Ecological Niche
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Niche Construction in Interdisciplinary Focus
Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Human niche construction in interdisciplinary focus Jeremy Kendal, Jamshid J. Tehrani and John Odling-Smee Phil. Trans. R. Soc. B 2011 366, 785-792 doi: 10.1098/rstb.2010.0306 References This article cites 46 articles, 16 of which can be accessed free http://rstb.royalsocietypublishing.org/content/366/1566/785.full.html#ref-list-1 Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;366/1566/785 Subject collections Articles on similar topics can be found in the following collections behaviour (1807 articles) evolution (2433 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2011 The Royal Society Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Phil. Trans. R. Soc. B (2011) 366, 785–792 doi:10.1098/rstb.2010.0306 Introduction Human niche construction in interdisciplinary focus Jeremy Kendal1,*, Jamshid J. Tehrani1 and John Odling-Smee2 1Centre for the Coevolution of Biology and Culture, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK 2School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford OX2 6PE, UK Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. -
The Importance of Herbivore Density and Management As Determinants
1 The importance of herbivore density and management as 2 determinants of the distribution of rare plant species 3 James D. M. Speed* & Gunnar Austrheim 4 NTNU University Museum 5 Norwegian University of Science and Technology 6 NO-7491 Trondheim 7 Norway 8 *Correspondence: 9 +47 73592251 10 [email protected] 11 12 Speed, J.D.M. & Austrheim, G. (2017) The importance of herbivore density and management as 13 determinants of the distribution of rare plant species. Biological Conservation, 205, 77-84. 14 Post-print: Final version available here http://dx.doi.org/10.1016/j.biocon.2016.11.030 15 16 Abstract 17 Herbivores are often drivers of ecosystem states and dynamics and in many situations are managed 18 either as livestock or through controlled or exploitative hunting of wild populations. Changes in 19 herbivore density can affect the composition of plant communities. Management of herbivore 20 densities could therefore be regulated to benefit plant species of conservation concern. In this study 21 we use a unique spatial dataset of large herbivores in Norway to test whether herbivore density 22 affects the distribution of rare red-listed plant species in tundra ecosystems, and to identify regions 23 where herbivore density is the most important factor in determining the habitat suitability for the 24 plant species. For all selected species a climatic variable was the most important determinant of the 25 distribution, but herbivore density was an important determinant of some species notably Primula 26 scandinavica. Herbivore density was the most important factor determining habitat suitability for this 27 species in 13% of mainland Norway. -
Evidence from Fossil Crustaceans in Cold-Water C
Klompmaker et al. BMC Evolutionary Biology (2016) 16:132 DOI 10.1186/s12862-016-0694-0 RESEARCH ARTICLE Open Access Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold- water coral and tropical coral ecosystems Adiël A. Klompmaker1,2,3*, Sten L. Jakobsen4 and Bodil W. Lauridsen5 Abstract Background: Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. Results: We show that decapod biodiversity is higher in fossiltropicalreefsfromTheNetherlands,Italy,and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. -
Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. -
Species-Habitat Associations
Species-Habitat associations Spatial Data • Predictive Models • Ecological Insights Jason Matthiopoulos • John Fieberg • Geert Aarts 2 Suggested Citation: Matthiopoulos, Jason; Fieberg, John; Aarts, Geert. (2020). Species-Habitat Associations: Spatial data, predictive models, and ecological insights. University of Minnesota Libraries Publishing. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/217469. Related Works: A copy of the book, which we plan to continuously update (with new versions in the future) can be accessed in gitbook format at: https://bookdown.org/jfieberg/SHABook/. Cover photograph: Guanacos, a camelid native to South America, grazing in Torres del Paine National Park in the Pantagonia region of Chile. ©Gary R. Jensen, www.GaryRobertPhotography.com. License: This work, other than the cover photo, is licensed under a Creative Commons Attribution 4.0 International License. ISBN: 978-1-946135-68-1 Edition 1 Contents 5 About the Authors 6 Jason Matthiopoulos . .6 John Fieberg . .6 Geert Aarts . .6 Acknowledgments 7 Abbreviations 8 Glossary 9 Notation 15 Preface 16 0.1 A “live” project . 16 0.2 Audience . 16 0.3 Objectives . 17 0.4 Why is this book unique? . 17 0.5 Why model species habitat associations? . 18 I Fundamental concepts and methods 20 1 The ecology behind species-habitat-association models 21 1.1 Objectives . 21 1.2 How do living beings “see” the world around them? . 21 1.3 What is a habitat? . 23 1.4 What is a species-habitat association? . 24 1.5 What mechanisms drive habitat-mediated changes in species densities? . 26 1.6 When is species density a reliable reflection of habitat suitability? . -
The Political Biogeography of Migratory Marine Predators
1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA. -
Host-Plant Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima. -
Regional Neutrality Evolves Through Local Adaptive Niche Evolution
