Ligusticum apiifolium – Parsley-leaved Claytonia siberica – Candy Flower Lovage Claytonia perforliata – Miner’s Lettuce Juncaceae Rush family Osmorhiza berteroi–Sweet Cicely Juncus tenuis – Slender Rush Sanicula graveolens – Sierra Sanicle Cynoglossum Photo by C.Gautier Ranunculaceae Buttercup family Delphinium menziesii – Larkspur Liliaceae Lily family Asteraceae Sunflower family Caryophyllaceae Pink family Ranunculus occidentalis – Western Buttercup Allium acuminatum – Hooker’s Onion Achillea millefolium – Yarrow Stellaria media- Chickweed Ranunculus uncinatus – Small-flowered Calochortus tolmiei – Tolmie’s Mariposa Lily Adendocaulon bicolor – Pathfinder Buttercup Camassia quamash - Camas Bellis perennis – English
    [Show full text]
  • (Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
    Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns.
    [Show full text]
  • Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
    Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter.
    [Show full text]
  • Total and Epiphytic Litter Under the Canopy of Acer Macrophyllum in an Old-Growth Temperate Rainforest, Washington State, USA
    Canadian Journal of Forest Research Total and epiphytic litter under the canopy of Acer macrophyllum in an old-growth temperate rainforest, Washington State, USA Journal: Canadian Journal of Forest Research Manuscript ID cjfr-2014-0492.R2 Manuscript Type: Article Date Submitted by the Author: 01-Jun-2015 Complete List of Authors: Tejo, Camila; Universidad Austral de Chile, Instituto de Conservacion, BiodiversidadDraft y Territorio Zabowski, Darlene; University of Washington Nadkarni, Nalini; University of Utah, Department of Biology <i>Acer macrophyllum</i>, carbon cycle, epiphytic litterfall, forest Keyword: productivity, old-growth forest https://mc06.manuscriptcentral.com/cjfr-pubs Page 1 of 36 Canadian Journal of Forest Research 0 1 Total and epiphytic litter under the canopy of Acer macrophyllum in an old-growth temperate 2 rainforest, Washington State, USA 3 4 Authors: Camila F. Tejo a* , Darlene Zabowski b, Nalini M. Nadkarni c 5 6 a Instituto de Conservacion, Biodiversidad y Territorio, Universidad Austral de Chile, Casilla 567, 7 Valdivia, Chile. 8 b School of Environmental Forest Sciences, University of Washington, Seattle, WA, 98195, USA. 9 c Department of Biology, University of Utah, Salt Lake City, UT 84112 USA 10 11 *Corresponding author. Tel.: +56 9 6215Draft 2781. Email address: [email protected] 12 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 2 of 36 0 13 Abstract 14 The amounts and ecological importance of epiphytic litterfall has often been overlooked 15 in forest ecosystem studies. However, epiphytes participate in whole-ecosystem dynamics by 16 capturing and retaining nutrients from atmospheric sources, and transferring these nutrients to 17 other ecosystem components.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Pseudomonas Stutzeri Biology Of
    Biology of Pseudomonas stutzeri Jorge Lalucat, Antoni Bennasar, Rafael Bosch, Elena García-Valdés and Norberto J. Palleroni Microbiol. Mol. Biol. Rev. 2006, 70(2):510. DOI: 10.1128/MMBR.00047-05. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/70/2/510 These include: http://mmbr.asm.org/ REFERENCES This article cites 395 articles, 145 of which can be accessed free at: http://mmbr.asm.org/content/70/2/510#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on January 28, 2014 by Red de Bibliotecas del CSIC Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2006, p. 510–547 Vol. 70, No. 2 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.00047-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Biology of Pseudomonas stutzeri Jorge Lalucat,1,2* Antoni Bennasar,1 Rafael Bosch,1 Elena Garcı´a-Valde´s,1,2 and Norberto J. Palleroni3 Departament de Biologia, Microbiologia, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain1; Institut Mediterrani d’Estudis Avanc¸ats (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain2; and Department of Biochemistry and Microbiology, Rutgers University, Cook Campus, 3 New Brunswick, New Jersey 08901-8520 Downloaded from INTRODUCTION .......................................................................................................................................................511
