Results on Martin's Conjecture by Patrick Lutz a Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Results on Martin's Conjecture by Patrick Lutz a Dissertation Results on Martin’s Conjecture by Patrick Lutz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Theodore Slaman, Chair Professor Antonio Montalbán Professor John Steel Spring 2021 Results on Martin’s Conjecture Copyright 2021 by Patrick Lutz 1 Abstract Results on Martin’s Conjecture by Patrick Lutz Doctor of Philosophy in Mathematics University of California, Berkeley Professor Theodore Slaman, Chair Martin’s conjecture is an attempt to classify the behavior of all definable functions on the Turing degrees under strong set theoretic hypotheses. Very roughly it says that every such function is either eventually constant, eventually equal to the identity function or eventually equal to a transfinite iterate of the Turing jump. It is typically divided into two parts: the first part states that every function is either eventually constant or eventually above the identity function and the second part states that every function which is above the identity is eventually equal to a transfinite iterate of the jump. If true, it would provide an explanation for the unique role of the Turing jump in computability theory and rule out many types of constructions on the Turing degrees. In this thesis we will introduce a few tools which we use to prove several cases of Martin’s conjecture. It turns out that both these tools and these results on Martin’s conjecture have some interesting consequences both for Martin’s conjecture and for a few related topics. The main tool that we introduce is a basis theorem for perfect sets, improving a theorem due to Groszek and Slaman [GS98]. We also introduce a general framework for proving certain special cases of Martin’s conjecture which unifies a few pre-existing proofs. We will use these tools to prove three main results about Martin’s conjecture: that it holds for regressive functions on the hyperarithmetic degrees (answering a question of Slaman and Steel), that part 1 holds for order preserving functions on the Turing degrees, and that part 1 holds for a class of functions that we introduce, called measure preserving functions. This last result has several interesting consequences for the study of Martin’s conjecture. In particular, it shows that part 1 of Martin’s conjecture is equivalent to a statement about the Rudin-Keisler order on ultrafilters on the Turing degrees. This suggests several possible strategies for working on part 1 of Martin’s conjecture, which we will discuss. The basis theorem that we use to prove these results also has some applications outside of Martin’s conjecture. We will use it to prove a few theorems related to Sacks’ question about 2 whether it is provable in ZFC that every locally countable partial order of size continuum embeds into the Turing degrees. We will show that in a certain extension of ZF (which is incompatible with ZFC), this holds for all partial orders of height two, but not for all partial orders of height three. We will also present an obstacle to embedding height three partial orders into the Turing degrees in ZFC which shows that one of the most natural ways of trying to do so cannot work. We will end the thesis with a list of open questions related to Martin’s conjecture, which we hope will stimulate further research. i Contents Contents i 1 Introduction 1 1.1 Motivation: Natural Functions on the Turing Degrees ............. 2 1.2 The Martin Order and the Martin Measure ................... 4 1.3 The Axiom of Determinacy ........................... 8 1.4 Statement of Martin’s Conjecture ........................ 14 1.5 Special Cases of Martin’s Conjecture ...................... 16 1.6 Martin’s Conjecture on Other Degree Structures . 19 1.7 Summary of What’s Known ........................... 24 2 Tools 25 2.1 A Framework for Proving Instances of Part 1 of Martin’s Conjecture . 26 2.2 Ordinal Invariants of Turing Degrees ...................... 31 2.3 A Basis Theorem for Perfect Sets ........................ 33 2.4 The Solecki Dichotomy .............................. 39 1 2.5 Σ1-bounding and Pseudo-Wellorders ...................... 43 2.6 Minimal Upper Bounds .............................. 44 3 Uniformly Invariant Functions 47 3.1 Local Martin’s Conjecture ............................ 49 3.2 A Local Solution to Sacks’ Problem for Uniformly Invariant R.E. Operators 51 3.3 A Local Version of Part 2? ............................ 54 4 Regressive Functions 57 4.1 Regressive Functions on the Hyperarithmetic Degrees: AD Case . 59 4.2 Regressive Functions on the Hyperarithmetic Degrees: Borel Case . 65 5 Measure Preserving Functions 68 5.1 Equivalent Definitions of Measure Preserving . 70 5.2 Warm-up: Regressive Measure Preserving Functions . 74 5.3 Part 1 of Martin’s Conjecture for Measure Preserving Functions . 75 ii 5.4 Part 1 of Martin’s Conjecture for Measure Preserving Functions: AD Proof . 78 5.5 Other Degree Structures ............................. 81 5.6 Non-invariant Functions ............................. 83 5.7 ZFC Counterexample ............................... 84 5.8 Application to Part 2 of Martin’s Conjecture . 86 5.9 Martin’s Conjecture and the Rudin-Keisler Order . 89 5.10 The Lebesgue and Baire Ultrafilters ....................... 92 5.11 Generic Ultrapowers and Forcing with Positive Sets . 96 6 Order Preserving Functions 100 6.1 Order Preserving Functions are Measure Preserving . 101 6.2 Three Proofs of Part 1 of Martin’s Conjecture for Order Preserving Functions 102 6.3 Ultrapowers by the Martin Measure . 