Regional neutrality evolves through local adaptive niche evolution Mathew A. Leibolda,1, Mark C. Urbanb, Luc De Meesterc, Christopher A. Klausmeierd,e,f, and Joost Vanoverbekec aDepartment of Biology, University of Florida, Gainesville, FL 32611; bDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269; cDepartment of Biology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; dKellogg Biological Station, Michigan State University, Hickory Corners, MI 49060; eDepartment of Plant Biology, Michigan State University, Hickory Corners, MI 49060; and fProgram in Ecology, Evolutionary Biology & Behavior, Michigan State University, Hickory Corners, MI 49060 Edited by Nils C. Stenseth, University of Oslo, Oslo, Norway, and approved December 11, 2018 (received for review May 22, 2018) Biodiversity in natural systems can be maintained either because Past theoretical work in this area suggests that, depending on niche differentiation among competitors facilitates stable coexis- assumptions, the effects of local adaptation can either cause com- tence or because equal fitness among neutral species allows for peting species to diverge (17) or converge (18–22) in niche traits, their long-term cooccurrence despite a slow drift toward extinc- facilitating niche partitioning or neutral cooccurrence of species, tion. Whereas the relative importance of these two ecological respectively. This research, however, neglects the regional scale mechanisms has been well-studied in the absence of evolution, the and the process by which communities assemble through re- role of local adaptive evolution in maintaining biological diversity peated colonization, extinction, and competition.Taking this through these processes is less clear. Here we study the contribu- more regional perspective, local adaptive evolution can generate tion of local adaptive evolution to coexistence in a landscape of evolution-mediated priority effects wherein early colonizers adapt to interconnected patches subject to disturbance. -
Occupied and Abandoned Structures from Ecosystem Engineering Differentially Facilitate Stream Community Colonization 1, 1 1 BENJAMIN B
Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization 1, 1 1 BENJAMIN B. TUMOLO , LINDSEY K. ALBERTSON, WYATT F. CROSS, 2 3 MELINDA D. DANIELS, AND LEONARD S. SKLAR 1Department of Ecology, Montana State University, P.O. Box 173460, Bozeman, Montana 59717 USA 2Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA 3Department of Geography, Planning and Environment, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, Quebec, Canada Citation: Tumolo, B. B., L. K. Albertson, W. F. Cross, M. D. Daniels, and L. S. Sklar. 2019. Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization. Ecosphere 10(5):e02734. 10.1002/ecs2.2734 Abstract. Ecosystem engineers transform habitats in ways that facilitate a diversity of species; however, few investigations have isolated short-term effects of engineers from the longer-term legacy effects of their engineered structures. We investigated how initial presence of net-spinning caddisflies (Hydropsychidae) and their structures that provide and modify habitat differentially influence benthic community coloniza- tion in a headwater stream by conducting an in situ experiment that included three treatments: (1) initial engineering organism with its habitat modification structure occupied (hereafter caddisfly); (2) initial habi- tat modification structure alone (hereafter silk); and (3) a control with the initial absence of both engineer and habitat modification structure (hereafter control). Total invertebrate colonization density and biomass was higher in caddisfly and silk treatments compared to controls (~25% and 35%, respectively). However, finer-scale patterns of taxonomy revealed that density for one of the taxa, Chironomidae, was ~19% higher in caddisfly compared to silk treatments. -
Genetic Diversity, Population Structure, and Effective Population Size in Two Yellow Bat Species in South Texas
Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas Austin S. Chipps1, Amanda M. Hale1, Sara P. Weaver2,3 and Dean A. Williams1 1 Department of Biology, Texas Christian University, Fort Worth, TX, United States of America 2 Biology Department, Texas State University, San Marcos, TX, United States of America 3 Bowman Consulting Group, San Marcos, TX, United States of America ABSTRACT There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. -
Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence. -
Multilocus Estimation of Divergence Times and Ancestral Effective Population Sizes of Oryza Species and Implications for the Rapid Diversification of the Genus
Research Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus Xin-Hui Zou1, Ziheng Yang2,3, Jeff J. Doyle4 and Song Ge1 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; 2Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; 3Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK; 4Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA Summary Author for correspondence: Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of Song Ge the divergence times and ancestral effective population sizes of major lineages in Oryza are Tel: +86 10 62836097 challenging. Email: [email protected] We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Received: 2 January 2013 Oryza to investigate the divergence times through extensive relaxed molecular clock analyses Accepted: 8 February 2013 and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. New Phytologist (2013) 198: 1155–1164 We estimated that Oryza originated in the middle Miocene (c.13–15 million years ago; doi: 10.1111/nph.12230 Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes Key words: divergence time, Oryza, popula- occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza.