Expression and Function of Ca2+-Activated K+ Channels in Uterine Arteries Ronghui Zhu
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Pharmacology and Experimental Therapeutics
Journal of Pharmacology and Experimental Therapeutics Molecular Determinants of Ligand Selectivity for the Human Multidrug And Toxin Extrusion Proteins, MATE1 and MATE-2K Bethzaida Astorga, Sean Ekins, Mark Morales and Stephen H Wright Department of Physiology, University of Arizona, Tucson, AZ 85724, USA (B.A., M.M., and S.H.W.) Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina NC 27526, USA (S.E.) Supplemental Table 1. Compounds selected by the common features pharmacophore after searching a database of 2690 FDA approved compounds (www.collaborativedrug.com). FitValue Common Name Indication 3.93897 PYRIMETHAMINE Antimalarial 3.3167 naloxone Antidote Naloxone Hydrochloride 3.27622 DEXMEDETOMIDINE Anxiolytic 3.2407 Chlordantoin Antifungal 3.1776 NALORPHINE Antidote Nalorphine Hydrochloride 3.15108 Perfosfamide Antineoplastic 3.11759 Cinchonidine Sulfate Antimalarial Cinchonidine 3.10352 Cinchonine Sulfate Antimalarial Cinchonine 3.07469 METHOHEXITAL Anesthetic 3.06799 PROGUANIL Antimalarial PROGUANIL HYDROCHLORIDE 100MG 3.05018 TOPIRAMATE Anticonvulsant 3.04366 MIDODRINE Antihypotensive Midodrine Hydrochloride 2.98558 Chlorbetamide Antiamebic 2.98463 TRIMETHOPRIM Antibiotic Antibacterial 2.98457 ZILEUTON Antiinflammatory 2.94205 AMINOMETRADINE Diuretic 2.89284 SCOPOLAMINE Antispasmodic ScopolamineHydrobromide 2.88791 ARTICAINE Anesthetic 2.84534 RITODRINE Tocolytic 2.82357 MITOBRONITOL Antineoplastic Mitolactol 2.81033 LORAZEPAM Anxiolytic 2.74943 ETHOHEXADIOL Insecticide 2.64902 METHOXAMINE Antihypotensive Methoxamine -
AHFS Pharmacologic-Therapeutic Classification System
AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective -
Iberiotoxin-Induced Block of Kca Channels Induces Dihydropyridine
JPET Fast Forward. Published on January 24, 2003 as DOI: 10.1124/jpet.102.046102 JPET FastThis articleForward. has not Published been copyedited on and January formatted. 24,The final2003 version as DOI:10.1124/jpet.102.046102 may differ from this version. JPET/2002/46102 Iberiotoxin-induced Block of KCa Channels Induces Dihydropyridine Sensitivity of ACh Release from Mammalian Motor Nerve Terminals Downloaded from Michael T. Flink and William D. Atchison Department of Pharmacology & Toxicology jpet.aspetjournals.org Michigan State University E. Lansing, MI 48824 Address all correspondence including reprint requests to: at ASPET Journals on September 23, 2021 Dr. Bill Atchison Dept. Pharmacology & Toxicology Michigan State University B-331 Life Sciences Bldg. East Lansing, MI 48824-1317 Phone: (517) 353-4947 Fax: (517) 432-1341 Email: [email protected] 1 Copyright 2003 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on January 24, 2003 as DOI: 10.1124/jpet.102.046102 This article has not been copyedited and formatted. The final version may differ from this version. JPET/2002/46102 Running Title: KCa Channel Block and DHP-sensitivity of ACh Release at NMJ (59 spaces) Document Statistics: Text Pages: 15 Tables: 1 Figures: 5 References: 42 Downloaded from Abstract: 249 words Introduction: 760 words Discussion: 1241 jpet.aspetjournals.org at ASPET Journals on September 23, 2021 LIST OF ABBREVIATIONS: ACh, acetylcholine; BSA, bovine serum albumin; Cav, voltage-activated calcium channel; DAP, 3,4 diaminopyridine; DHP, dihydropyridine;EPP, end-plate potential; HEPES, N-2- hydroxyethylpiperazine-N-2-ethanesulfonic acid ; KCa, calcium-activated potassium; MEPP, miniature end-plate potential 2 JPET Fast Forward. -
The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins. -
Serum Progesterone Concentrations in Cows Receiving Embryo Transfers J