106 6.4 ZFC Counterexample ............................... 108 7 Application 1: Sacks’ Question on Embedding Partial Orders Into the Turing Degrees 110 7.1 Embedding Height Two Partial Orders: ZFC Case . 111 7.2 Embedding Height Two Partial Orders: ADR Case . 115 7.3 Nonembedding for Height Three Partial Orders: ADR Case . 116 7.4 Obstacles to Embedding Partial Orders in the Turing Degrees . 118 8 Application 2: The Theory of Locally Countable Borel Quasi Orders 120 8.1 Turing Reducibility is not a Universal Locally Countable Borel Quasi Order 122 8.2 Borel Quasi Orders of Finite Height . 125 9 Open Questions 130 Bibliography 135 iii Acknowledgments I have always been a fan of expansive acknowledgments sections. I like the brief glimpse it gives you into the author’s personal life and the sense it gives of the network of human relationships in which research typically takes place. I also like the idea that some of the people thanked in the acknowledgments may stumble onto the work months or years later and feel happy to see their name. Still, a long acknowledgments section carries a risk. Paradoxically, the more people you thank, the greater the risk that you have left someone out. When you thank only your advisor and your parents, there is no chance that you have forgotten anyone. Not so when you thank dozens of people. So though I will thank many people in this section, I am sure I will forget many others. If you come across this thesis months or years from now and feel that your name deserves to be included in these acknowledgments, you are probably right and I’m sorry for leaving you out. I believe that the two most important factors in the graduate school experience are one’s advisor and one’s fellow graduate students. I was lucky on both accounts. My advisor, Ted Slaman, has always been incredibly kind to me. He has also been incredibly patient with me (maybe too patient) as I took time in grad school to pursue all my intellectual interests, both mathematical and non-mathematical. He has also given me many valuable insights into computability theory and mathematical logic. I have learned a tremendous amount, both about mathematics and about life, from my fellow grad students. I am grateful for Benny Siskind for taking me to a coffee shop on my first day of grad school and telling me about the existence of research seminars and for being a good friend and research collaborator throughout grad school. Izaak Meckler and German Stefanich have both greatly influenced my perspective on mathematics and I have been inspired by their enthusiasm and fearlessness when pursuing mathematical ideas. Chris and Wendy have been dear friends and great office-mates. James Walsh was a good friend and a great research collaborator. Rahul and Ravi have always been sources of thought-provoking conversations. I enjoyed working on stuff in Lean with Thomas and Jordan and I am sorry I had to take a break from it this semester (in part to write this thesis). I am proud to be in the same cohort as Milind, Ritvik, Mario, Yanhe, Mariel, Joe, Leon, Nic, Mariana and too many others to mention. I am also grateful to all the other logic students at Berkeley: James, Reid, Kentaro, Benny, Yifeng, Ben, Mariana, Adele, David Casey, Jacopo, Matthew, Diego, Guillaume, Scott, David Gonzalez, Ahmee, Jordan, Ronan and Shoshana. They have been good friends, teachers and sources of interesting ideas and discussions. I would also like to thank all the grad students from outside Berkeley who befriended me and taught me many things about math and logic, especially Jiachen, Wei Quan, Chieu-Minh and Jun Le. This thesis wouldn’t exist without my research collaborators—James, Benny, Vittorio and Kojiro. A few other people have also played a key role in shaping the research in this thesis. Ted, of course, but also especially Gabe Goldberg, Takayuki Kihara, Andrew Marks iv and Steffen Lempp. I would like to thank Gabe and Benny especially for putting up with dozens of hours of phone calls from me throughout the pandemic. I have been lucky to have had many good teachers and mentors throughout my life.
Recommended publications
  • Global Properties of the Turing Degrees and the Turing Jump
    Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman¤ Department of Mathematics University of California, Berkeley Berkeley, CA 94720-3840, USA [email protected] Abstract We present a summary of the lectures delivered to the Institute for Mathematical Sci- ences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D. 1 Introduction This note summarizes the tutorial delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic on the structure of the Turing degrees. The tutorial gave a survey on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D. There is a glaring open problem in this area: Is there a nontrivial automorphism of the Turing degrees? Though such an automorphism was announced in Cooper (1999), the construction given in that paper is yet to be independently verified. In this pa- per, we regard the problem as not yet solved. The Slaman-Woodin Bi-interpretability Conjecture 5.10, which still seems plausible, is that there is no such automorphism. Interestingly, we can assemble a considerable amount of information about Aut(D), the automorphism group of D, without knowing whether it is trivial. For example, we can prove that it is countable and every element is arithmetically definable. Further, restrictions on Aut(D) lead us to interesting conclusions concerning definability in D.
