16.Wahrenberger 4-Crerar 1/25/02 11:21 AM Page 307 Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar © The Geochemical Society, Special Publication No. 7, 2002 Editors: Roland Hellmann and Scott A. Wood Volatile trace-element transport in high-temperature gases from Kudriavy volcano (Iturup, Kurile Islands, Russia) CHRISTOPH WAHRENBERGER,TERRY M. SEWARD1 AND VOLKER DIETRICH Institute for Mineralogy and Petrology, Swiss Federal Institute of Technology, ETH-Zentrum, 8092 Zürich, Switzerland 1e-mail:
[email protected] Abstract—Gases, condensates, sublimates and silica-tube deposits were sampled at Kudriavy volcano in 1995 within the temperature range from 160 to 920 °C. The main trace elements transported in the gas phase at 920 °C are Pb, Mo, Bi, Sn, In, As, Se and Te as well as elements partly derived from the wall rock (e.g., Mg, Si, Al). Dominant transporting species as calculated in a heterogeneous closed-system cooling model are chloride complexes (e.g., CuCl(g), TiCl4(g), FeCl2(g)). However the Mo-group elements are transported as oxoacids whereas the Sn-group elements and the highly volatile elements of group V and VI of the periodic table are transported dominantly as the sulfide complexes. Bromide and iodide also play an important role in complexing trace elements at temperatures below 600 °C. An open-system equilibrium model where con- densed phases are fractionated from the coexisting gas is introduced to simulate the deposition of natural sublimates and is directly compared to a silica-tube sublimation experiment. While the thermochemical mod- els reflect the zonality of sublimates in the tube and some aspects of the sublimate mineral assemblages found in nature, they fail to reproduce the observed temperature distribution.