Determinism, Chaos and Chance

Total Page:16

File Type:pdf, Size:1020Kb

Determinism, Chaos and Chance Determinism, chaos and chance Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen Summary i. Stability of solar system ii. Chaos versus chance iii. ... Email: [email protected] URL: http://www.math.rug.nl/˜broer Heroes - Kepler and Galileo - Newton and Laplace - Poincaré and Kolmogorov Kepler and Galileo Iohannes Kepler Galileo Galilei (1571-1530) (1564-1642) Observing and thinking Newton and Laplace Sir Isaac Newton Pierre-Simon Laplace (1642-1727) (1749-1827) Solar system deterministic: then how about perpetual stability? Kepler I & II Kepler I: Elliptic orbit with Sun in a focal point Kepler II: Constant sectorial velocity Circular orbit y r F 0 x km Circular orbit in central force field F = − r2 er 2π x(t) cos T t r(t)= = R 2π y(t) sin T t Problem: what is relationship between R and T ? Centripetal acceleration y y v a 0 x 0 x Velocity and (centripetal) accelaration Kepler III from Newton’s laws Centripetal acceleration 2 2π x¨(t) 2π cos T t a(t) = = −R 2π y¨(t) T sin T t 2 2π = −R er T Combining Newton’s laws km m a = F = − er r2 find 4π2 T 2 = R3 (Kepler III) k Galilean moons of Jupiter Revolutions in about Io: 2 days, Europa: 4 days, Ganymedes: 1 week, Callisto: 2 weeks Does Kepler III hold ? Checked by Flamsteed: YES R.S. Westfall, Never at Rest, Cambridge University Press 1981 Scholium: chaos? • Universal gravitation: no longer them nice ellipses! but perturbation theory • Poincaré and the three body problem: homoclinic tangle Henri Poincaré (1854-1912) and his tangle June Barrow-Green, Poincaré and the Three Body Problem. History of Mathematics, Volume 11 American Mathematical Society / London Mathematical Society 1997 Hénon-Heiles 1964: a toy model Coupled oscillators ∂V x′′ = − ∂x ∂V y′′ = − ∂y 1 2 2 2 2 3 potential energy V (x,y)= 2(x + y +2x y − 3y ) 1 ′ 2 ′ 2 total energy E = 2 (x ) +(y ) + V (x,y): a conserved quantity Setting x′ := u and y′ := v phase-space R4 = {x,y,u,v} Three sphere S3 ⊂ R4 Energy hypersurface 2 2 2 2 2 2 3 S3 x + y + u + v +2x y − 3y = E ≈ sphere Geometry of S3 ≈ R3 ∪ {∞} 2–dimensional torus T2 S3 ≈ union of two solid tori glued along common boundary T2 ... Three sphere S3, ctd. 4 2 0 -2 -4 2 0 -2 -4 -2 0 2 4 Seiffert foliation of S3 Taking Poincaré section transverse to such 2–tori ... Hénon-Heiles II qualitative picture of the dynamics Energy E =0.005 (left) and E =0.010 (right) mainly (multi-) periodic ≡ stable Hénon-Heiles III E =0.012 a lot of ‘chaos’ too ... The swing Stroboscopic pictures of the swing y x Without (left) and with dissipation (right) Conservative chaos and a Hénon-like strange attractor Invariant measures, ergodicity Andrei N. Kolmogorov Yakov G. Sinai (1903-1987) (1935- ) • Poincaré recurrence theorem • probability, measure, ergodicity • also for dissipative systems Moreover ... • Open problems in mathematics: - Are (physical) measures ergodic? - Relation to geometry of unstable manifold and homoclinic tangle? • Jacques Laskar (Observatoire de Paris): (inner) solar system chaotic, to be noticed in about 100 000 000 yrs J. Laskar and M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature Letters 459|11 June 2009|doi:10.1038/nature08096 V.I. Arnold and A. Avez, Probèmes Ergodiques de la Mécanique classique, Gauthier-Villars, 1967; Ergodic problems of classical mechanics, Benjamin 1968 J. Palis and F. Takens, Hyperbolicity & Sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics 35, Cambridge University Press 1993 Edward Lorenz 1963 Edward Norton Lorenz (1917-2008) Chaos awakening E.N. Lorenz, Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963), 130-141 H.W. Broer and F. Takens, Dynamical Systems and Chaos. Applied Mathematical Sciences 172, Springer, 2011 Lorenz system and attractor ′ x = σy − σx ′ y = rx − y − xz ′ z = −bz + xy, with σ = 10, b =8/3 and r = 28 Nature of turbulence David Ruelle Floris Takens (1935- ) (1940-2010) Turbulence: multiperiodicity or chaos? Memento Heisenberg and Lamb ... Scholium: chaos versus chance • Magnetic pendulum / compare dice • Boltzmann, Gibbs: Statistical physics • Life itself • Quantum physics.
Recommended publications
  • Robust Learning of Chaotic Attractors
    Robust Learning of Chaotic Attractors Rembrandt Bakker* Jaap C. Schouten Marc-Olivier Coppens Chemical Reactor Engineering Chemical Reactor Engineering Chemical Reactor Engineering Delft Univ. of Technology Eindhoven Univ. of Technology Delft Univ. of Technology [email protected]·nl [email protected] [email protected]·nl Floris Takens C. Lee Giles Cor M. van den Bleek Dept. Mathematics NEC Research Institute Chemical Reactor Engineering University of Groningen Princeton Nl Delft Univ. of Technology F. [email protected] [email protected] [email protected]·nl Abstract A fundamental problem with the modeling of chaotic time series data is that minimizing short-term prediction errors does not guarantee a match between the reconstructed attractors of model and experiments. We introduce a modeling paradigm that simultaneously learns to short-tenn predict and to locate the outlines of the attractor by a new way of nonlinear principal component analysis. Closed-loop predictions are constrained to stay within these outlines, to prevent divergence from the attractor. Learning is exceptionally fast: parameter estimation for the 1000 sample laser data from the 1991 Santa Fe time series competition took less than a minute on a 166 MHz Pentium PC. 1 Introduction We focus on the following objective: given a set of experimental data and the assumption that it was produced by a deterministic chaotic system, find a set of model equations that will produce a time-series with identical chaotic characteristics, having the same chaotic attractor. The common approach consists oftwo steps: (1) identify a model that makes accurate short­ tenn predictions; and (2) generate a long time-series with the model and compare the nonlinear-dynamic characteristics of this time-series with the original, measured time-series.
    [Show full text]
  • The Solar System's Extended Shelf Life
    Vol 459|11 June 2009 NEWS & VIEWS PLANETARY SCIENCE The Solar System’s extended shelf life Gregory Laughlin Simulations show that orbital chaos can lead to collisions between Earth and the inner planets. But Einstein’s tweaks to Newton’s theory of gravity render these ruinous outcomes unlikely in the next few billion years. In the midst of a seemingly endless torrent of charted with confidence tens of millions of ‘disturbing function’ could not be neglected, baleful economic and environmental news, a years into the future. An ironclad evaluation and consideration of these terms revived the dispatch from the field of celestial dynamics of the Solar System’s stability, however, eluded question of orbital stability. In 1889, Henri manages to sound a note of definite cheer. On mathematicians and astronomers for nearly Poincaré demonstrated that even the gravita- page 817 of this issue, Laskar and Gastineau1 three centuries. tional three-body problem cannot be solved report the outcome of a huge array of computer In the seventeenth century, Isaac Newton by analytic integration, thereby eliminating simulations. Their work shows that the orbits was bothered by his inability to fully account any possibility that an analytic solution for of the terrestrial planets — Mercury, Venus, for the observed motions of Jupiter and Saturn. the entire future motion of the eight planets Earth and Mars — have a roughly 99% chance The nonlinearity of the gravitational few-body could be found. Poincaré’s work anticipated the of maintaining their current, well-ordered problem led him to conclude3 that, “to consider now-familiar concept of dynamical chaos and clockwork for the roughly 5 billion years that simultaneously all these causes of motion and the sensitive dependence of nonlinear systems remain before the Sun evolves into a red giant to define these motions by exact laws admit- on initial conditions5.