Serum progesterone concentrations in cows receiving embryo transfers J. F. Hasler, R. A. Bowen, L. D. Nelson and G. E. Seidel, Jr Animal Reproduction Laboratory, Colorado State University, Fort Collins, Colorado 80523, U.SA. Summary. Progesterone concentrations in systemic blood were determined by radio- immunoassay in crossbred cattle used as recipients in an embryo transfer pro- gramme. An embryo was transferred surgically to the uterine horn of 528 females which were in oestrus within one half-day of the donor. Jugular blood was obtained at the time embryos were transferred (3\p=n-\7days after oestrus) and again from most females between Days 9 and 14. Pregnancy was determined by rectal palpation 45\p=n-\ 65 days after oestrus. There were no significant differences between serum pro- gesterone levels of females which remained pregnant and those which did not. Out of 177 pregnant recipients, none had serum progesterone levels <0\m=.\5ng/ml on Days 10, 11, or 12 but in 8, values were <1\m=.\0ng/ml. Blood samples were also taken on Days 20, 21, or 22 from 113 of these recipients. The mean \m=+-\s.e.m. concentration of progesterone in the pregnant females (5\m=.\14\m=+-\0\m=.\34ng/ml) was significantly higher (P < 0\m=.\001)than in the non-pregnant females (1\m=.\17\m=+-\0\m=.\25ng/ml). The correlation coefficients between progesterone levels on Days 3, 4, 5 or 6 and 10\p=n-\12ranged from 0\m=.\18to 0\m=.\37(all P < 0\m=.\02).Progesterone levels were not related to length of the previous cycle, the time of day an animal was first noticed in oestrus or the side of the corpus luteum. -
Pharmaceuticals As Environmental Contaminants
PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational -
INTRAVENOUS ANAESTHESIA Dr
INTRAVENOUS ANAESTHESIA Dr. SK Sharma, Associate Professor General anaesthesia: It is the controlled, reversible intoxication of CNS producing unconsciousness with complete loss of sensory as well as motor reflexes. The common methods to induce GA in animals are by using inhalation and intravenous anaesthesia. The other not so common methods are oral. Per rectal, intramuscular, intra peritoneum etc. However out of these methods the most preferred method is intravenous anaesthesia. Intravenous anaesthesia: Intravenous anaesthesia in veterinary practice is primarily used for the induction of anaesthesia which is subsequently maintained by inhalation anaesthesia in small animals. However in large animals intravenous anaesthesia is mostly used for both induction as well as maintenance of anaesthesia. Advantages: 1. Easiness in administration. 2. Produces surgical anaesthesia with speed and pleasantness. 3. No sophisticated facilities are required as for inhalation anaesthesia. 4. Requires minimum equipment. 5. Economical Disadvantages: 1. Recovery depends upon the ability of the animal to redistribute, metabolize and excrete the anaesthetic drug. Very important in sick and debilitatedDr. animals. SK Sharma 2. Depth of anaesthesia cannot be decreased quickly unless you have an antagonist. 3. Recovery period may be longer depending upon the health status of the animal and the drug used. 4. Characteristic excitement and premature attempts to stand during recovery may be dangerous sometimes. 5. Long procedures can lead to severe physiological changes in the patient. 6. Oxygen and assisted controlled ventilation may not be available during emergency. 2 RUMONANTS ARE POOR SUBJECTS FOR INTRAVENOUS ANAESTHESIA. WHY? The ruminants are considered as poor subjects for general anaesthesia by any method because of many reasons as listed below: 1. -
The Pharmacologist 2 0 0 8 March
