The Trade of Medicinal Animals in Brazil: Current Status and Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

The Trade of Medicinal Animals in Brazil: Current Status and Perspectives Biodivers Conserv (2013) 22:839–870 DOI 10.1007/s10531-013-0475-7 REVIEW PAPER The trade of medicinal animals in Brazil: current status and perspectives Felipe S. Ferreira • Hugo Fernandes-Ferreira • Nivaldo A. Le´o Neto • Samuel V. Brito • Roˆmulo R. N. Alves Received: 16 May 2012 / Accepted: 20 March 2013 / Published online: 29 March 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract In cities, the trade of medicinal products derived from animals, especially as raw materials, is concentrated in local and traditional markets. The lack of studies on commercialised medicinal faunas restricts an evaluation of the impact of this activity on the exploited species. Within this context, this work reviewed the literature on the trade of medicinal animals in local markets, focusing on urban zootherapy in Brazil and the social factors involved in these practices. Our results reveal that at least 131 species are sold for medicinal purposes in markets and open fairs in Brazil, but results obtained from statistical estimators suggest that this trade actually encompasses a greater richness of species. The medicinal animals sold in Brazil are used to treat 126 illnesses and/or symptoms. Despite the trade of wild animals, including species that are present on the list of endangered species, being forbidden in Brazil, it has been demonstrated that this activity remains common in some Brazilian cities, occurring illicitly and without due monitoring by competent environmental agencies. The results illustrate the need for further research, which should encompass a larger number of cities, especially in regions where information on this subject is currently lacking. Keywords Animal conservation Á Ethnozoology Á Traditional medicine Á Wildlife trade Á Zootherapy Introduction Urban centres are characterised by complex interactions of social, economic, cultural and environmental factors (Alberti 2005). The peculiarity of the urban centers helps preserve F. S. Ferreira (&) Á H. Fernandes-Ferreira Á N. A. Le´o Neto Á S. V. Brito Programa de Po´s-Graduac¸a˜o em Cieˆncias Biolo´gicas (Zoologia), Departamento de Sistema´tica e Ecologia, Centro de Cieˆncias Exatas e da Natureza, Universidade Federal da Paraı´ba (UFPB), Campus I, Joa˜o Pessoa, PB 58051-900, Brazil e-mail: [email protected] R. R. N. Alves Departamento de Biologia, Universidade Estadual da Paraı´ba, Campina Grande, PB, Brazil 123 840 Biodivers Conserv (2013) 22:839–870 traditions and knowledge regarding biodiversity, including its use for medicinal purposes (Ceuterick et al. 2008). The most commonly used products in traditional medicine come from animals and plants, and represent an important alternative to drugs from the phar- maceutical industry (Alves and Rosa 2005). In cities, the trade of medicinal products derived from plants and animals is concentrated in local markets or open fairs (Van den Berg 1984;Va´zquez et al. 2006; Albuquerque et al. 2007a; Alves and Rosa 2010; Alves and Alves 2011). Local markets are considered to be important centres for gathering, concentrating, storing and spreading empirical knowledge concerning the therapeutic use of the local biodiversity thus favouring the resilience and maintenance of knowledge about these medicinal species (Monteiro et al. 2010; Alves et al. 2013). The importance of these public markets and open fairs is not restricted to the mainte- nance and development of knowledge concerning the use of the biological resources for medicinal purposes. Albuquerque et al. (2007a) claim that public markets, on a small scale, may also represent the biodiversity of a region, allowing identification of extensive exploitation areas and providing information that will assist monitoring of regional biodiversity. Despite its cultural, socio-economic and environmental importance, few researchers have investigated the trade of biological resources in public markets and/or open fairs (Jain 2000). In the last decade, however, some research has been undertaken on this theme, especially with regard to medicinal plant markets, which has received the attention of many ethnobotanists (Williams et al. 2000; Albuquerque et al. 2007a; Monteiro et al. 2010; Mati and de