    [Show full text]
  • Workshop on Astronomy and Dynamics at the Occasion of Jacques Laskar’S 60Th Birthday Testing Modified Gravity with Planetary Ephemerides
    Workshop on Astronomy and Dynamics at the occasion of Jacques Laskar's 60th birthday Testing Modified Gravity with Planetary Ephemerides Luc Blanchet Gravitation et Cosmologie (GR"CO) Institut d'Astrophysique de Paris 29 avril 2015 Luc Blanchet (IAP) Testing Modified Gravity Colloque Jacques Laskar 1 / 25 Evidence for dark matter in astrophysics 1 Oort [1932] noted that the sum of observed mass in the vicinity of the Sun falls short of explaining the vertical motion of stars in the Milky Way 2 Zwicky [1933] reported that the velocity dispersion of galaxies in galaxy clusters is far too high for these objects to remain bound for a substantial fraction of cosmic time 3 Ostriker & Peebles [1973] showed that to prevent the growth of instabilities in cold self-gravitating disks like spiral galaxies, it is necessary to embed the disk in the quasi-spherical potential of a huge halo of dark matter 4 Bosma [1981] and Rubin [1982] established that the rotation curves of galaxies are approximately flat, contrarily to the Newtonian prediction based on ordinary baryonic matter Luc Blanchet (IAP) Testing Modified Gravity Colloque Jacques Laskar 2 / 25 Evidence for dark matter in astrophysics 1 Oort [1932] noted that the sum of observed mass in the vicinity of the Sun falls short of explaining the vertical motion of stars in the Milky Way 2 Zwicky [1933] reported that the velocity dispersion of galaxies in galaxy clusters is far too high for these objects to remain bound for a substantial fraction of cosmic time 3 Ostriker & Peebles [1973] showed that to
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • A Long Term Numerical Solution for the Insolation Quantities of the Earth Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M
    A long term numerical solution for the insolation quantities of the Earth Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M. Correia, Benjamin Levrard To cite this version: Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M. Correia, et al.. A long term numerical solution for the insolation quantities of the Earth. 2004. hal-00001603 HAL Id: hal-00001603 https://hal.archives-ouvertes.fr/hal-00001603 Preprint submitted on 23 May 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. La˙2004 May 23, 2004 (DOI: will be inserted by hand later) A long term numerical solution for the insolation quantities of the Earth. J. Laskar1, P. Robutel1, F. Joutel1, M. Gastineau1, A.C.M. Correia1,2, and B. Levrard1 1 Astronomie et Syst`emesDynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France 2 Departamento de F´ısica da Universidade de Aveiro, Campus Universit´ario de Santiago, 3810-193 Aveiro, Portugal May 23, 2004 Abstract. We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr.
    [Show full text]
  • Pure and Fundamental
    PURE AND FUNDAMENTAL THE LARGEST RESEARCH CENTRE IN QUÉBEC The CenTre de reCherChes maThémaTiques (crm) is the largest research centre in Québec and one of the most important mathematics research centres in the world. The crm was created in 1968 at the Université de montréal and gathers all the stakeholders in mathematical research at Québec universities and some other canadian universities. The crm organizes events attended by researchers from all over the globe and representing all mathematical disciplines. The crm focuses on pure and applied mathematics in all areas of human activity, for instance theoretical physics, brain and molecular imaging, quantum information, statistics, and genomics. Indeed mathematics is both the first science and the 1 servant of experimental science, which draws upon its new concepts, its language, and its methods. Fonds de recherche sur la nature et les technologies Plenary speakers A short course on SFT Organizers will be given by: P. Biran (Tel Aviv) M. Abreu (Instituto Superior F. Bourgeois (Université Libre O. Cornea (Montréal) Técnico) de Bruxelles) D. Gabai (Princeton) R. Cohen (Stanford) K. Cieliebak (München) E. Ghys (ENS, Lyon) A. Givental (Berkeley) T. Ekholm (Southern California) E. Giroux (ENS, Lyon) F. Lalonde (Montréal) E. Katz (Duke) R. Gompf (Austin, Texas) R. Lipshitz (Stanford) J. Sabloff (Haverford College) H. Hofer (Courant Institute) L. Polterovich (Tel Aviv) K. Wehrheim (MIT) K. Honda (Southern California) R. Schoen (Stanford) E. Ionel (Stanford) D. McDuff (Stony Brook) T. Mrowka (MIT) Y.-G. Oh (Wisconsin-Madison) K. Ono (Hokkaido) P. Ozsvath (Columbia) R. Pandharipande (Princeton) D. Salamon (ETH, Zurich) 0 Thematic Program 8 A bird eye’s view of the CRM 9 4 M.