    [Show full text]
  • A Bounded Jump for the Bounded Turing Degrees
    A bounded jump for the bounded Turing degrees Bernard A. Anderson Barbara F. Csima ∗ Department of Pure Mathematics Department of Pure Mathematics University of Waterloo University of Waterloo [email protected] [email protected] www.math.uwaterloo.ca/∼b7anders www.math.uwaterloo.ca/∼csima Abstract b We define the bounded jump of A by A = fx 2 ! j 9i ≤ x['i(x) # A'i(x) nb ^ Φx (x)#]g and let A denote the n-th bounded jump. We demon- strate several properties of the bounded jump, including that it is strictly increasing and order preserving on the bounded Turing (bT ) degrees (also known as the weak truth-table degrees). We show that the bounded jump is related to the Ershov hierarchy. Indeed, for n ≥ 2 we have nb n nb X ≤bT ; () X is ! -c.e. () X ≤1 ; , extending the classical 0 result that X ≤bT ; () X is !-c.e.. Finally, we prove that the ana- logue of Shoenfield inversion holds for the bounded jump on the bounded b 2b Turing degrees. That is, for every X such that ; ≤bT X ≤bT ; , there b b is a Y ≤bT ; such that Y ≡bT X. 1 Introduction In computability theory, we are interested in comparing the relative computa- tional complexities of infinite sets of natural numbers. There are many ways of doing this, and which method is used often depends on the purpose of the study, or how fine a comparison is desired. Two sets of the same computational com- plexity (X ≤ Y and Y ≤ X) are said to be in the same degree.
    [Show full text]
  • Annals of Pure and Applied Logic Extending and Interpreting
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 161 (2010) 775–788 Contents lists available at ScienceDirect Annals of Pure and Applied Logic journal homepage: www.elsevier.com/locate/apal Extending and interpreting Post's programmeI S. Barry Cooper Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK article info a b s t r a c t Article history: Computability theory concerns information with a causal – typically algorithmic – Available online 3 July 2009 structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as MSC: real numbers, and its algorithmic infrastructure. Having characterised the close connection 03-02 between the quantifier type of a real and the Turing jump operation, he looked for more 03A05 03D25 subtle ways in which information entails a particular causal context. Specifically, he wanted 03D80 to find simple relations on reals which produced richness of local computability-theoretic structure. To this extent, he was not just interested in causal structure as an abstraction, Keywords: but in the way in which this structure emerges in natural contexts. Post's programme was Computability the genesis of a more far reaching research project. Post's programme In this article we will firstly review the history of Post's programme, and look at two Ershov hierarchy Randomness interesting developments of Post's approach. The first of these developments concerns Turing invariance the extension of the core programme, initially restricted to the Turing structure of the computably enumerable sets of natural numbers, to the Ershov hierarchy of sets.
    [Show full text]
  • THERE IS NO DEGREE INVARIANT HALF-JUMP a Striking
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 10, October 1997, Pages 3033{3037 S 0002-9939(97)03915-4 THERE IS NO DEGREE INVARIANT HALF-JUMP RODNEY G. DOWNEY AND RICHARD A. SHORE (Communicated by Andreas R. Blass) Abstract. We prove that there is no degree invariant solution to Post's prob- lem that always gives an intermediate degree. In fact, assuming definable de- terminacy, if W is any definable operator on degrees such that a <W (a) < a0 on a cone then W is low2 or high2 on a cone of degrees, i.e., there is a degree c such that W (a)00 = a for every a c or W (a)00 = a for every a c. 00 ≥ 000 ≥ A striking phenomenon in the early days of computability theory was that every decision problem for axiomatizable theories turned out to be either decidable or of the same Turing degree as the halting problem (00,thecomplete computably enumerable set). Perhaps the most influential problem in computability theory over the past fifty years has been Post’s problem [10] of finding an exception to this rule, i.e. a noncomputable incomplete computably enumerable degree. The problem has been solved many times in various settings and disguises but the so- lutions always involve specific constructions of strange sets, usually by the priority method that was first developed (Friedberg [2] and Muchnik [9]) to solve this prob- lem. No natural decision problems or sets of any kind have been found that are neither computable nor complete. The question then becomes how to define what characterizes the natural computably enumerable degrees and show that none of them can supply a solution to Post’s problem.