Boer 2011). Nevertheless, the trade of animals for medicinal purposes has been largely overlooked in the literature, with this sort of trade only recently being brought to the attention of researchers (Va´zquez et al. 2006; Alves and Rosa 2007; Oliveira et al. 2010; Whiting et al. 2011; Ferreira et al. 2012; Ashwell and Walston 2008; Van and Tap 2008). The studies cited have revealed that extensive medicinal use of animal parts and products is sustained by a thriving trade in medicinal animals, conducted mainly by herbalists in markets (Alves et al. 2013). Connected to cultural and biological questions of animal trade, the socio-economic aspects are also essential to the maintenance of this activity. For salesmen (often known as herbalists, even if they also sell animal products) and suppliers (collectors and/or profiteers), the trade of medicinal animals represents an important source of income (Alves et al. 2008a). The lack of studies on traded medicinal faunas restricts an evaluation of the impact of this activity on the exploited species. As some authors recognise (Alves et al. 2007; Moura and Marques 2008), the exploitation of species for medicinal purposes may represent an additional pressure on wild fauna, although the influence of the medicinal use of these animals on the conservation of the involved species needs to be thoroughly investigated. Williams et al. (2007) stated that ethnobiological surveys carried out in public markets represent the first step towards the identification of priority species and the establishment of management plans. The trade of medicinal animals is routine practice in several countries around the world (Apaza et al. 2003; Soewu 2008; Whiting et al. 2011; Kang and Phipps 2003; Ashwell and Walston 2008, Alves et al. 2013). Due to the conservation status of many animal species sold for medicinal purposes (Alves and Rosa 2005; Alves 2008. Alves 2012), there are ecological, cultural, social and public health implications associated with their use (Alves et al. 2013). As a result of its faunal and cultural diversity, Brazil represents an excellent scenario for researching the trade of medicinal animals, a common practice in urban areas 123 Biodivers Conserv (2013) 22:839–870 841 of the country, which stand out as having a complex knowledge on the medicinal use of the fauna (Ferreira et al. 2012; Alves et al. 2009; Alves et al. 2013). Within this context, this work reviewed the literature on the trade of medicinal animals in local markets, focusing on urban zootherapy in Brazil and the social factors involved in these practices. The aims of this study were as follows: (i) to estimate the species richness of medicinal animals sold in Brazil; (ii) to evaluate the versatility of different animal species by calculating their relative importance value; (iii) to discuss the idea of utilitarian redundancy in the trade of animals in Brazil; (iv) to discuss those aspects that influence the choice of species for zootherapeutic product trading; and (v) argue about the conservation of species traded for medicinal purposes in Brazil. Materials and methods To examine the medicinal animal trade within Brazilian cities, we reviewed all the available references and reports on this topic. Information was gathered from published articles, books and book chapters, theses and dissertations, as well as from reports available in international online databases such as Science Direct (www.sciencedirect.com), Scirus (www.scirus.com), Google Scholar, Scopus (www.scopus.com), Web of Science (www.isiknowledge.com), and Biological Abstracts (science.thomsonreuters.com) using the following search terms:—medicinal animals ? trade ? Brazil—zootherapy ? com- mercialization ? Brazil, and—Wildlife trade ? Brazil. Information was compiled from 15 studies (undertaken between 1996 and 2012), which recorded the trade of medicinal fauna in 20 Brazilian cities (Fig. 1), from the following regions: Northeast (Crato, Juazeiro do Norte and Fortaleza [Ceara´ state]; Joa˜o Pessoa and Campina Grande [Paraı´ba state]; Sa˜o Luı´s [Maranha˜o state]; Teresina [Piauı´ state]; Recife, Caruaru and Santa Cruz do Capibaribe [Pernambuco state]; Maceio´ [Alagoas state]; Aracaju [Sergipe state]; Natal [Rio Grande do Norte state]; Feira de Santana and Salvador [Bahia state]); North (Bele´m [Para´ state] and Boa Vista [Roraima state]); Midwest (Planaltina, Guara´ and Sobradinho [Distrito Federal state]) (Almeida and Albuquerque 2002; Silva et al. 2004; Alves and Rosa 2007, 2010; Alves et al. 2008a, 2009, 2010; Freire 1996; Oliveira et al. 2010; Costa-Neto 1999; Andrade and Costa-Neto 2006; Pinto and Maduro 2003; Ferreira et al. 2009a, 2012; Costa Neto and Motta 2010). Only taxa identified to the species level were considered. A database of commercialised medicinal species was created, including the animal parts used and the diseases and/or symptoms treated. Those diseases cited in revised studies were categorised according to the International Classification of Diseases model suggested by the World Health Organization (WHO 2012). The disease categories listed by the WHO does not consider emic diseases (as ‘‘attract money’’, simpatias, evil eyes, etc.), for that reason we included an ‘‘undefined illnesses’’ category, which includes all citations for diseases with unspecific symptoms. For each city where research on the
Recommended publications
  • Electrophorus Electricus ERSS
    Electric Eel (Electrophorus electricus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, July 2018 Web Version, 8/21/2018 Photo: Brian Gratwicke. Licensed under CC BY-NC 3.0. Available: http://eol.org/pages/206595/overview. (July 2018). 1 Native Range and Status in the United States Native Range From Eschmeyer et al. (2018): “Distribution: Amazon and Orinoco River basins and other areas in northern Brazil: Brazil, Ecuador, Colombia, Bolivia, French Guiana, Guyana, Peru, Suriname and Venezuela.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From AquaScapeOnline (2018): “Electric Eel 24” (2 feet) (Electrophorus electricus) […] Our Price: $300.00” 1 The State of Arizona has listed Electrophorus electricus as restricted live wildlife. Restricted live wildlife “means wildlife that cannot be imported, exported, or possessed without a special license or lawful exemption” (Arizona Secretary of State 2006a,b). The Florida Fish and Wildlife Conservation Commission has listed the electric eel Electrophorus electricus as a prohibited species. Prohibited nonnative species, "are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities” (FFWCC 2018). The State of Hawaii Plant Industry Division (2006) includes Electrophorus electricus on its list of prohibited animals. From
    [Show full text]
  • Composition of the Ichthyofauna of the Igarapé Praquiquara, Castanhal, Eastern Amazon
    Revista del Instituto de Investigaciones de la Amazonía Peruana COMPOSITION OF THE ICHTHYOFAUNA OF THE IGARAPÉ PRAQUIQUARA, CASTANHAL, EASTERN AMAZON 1 1 RenataRafael Anaisce DAS CHAGAS , Mara1 Rúbia FERREIRA BARROS , 1 Wagner César ROSA DOS SANTOS1 , Alan Patrick SOUZA1 MIRANDA , FRANCO DOS SANTOS , Lucas1 BRASIL DUARTE , 1 Camila Maria BARBOSA PEREIRA , Geyseanne1 Suely TEIXEIRA1 NORONHA , Lorena Cristina1 Universidade DOS REIS Federal DE BRITORural da Amazônia, Marko (UFRA), HERRMANN Instituto Socioambiental e dos Recursos Hídricos (ISARH), Av. Presidente Tancredo Neves, 2501-Post Box nº 917, Bairro: Montese, CEP: 66077-530, Belém, Pará-Brazil. Correo electrónico: [email protected] ABSTRACT In the Amazon basin it is distributed the greatest diversity of freshwater fish in the world, but presents less than half of the species described and/or with little knowledge about its biology and distribution. This work presents the composition of the ichthyofauna Igarapé Praquiquara, located in the municipality of Castanhal, belonging to the Northeast Atlantic Hydrographic Region, Brazil, through collections were conducted in the years 2014 and 2015. A total number of 1,073 fish were sampled, belonging to five orders, 16 families, 35 genusBryconops and 42 giacopinnispecies. CharaciformesCyphocharax and gouldingi PerciformesAstyanax were the Geophagusmost predominant proximus orders, and SatanopercaCichlidae and jurupari Characidae were the most abundant families, and , , sp., the most abundant species. Igarapé Praquiquara is composed of species with moderate commercial interest for commercial aquariums, with the presence of species cultivated in other regions. A structural analysis of the igarapé fish community is recommended in order to identify which factors are responsible for the composition of the ichthyofauna present, as well as the influence of the dam on the dispersion, distribution and reproduction of species.