Vol. 50 Number 1 The Pharmacologist 2 0 0 8 March Happy Birthday ASPET!!! th 100 Anniversary Celebration Details Inside: Don’t Miss the ASPET Centennial Meeting At Experimental Biology 2008 April 5-9, 2008, San Diego Featuring: Exciting Opening Reception: DJ, Food, Drinks and more Special Centennial Symposia: Exciting topics from each division Centennial Store: Selling ASPET merchandise for the first time ever ASPET Birthday Party: A Street Festival in the Gaslamp District ASPET Student Fiesta: Band, Food, and Drinks Nobel Laureate Reception: For Students to meet Nobel Laureates Great Giveaways: Luggage Tags, Pins, Posters, Compendiums Abel Number Lounge: Look up your Abel Number Plus Much More!! Also Inside this Issue: ASPET Election Results ASPET Award Winners 2008 EB 2008 Program Grid Special Executive Officer Interview Abstracts from the Great Lakes Chapter and Southeastern Chapter Meetings A Publication of the American Society for 1 Pharmacology and Experimental Therapeutics - ASPET Volume 50 Number 1, 2008 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The PHARMACOLOGIST Editor Suzie Thompson EDITORIAL ADVISORY BOARD News Bryan F. Cox, Ph.D. Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. Election Results . page 3 COUNCIL Award Winners for 2008. page 4 President Kenneth P. Minneman, Ph.D. EB 2008 Program Grid . page 12 President-Elect ASPET Centennial Update . page 17 Joe A. Beavo, Ph.D. Past President Special Centennial Feature: The View From the Elaine Sanders-Bush, Ph.D. Executive Office . page 21 Secretary/Treasurer Annette E. Fleckenstein, Ph.D. Special Lecture: The Origin and Development of Secretary/Treasurer-Elect Behavioral Pharmacology . -
Activated K+ Channels in Rat Brain: Targeting to Axons and Nerve Terminals
The Journal of Neuroscience, February 1, 1996, 16(3):955-963 Distribution of High-Conductance Ca*+-Activated K+ Channels in Rat Brain: Targeting to Axons and Nerve Terminals Hans-Gtinther Knaus,’ Christoph Schwarzer, * Robert 0. A. Koch,’ Andreas Eberhatt,’ Gregory J. Kaczorowski,3 Hartmut Glossmann,’ Frank Wunder,4 Olaf Pongs,5 Maria L. Garcia,3 and Giinther Sperk* ‘Institut ftir Biochemische Pharmakologie, A-6020 Innsbruck, Austria, *Institut ftir Pharmakologie, Abteilung ftir Neuropharmakologie, A-6020 Innsbruck, Austria, 3Department of Membrane Biochemistry and Biophysics, Merck Research Laboratories, Rahway, New Jersey 07065, 41nstitute of Cardiovascular and Arteriosclerosis Research, Pharma Research Centre, Bayer AG, D-42096 Wuppetial-Elberfeld, Germany, and 5Zentrum fiir Molekulare Neurobiologie, lnstitut ftir Neurale Signalverarbeitung, D-20246 Hamburg, Germany Tissue expression and distribution of the high-conductance ramidal tract, as well as cerebellar Purkinje cells. In situ hybrid- Ca”-activated K+ channel S/o was investigated in rat brain by ization indicated high levels of S/o mRNA in the neocortex, immunocytochemistry, in situ hybridization, and radioligand olfactory system, habenula, striatum, granule and pyramidal binding using the novel high-affinity (Kd 22 PM) ligand cell layer of the hippocampus, and Purkinje cells. The distribu- [3H]iberiotoxin-D1 9C ([3H]lbTX-D1 9C), which is an analog of the tion of S/o protein was confirmed in microdissected brain areas selective maxi-K peptidyl blocker IbTX. A sequence-directed by Western blotting and radioligand-binding studies. The latter antibody directed against S/o revealed the expression of a 125 studies also established the pharmacological profile of neuro- kDa polypeptide in rat brain by Western blotting and precipi- nal S/o channels. -
Physiological Factors Affecting Ovine Uterine Estrogen and Progesterone Receptorconcentrations Redacted for Privacy Abstract Approved: W-A Fredrick Stormshak