    [Show full text]
  • Avenir De La Terre
    Avenir de la Terre L'avenir biologique et géologique de la Terre peut être extrapolé à partir de plusieurs facteurs, incluant la chimie de la surface de la Terre, la vitesse de refroidissement de l'intérieur de la Terre, les interactions gravitationnelles avec les autres objets du Système solaire et une augmentation constante de la luminosité solaire. Un facteur d'incertitude dans cette extrapolation est l'influence des 2 technologies introduites par les êtres humains comme la géo-ingénierie , qui 3, 4 peuvent causer des changements significatifs sur la planète . Actuellement, 5 6 l'extinction de l'Holocène est provoquée par la technologie et ses effets peuvent 7 durer cinq millions d'années . À son tour, la technologie peut provoquer l'extinction Illustration montrant la Terre après la transformation du Soleil engéante de l'humanité, laissant la Terre revenir graduellement à un rythme d'évolution plus 8, 9 rouge, scénario devant se dérouler lent résultant uniquement de processus naturels à long terme . 1 dans sept milliards d'années . Au cours d'intervalles de plusieurs millions d'années, des événements célestes aléatoires présentent un risque global pour la biosphère, pouvant aboutir à des extinctions massives. Ceci inclut les impacts provoqués par des comètes et des astéroïdes avec des diamètres de 5 à 10 km ou plus et les supernovas proches de la Terre. D'autres événements géologiques à grandes échelles sont plus facilement prédictibles. Si les effets du réchauffement climatique sur le long terme ne sont pas pris en compte, les paramètres de Milanković prédisent que la planète continuera à subir des périodes glaciaires au moins jusqu'à la fin des glaciations quaternaires.
    [Show full text]
  • Arxiv:1209.5996V1 [Astro-Ph.EP] 26 Sep 2012 1.1
    , 1{28 Is the Solar System stable ? Jacques Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France [email protected] R´esum´e. Since the formulation of the problem by Newton, and during three centuries, astrono- mers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the pla- nets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary colli- sions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun. 1. Historical introduction 1 Despite the fundamental results of Henri Poincar´eabout the non-integrability of the three-body problem in the late 19th century, the discovery of the non-regularity of the Solar System's motion is very recent. It indeed required the possibility of calculating the trajectories of the planets with a realistic model of the Solar System over very long periods of time, corresponding to the age of the Solar System. This was only made possible in the past few years. Until then, and this for three centuries, the efforts of astronomers and mathematicians were devoted to demonstrate the stability of the Solar System. arXiv:1209.5996v1 [astro-ph.EP] 26 Sep 2012 1.1. Solar System stability The problem of the Solar System stability dates back to Newton's statement concerning the law of gravitation.
    [Show full text]
  • Causal Inference for Process Understanding in Earth Sciences
    Causal inference for process understanding in Earth sciences Adam Massmann,* Pierre Gentine, Jakob Runge May 4, 2021 Abstract There is growing interest in the study of causal methods in the Earth sciences. However, most applications have focused on causal discovery, i.e. inferring the causal relationships and causal structure from data. This paper instead examines causality through the lens of causal inference and how expert-defined causal graphs, a fundamental from causal theory, can be used to clarify assumptions, identify tractable problems, and aid interpretation of results and their causality in Earth science research. We apply causal theory to generic graphs of the Earth sys- tem to identify where causal inference may be most tractable and useful to address problems in Earth science, and avoid potentially incorrect conclusions. Specifically, causal inference may be useful when: (1) the effect of interest is only causally affected by the observed por- tion of the state space; or: (2) the cause of interest can be assumed to be independent of the evolution of the system’s state; or: (3) the state space of the system is reconstructable from lagged observations of the system. However, we also highlight through examples that causal graphs can be used to explicitly define and communicate assumptions and hypotheses, and help to structure analyses, even if causal inference is ultimately challenging given the data availability, limitations and uncertainties. Note: We will update this manuscript as our understanding of causality’s role in Earth sci- ence research evolves. Comments, feedback, and edits are enthusiastically encouraged, and we arXiv:2105.00912v1 [physics.ao-ph] 3 May 2021 will add acknowledgments and/or coauthors as we receive community contributions.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Press Release
    PRESS RELEASE Released on 15 July 2011 When minor planets Ceres and Vesta rock the Earth into chaos Based on the article “Strong chaos induced by close encounters with Ceres and Vesta”, by J. Laskar, M. Gastineau, J.-B. Delisle, A. Farrès, and A. Fienga Published in Astronomy & Astrophysics, 2011, vol. 532, L4 Astronomy & Astrophysics is publishing a new study of the orbital evolution of minor planets Ceres and Vesta, a few days before the Dawn spacecraft enters Vesta's orbit. A team of astronomers found that close encounters among these bodies lead to strong chaotic behavior of their orbits, as well as of the Earth's eccentricity. This means, in particular, that the Earth's past orbit cannot be reconstructed beyond 60 million years. Astronomy & Astrophysics is publishing numerical simulations of the long-term evolution of the orbits of minor planets Ceres and Vesta, which are the largest bodies in the asteroid belt, between Mars and Jupiter. Ceres is 6000 times less massive than the Earth and almost 80 times less massive than our Moon. Vesta is almost four times less massive than Ceres. These two minor bodies, long thought to peacefully orbit in the asteroid belt, are found to affect their large neighbors and, in particular, the Earth in a way that had not been anticipated. This is showed in the new astronomical computations released by Jacques Laskar from Paris Observatory and his colleagues [1]. Fig. 1. Observations of Ceres by NASA's Hubble Space Telescope. © NASA, ESA, J.-Y. Li (University of Maryland) and G. Bacon (STScI).
    [Show full text]
  • When Geology Reveals the Ancient Solar System
    When geology reveals the ancient solar system https://www.observatoiredeparis.psl.eu/when-geology-reveals-the.html Press release | CNRS When geology reveals the ancient solar system Date de mise en ligne : lundi 11 mars 2019 Observatoire de Paris - PSL Centre de recherche en astronomie et astrophysique Copyright © Observatoire de Paris - PSL Centre de recherche en astronomie et astrophysique Page 1/3 When geology reveals the ancient solar system Because of the chaotic nature of the Solar System, astronomers believed till now that it would be impossible to compute planetary positions and orbits beyond 60 million years in the past. An international team has now crossed this limit by showing how the analysis of geological data enables one to reach back to the state of the Solar System 200 million years ago. This work, to which have participated a CNRS astronomer from the Paris Observatory at the Institut de Mécanique Céleste et de Calcul des Ephémérides (Observatoire de Paris - PSL / CNRS / Sorbonne Université / Université de Lille), is published in the Proceedings of the National Academy of Sciences dated March 4th 2019. Le système solaire © Y. Gominet/IMCCE/NASA In contrast to one's ideas, the planets do not turn around the Sun on fixed orbits like an orrery. Every body in our Solar System affects the motion of all the others, somewhat as if they were all interconnected via springs : a small perturbation somewhere in the system influences all the planets, which tends to re-establish their original positions. Planetary orbits have a slow rotatory motion around the Sun and oscillate around a mean value.
    [Show full text]