    [Show full text]
  • Electric Organ Electric Organ Discharge
    1050 Electric Organ return to the opposite pole of the source. This is 9. Zakon HH, Unguez GA (1999) Development and important in freshwater fish with water conductivity far regeneration of the electric organ. J exp Biol – below the conductivity of body fluids (usually below 202:1427 1434 μ μ 10. Westby GWM, Kirschbaum F (1978) Emergence and 100 S/cm for tropical freshwaters vs. 5,000 S/cm for development of the electric organ discharge in the body fluids, or, in resistivity terms, 10 kOhm × cm vs. mormyrid fish, Pollimyrus isidori. II. Replacement of 200 Ohm × cm, respectively) [4]. the larval by the adult discharge. J Comp Physiol A In strongly electric fish, impedance matching to the 127:45–59 surrounding water is especially obvious, both on a gross morphological level and also regarding membrane physiology. In freshwater fish, such as the South American strongly electric eel, there are only about 70 columns arranged in parallel, consisting of about 6,000 electrocytes each. Therefore, in this fish, it is the Electric Organ voltage that is maximized (500 V or more). In a marine environment, this would not be possible; here, it is the current that should be maximized. Accordingly, in Definition the strong electric rays, such as the Torpedo species, So far only electric fishes are known to possess electric there are many relatively short columns arranged in organs. In most cases myogenic organs generate electric parallel, yielding a low-voltage strong-current output. fields. Some fishes, like the electric eel, use strong – The number of columns is 500 1,000, the number fields for prey catching or to ward off predators, while of electrocytes per column about 1,000.
    [Show full text]
  • Ichthyofauna Used in Traditional Medicine in Brazil
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 474716, 16 pages doi:10.1155/2012/474716 Review Article Ichthyofauna Used in Traditional Medicine in Brazil Ana Carla Asfora El-Deir,1 Carolina Alves Collier,1 Miguel Santana de Almeida Neto,1 Karina Maria de Souza Silva,1 Iamara da Silva Policarpo,2 Thiago Antonio S. Araujo,´ 2 Romuloˆ Romeu Nobrega´ Alves,2 Ulysses Paulino de Albuquerque,3 and Geraldo Jorge Barbosa de Moura4 1 Laboratory of Fish Ecology, Department of Biology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil 2 Ethnozoology, Conservation and Biodiversity Research Group, Department of Biology, State University of Para´ıba, 581097-53 Campina Grande, Brazil 3 Laboratory of Applied Ethnobotany, Department of Biology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil 4 Laboratory of Herpetology and Paleoherpetology, Department of Biology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil Correspondence should be addressed to Ana Carla Asfora El-Deir, [email protected] Received 16 August 2011; Accepted 10 October 2011 Academic Editor: Maria Franco Trindade Medeiros Copyright © 2012 Ana Carla Asfora El-Deir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fish represent the group of vertebrates with the largest number of species and the largest geographic distribution; they are also used in different ways by modern civilizations. The goal of this study was to compile the current knowledge on the use of ichthyofauna in zootherapeutic practices in Brazil, including ecological and conservational commentary on the species recorded.
    [Show full text]
  • Redalyc. the Cytoskeleton of the Electric Tissue of Electrophorus
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Mermelstein dos Santos, Claudia; Costa, Manoel Luis; Neto Moura, Vivaldo The cytoskeleton of the electric tissue of Electrophorus electricus, L. Anais da Academia Brasileira de Ciências, vol. 72, núm. 3, set., 2000, pp. 341-351 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32772308 Abstract The electric eel Electrophorus electricus is a fresh water teleost showing an electrogenic tissue that produces electric discharges. This electrogenic tissue is distributed in three well-defined electric organs which may be found symmetrically along both sides of the eel. These electric organs develop from muscle and exhibit several biochemical properties and morphological features of the muscle sarcolema. This reviewexamines the contribution of the cytoskeletal meshwork to the maintenance of the polarized organization of the electrocyte, the cell that contains all electric properties of each electric organ. The cytoskeletal filaments display an important role in the establishment and maintenance of the highly specialized membrane model system of the electrocyte. As a muscular tissue, these electric organs expresses actin and desmin. The studies that characterized these cytoskeletal proteins and their implications on the electrophysiology of the electric tissues are revisited. Keywords Electrophorus electricus, cytoskeleton, desmin, actin, alpha-actinin, vinculin. How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative.
    [Show full text]
  • The Biology and Genetics of Electric Organ of Electric Fishes
    International Journal of Zoology and Animal Biology ISSN: 2639-216X The Biology and Genetics of Electric Organ of Electric Fishes Khandaker AM* Editorial Department of Zoology, University of Dhaka, Bangladesh Volume 1 Issue 5 *Corresponding author: Ashfaqul Muid Khandaker, Faculty of Biological Sciences, Received Date: November 19, 2018 Department of Zoology, Branch of Genetics and Molecular Biology, University of Published Date: November 29, 2018 DOI: 10.23880/izab-16000131 Dhaka, Bangladesh, Email: [email protected] Editorial The electric fish comprises an interesting feature electric organs and sense feedback signals from their called electric organ (EO) which can generate electricity. EODs by electroreceptors in the skin. These weak signals In fact, they have an electrogenic system that generates an can also serve in communication within and between electric field. This field is used by the fish as a carrier of species. But the strongly electric fishes produce electric signals for active sensing and communicating with remarkably powerful pulses. A large electric eel generates other electric fish [1]. The electric discharge from this in excess of 500 V. A large Torpedo generates a smaller organ is used for navigation, communication, and defense voltage, about 50 V in air, but the current is larger and the and also for capturing prey [2]. The power of electric pulse power in each case can exceed I kW [5]. organ varies from species to species. Some electric fish species can produce strong current (100 to 800 volts), The generating elements of the electric organs are especially electric eel and some torpedo electric rays are specialized cells termed electrocytes.
    [Show full text]
  • CBD Fifth National Report
    i ii GUYANA’S FIFTH NATIONAL REPORT TO THE CONVENTION ON BIOLOGICAL DIVERSITY Approved by the Cabinet of the Government of Guyana May 2015 Funded by the Global Environment Facility Environmental Protection Agency Ministry of Natural Resources and the Environment Georgetown September 2014 i ii Table of Contents ACKNOWLEDGEMENT ........................................................................................................................................ V ACRONYMS ....................................................................................................................................................... VI EXECUTIVE SUMMARY ......................................................................................................................................... I 1. INTRODUCTION .............................................................................................................................................. 1 1.1 DESCRIPTION OF GUYANA .......................................................................................................................................... 1 1.2 RATIFICATION AND NATIONAL REPORTING TO THE UNCBD .............................................................................................. 2 1.3 BRIEF DESCRIPTION OF GUYANA’S BIOLOGICAL DIVERSITY ................................................................................................. 3 SECTION I: STATUS, TRENDS, THREATS AND IMPLICATIONS FOR HUMAN WELL‐BEING ...................................... 12 2. IMPORTANCE OF BIODIVERSITY
    [Show full text]
  • Reproductive Cycle of E Cycle of Mellita Quinquiesperf
    Reproductive cycle of Mellita quinquiesperforata (Leske) (Echinodermata, Echinoidea) in two contrasting beach environments Yara A. G. Tavares & Carlos A. Borzone Centro de Estudos do Mar, Universidade Federal do Paraná. Avenida Beira Mar, Caixa Postal 50002, 832555-000 Pontal do Paraná, Paraná, Brasil. E-mail: [email protected]; [email protected] ABSTRACT. The reproductive cycle of the irregular echinoid Mellita quinquiesperforata (Leske, 1778) was studied in populations from two sand beaches with different morphodynamic conditions in Parana coast, from February 1992 through July 1994. Gametogenesis was described by histological and gonad index methods and the differ- ences between both populations were observed in the extension of nutrient storage and spawning period. Both populations exhibited a main reproductive period during spring/summer and a nutrient storage period during autumn/winter months. The spawning period at the intermediate-dissipative beach was shorter than at the reflective beach. Meanwhile, a nutrient storage stage was more extensive in the latter. Gonad index varied between both sexes and it was influenced by population characteristics. Different strategies in allocation of resources between maintenance and reproduction effort (oocyte size) confirm the high adaptive plasticity developed by this species to live in contrasting beach environments. KEY WORDS. Reproductive plasticity; sand dollar; sandy beach. RESUMO. Reprodução de Mellita quinquiesperforata (Leske) (Echinodermatamata, Echinoidea) em dois ecossistemas praiais contrastantes. O ciclo reprodutivo do equinóide irregular Mellita quinquiesperforata (Leske, 1778) foi estudado em populações de duas praias com diferentes condições morfodinâmicas na costa paranaense, de fevereiro de 1992 a julho de 1994. A gametogênese foi descrita pela análise histológica das gônadas e pela variação do índice gonadal.