AN ABSTRACT OF THE THESIS OF Patrice L. Prater for the degree of Master ofScience in Animal Science presented on November 14. 1990 Title: Physiological Factors Affecting Ovine Uterine Estrogen and Progesterone ReceptorConcentrations Redacted for Privacy Abstract Approved: w-A Fredrick Stormshak Two experiments were conducted todetermine whether in ewes uterine concentrationsof estrogen and progesterone receptors are affected by the presence of aconceptus or by the hormonal milieu associated withextremes in photoperiod to which ewes are exposed. In Exp.1, nine mature ewes were unilaterally ovariectomized by removing an ovary bearing the corpusluteum (CL). The ipsilateral uterine horn wasligated at the external bifurcation and a portion of theanterior ipsilateral uterine horn was removed and assayed forendometrial nuclear and cytosolic concentrations of estrogenreceptor (ER) and progesterone receptor (PR) by exchange assays. After a recovery estrous cycle, ewes werebred to a fertile ram. On day 18 of gestation a 10 ml jugular bloodsample was collected for measurement of serum concentrationsof estradiol -178 (E2) and progesterone by radioimmunoassay. Ewes were relaparotomized on day 18 and the remaining uterine tissue was removed. Endometrium from both the pregnant and nonpregnant uterine horn was assayed for nuclear and cytosolic ER and PR concentrations. Nuclear and cytosolic ER concentrations on day 10 of the cycle were greater than in endometrium of gravid and nongravid uterine horns on day 18 of gestation (p<.01). Endometrial nuclear PR levels were also greater on day 10 of the cycle than in the pregnant (p<.05) and nonpregnant horn (p<.01) on day 18 of gestation. There were no differences in nuclear and cytosolic ER and PR concentrations between the pregnant and nonpregnant uterine horn on day 18. -
The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-21-2004 The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest Donna Neumann University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Neumann, Donna, "The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest" (2004). University of New Orleans Theses and Dissertations. 1040. https://scholarworks.uno.edu/td/1040 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. THE DESIGN AND SYNTHESIS OF NOVEL BARBITURATES OF PHARMACEUTICAL INTEREST A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Donna M. Neumann B. A. University of New Orleans, 2000 May 2004 Dedicated to: My daughter, Madeline Megan Jenkins ii ACKNOWLEDGEMENTS I would like to express my utmost gratitude to my advisor, Professor Branko S. -
Akhtar Saeed Medical and Dental College, Lhr
STUDY GUIDE PHARMACOLOGY 3RD YEAR MBBS 2021 AKHTAR SAEED MEDICAL AND DENTAL COLLEGE, LHR 1 Table of contents s.No Topic Page No 1. Brief introduction about study guide 03 2. Study guide about amdc pharmacology 04 3. Learning objectives at the end of each topic 05-21 4. Pharmacology classifications 22-59 5. General pharmacology definitions 60-68 6. Brief introduction about FB PAGE AND GROUP 69-70 7. ACADEMIC CALENDER (session wise) 72 2 Department of pharmacology STUDY GUIDE? It is an aid to: • Inform students how student learnIng program of academIc sessIon has been organized • help students organIze and manage theIr studIes throughout the session • guIde students on assessment methods, rules and regulatIons THE STUDY GUIDE: • communIcates InformatIon on organIzatIon and management of the course • defInes the objectIves whIch are expected to be achIeved at the end of each topic. • IdentIfIes the learning strategies such as lectures, small group teachings, clinical skills, demonstration, tutorial and case based learning that will be implemented to achieve the objectives. • provIdes a lIst of learnIng resources such as books, computer assIsted learning programs, web- links, for students to consult in order to maximize their learning. 3 1. Learning objectives (at the end of each topic) 2. Sources of knowledge: i. Recommended Books 1. Basic and Clinical Pharmacology by Katzung, 13th Ed., Mc Graw-Hill 2. Pharmacology by Champe and Harvey, 2nd Ed., Lippincott Williams & Wilkins ii. CDs of Experimental Pharmacology iii. CDs of PHARMACY PRACTICALS iv. Departmental Library containing reference books & Medical Journals v. GENERAL PHARMACOLOGY DFINITIONS vi. CLASSIFICATIONS OF PHARMACOLOGY vii.