    [Show full text]
  • Astragalus Lentiginosus Var. Coachellae
    Evaluating the Biological Conservation Status of the Coachella Valley Milkvetch (Astragalus lentiginosus var. coachellae) Robert J. Meinke, Kelly Amsberry, Rebecca E. Currin, Stephen C. Meyers, and Brian Knaus Native Plant Conservation Program OREGON DEPARTMENT OF AGRICULTURE Oregon Department of Agriculture NATIVE PLANT CONSERVATION PROGRAM NATIVE PLANT CONSERVATION PROGRAM and Department of Botany & Plant Pathology Oregon State University, Corvallis October, 2007 EXECUTIVE SUMMARY The Coachella Valley milkvetch (Astragalus lentiginosus var. coachellae) is a federally-listed endangered taxon, restricted to a highly active sand dune environment near the eastern base of the San Jacinto Mountains in the western Sonoran Desert. A recent assessment confirms that var. coachellae is endemic to the Coachella Valley, and that reported populations from the Desert Center area (disjunct ca. 75 km to the east) actually represent A. lentiginosus var. variabilis. Much of the range of A. lentiginosus var. coachellae overlaps the cities of Palm Springs, Cathedral City, and other nearby communities, where remaining populations are threatened by the effects of urbanization and habitat fragmentation. A Habitat Conservation Plan (HCP; in preparation) is expected to place several of the more significant remaining sites within administratively protected reserve areas located outside the urban core. However, little information has been available that describes the natural history and ecological status of Coachella Valley milkvetch populations, and specific management plans have yet to be developed. The current study (conducted in 2005 and 2006) corroborates earlier reports that var. coachellae exhibits a labile life history correlated with annual precipitation, in which short-lived perennials loosely dominate the less arid, northern end of the range and annuals are more prevalent in the drier south.
    [Show full text]
  • Coyote Creek South Management Plan
    Coyote Creek South Management Plan Photo credit: Philip Bayles Oregon Department of Fish and Wildlife 4034 Fairiew Industrial Drive SE Salem, Oregon 97302 March 2016 LIST OF CONTRIBUTORS The following individuals, mainly consisting of Oregon Department of Fish and Wildlife biologists and program coordinators, provided valuable input into this plan: • Ann Kreager, Willamette Wildlife Mitigation Project Biologist, South Willamette Watershed, ODFW • Emily Steel, Restoration Ecologist, City of Eugene • Trevor Taylor, Natural Areas Restoration Team Supervisor, City of Eugene • Bruce Newhouse, Ecologist, Salix Associates • David Stroppel, Habitat Program Manager, South Willamette Watershed, ODFW • Wayne Morrow, Wildlife Manager, Fern Ridge Wildlife Area, ODFW • Kevin Roth, Wildlife Technician Senior, Fern Ridge Wildlife Area, ODFW In addition, the plan draws on the work of professional ecologists and planners, and feedback from a wide variety of representatives from ODFW and partner agencies, including: • Ed Alverson, Botanist • Diane Steeck, Wetland Ecologist, City of Eugene • Paul Gordon, Wetland Technical Specialist, City of Eugene • Steve Marx, SW Watershed District Manager, ODFW • Bernadette Graham-Hudson, Fish & Wildlife Operations and Policy Analyst, ODFW • Laura Tesler, Wildlife Wildlife Mitigation Staff Biologist, ODFW • Shawn Woods, Willamette Wildlife Mitigation Restoration Biologist, ODFW • Sue Beilke, Willamette Wildlife Mitigation Project Biologist, ODFW • Susan Barnes, NW Region Wildlife Diversity Biologist, ODFW • Keith Kohl,
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]