    [Show full text]
  • Sodium Channel Genes and the Evolution of Diversity in Communication Signals of Electric Fishes: Convergent Molecular Evolution
    Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution Harold H. Zakon†‡§, Ying Lu†, Derrick J. Zwickl¶, and David M. Hillis¶ Sections of †Neurobiology and ¶Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; and ‡Bay Paul Center for Comparative and Molecular Biology, Marine Biological Laboratory, Woods Hole, MA 02543 Communicated by Gene E. Robinson, University of Illinois at Urbana–Champaign, Urbana, IL, January 6, 2006 (received for review November 10, 2005) We investigated whether the evolution of electric organs and Recent studies have shown remarkable convergent evolution electric signal diversity in two independently evolved lineages of at the morphological level in a number of taxa (11–14). The electric fishes was accompanied by convergent changes on the extent to which morphological convergence is accompanied by molecular level. We found that a sodium channel gene (Nav1.4a) convergent molecular change is an interesting question and one that is expressed in muscle in nonelectric fishes has lost its expres- that can be profitably addressed by comparing the evolution of sion in muscle and is expressed instead in the evolutionarily novel ion channel genes underlying the EOD in both lineages of electric organ in both lineages of electric fishes. This gene appears electric fish. ϩ to be evolving under positive selection in both lineages, facilitated We focused on Na channel genes because the EOD in at least by its restricted expression in the electric organ. This view is one species of gymnotiform is shaped by the properties of the EO ϩ reinforced by the lack of evidence for selection on this gene in one Na current (10) and because of the wealth of information on electric species in which expression of this gene is retained in channel structure͞function from site-directed mutagenesis and muscle.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
    New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).
    [Show full text]
  • The Echinoderm Newsletter
    ! ""'".--'"-,,A' THE ECHINODERM NEWSLETTER NUlIlber 24. 1999 Editor: Cynthia Ahearn Smithsonian Institution National Museum of Natural History Room W-31S, Mail Stop 163 Washington D.C. 20560-0163 U.S.A. [email protected] Distributed by: David Pawson Smithsonian Institution National Museum of Natural History Room W-323, Mail Stop 163 Washington D.C. 20560-0163 U.S.A. The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests, and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name, address and research interests to the editor. scientific literature. and a published document. Koehler, 1899 '•.:.•/'i9 VIRTUAL ECHINODERM NEWSLETTER http://www.nmnh.si.edu/iz/echinoderm • TABLE OF CONTENTS Echinoderm Specialists Addresses; (p-); Fax (f-); e-mail numbers 1 Current Research 39 Papers Presented at Meetings (by country or region) Algeria 63 Australia 64 Europe. .................................................................64 Hong Kong 67 India 67 Jamaica ',' 67 Malaysia 68 Mexico 68 New Zealand 68 Pakistan 68 Russia 68 South America 69 United States 69 Papers Presented at Meetings (by conference) SYmposium on Cenozoic Paleobiology, Florida 71 Annual Meeting of Society for Integrative and Comparative Biology 71 Sixty-Ninth Annual Meeting of the Zoological Society of Japan 73 XIX Congreso de Ciencias del Mar, Chile 76 Evo 1uti on '99......................................................... 77 Fifth Florida Echinoderm Festival 78 10th International Echinoderm Conference 79 Theses and Dissertations 80 Announcements, Notices and Conference Announcements 86 Information Requests and Suggestions 88 Ailsa's Section Contribution by Lucia Campos-Creasey 90 Echinoderms in Literature 91 How I Began Studying Echinoderms - part 9 92 Obituaries Maria da Natividade Albuquerque 93 Alan S.
    [Show full text]