    [Show full text]
  • Uniform Martin's Conjecture, Locally
    Uniform Martin's conjecture, locally Vittorio Bard July 23, 2019 Abstract We show that part I of uniform Martin's conjecture follows from a local phenomenon, namely that if a non-constant Turing invariant func- tion goes from the Turing degree x to the Turing degree y, then x ≤T y. Besides improving our knowledge about part I of uniform Martin's con- jecture (which turns out to be equivalent to Turing determinacy), the discovery of such local phenomenon also leads to new results that did not look strictly related to Martin's conjecture before. In particular, we get that computable reducibility ≤c on equivalence relations on N has a very complicated structure, as ≤T is Borel reducible to it. We conclude rais- ing the question Is part II of uniform Martin's conjecture implied by local phenomena, too? and briefly indicating a possible direction. 1 Introduction to Martin's conjecture Providing evidence for the intricacy of the structure (D; ≤T ) of Turing degrees has been arguably one of the main concerns of computability theory since the mid '50s, when the celebrated priority method was discovered. However, some have pointed out that if we restrict our attention to those Turing degrees that correspond to relevant problems occurring in mathematical practice, we see a much simpler structure: such \natural" Turing degrees appear to be well- ordered by ≤T , and there seems to be no \natural" Turing degree strictly be- tween a \natural" Turing degree and its Turing jump. Martin's conjecture is a long-standing open problem whose aim was to provide a precise mathemat- ical formalization of the previous insight.
    [Show full text]
  • Independence Results on the Global Structure of the Turing Degrees by Marcia J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume INDEPENDENCE RESULTS ON THE GLOBAL STRUCTURE OF THE TURING DEGREES BY MARCIA J. GROSZEK AND THEODORE A. SLAMAN1 " For nothing worthy proving can be proven, Nor yet disproven." _Tennyson Abstract. From CON(ZFC) we obtain: 1. CON(ZFC + 2" is arbitrarily large + there is a locally finite upper semilattice of size u2 which cannot be embedded into the Turing degrees as an upper semilattice). 2. CON(ZFC + 2" is arbitrarily large + there is a maximal independent set of Turing degrees of size w,). Introduction. Let ^ denote the set of Turing degrees ordered under the usual Turing reducibility, viewed as a partial order ( 6Î),< ) or an upper semilattice (fy, <,V> depending on context. A partial order (A,<) [upper semilattice (A, < , V>] is embeddable into fy (denoted A -* fy) if there is an embedding /: A -» <$so that a < ft if and only if/(a) </(ft) [and/(a) V /(ft) = /(a V ft)]. The structure of ty was first investigted in the germinal paper of Kleene and Post [2] where A -» ty for any countable partial order A was shown. Sacks [9] proved that A -» öDfor any partial order A which is locally finite (any point of A has only finitely many predecessors) and of size at most 2", or locally countable and of size at most u,. Say X C fy is an independent set of Turing degrees if, whenever x0, xx,...,xn E X and x0 < x, V x2 V • • • Vjcn, there is an / between 1 and n so that x0 = x¡; X is maximal if no proper extension of X is independent.
    [Show full text]
  • Sets of Reals with an Application to Minimal Covers Author(S): Leo A
    A Basis Result for ∑0 3 Sets of Reals with an Application to Minimal Covers Author(s): Leo A. Harrington and Alexander S. Kechris Source: Proceedings of the American Mathematical Society, Vol. 53, No. 2 (Dec., 1975), pp. 445- 448 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2040033 . Accessed: 22/05/2013 17:17 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society. http://www.jstor.org This content downloaded from 131.215.71.79 on Wed, 22 May 2013 17:17:43 PM All use subject to JSTOR Terms and Conditions PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 2, December 1975 A BASIS RESULT FOR E3 SETS OF REALS WITH AN APPLICATION TO MINIMALCOVERS LEO A. HARRINGTON AND ALEXANDER S. KECHRIS ABSTRACT. It is shown that every Y3 set of reals which contains reals of arbitrarily high Turing degree in the hyperarithmetic hierarchy contains reals of every Turing degree above the degree of Kleene's 0. As an application it is shown that every Turing degrec above the Turing degree of Kleene's 0 is a minimal cover.
    [Show full text]
  • Algebraic Aspects of the Computably Enumerable Degrees
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 617-621, January 1995 Mathematics Algebraic aspects of the computably enumerable degrees (computability theory/recursive function theory/computably enumerable sets/Turing computability/degrees of unsolvability) THEODORE A. SLAMAN AND ROBERT I. SOARE Department of Mathematics, University of Chicago, Chicago, IL 60637 Communicated by Robert M. Solovay, University of California, Berkeley, CA, July 19, 1994 ABSTRACT A set A of nonnegative integers is computably equivalently represented by the set of Diophantine equations enumerable (c.e.), also called recursively enumerable (r.e.), if with integer coefficients and integer solutions, the word there is a computable method to list its elements. The class of problem for finitely presented groups, and a variety of other sets B which contain the same information as A under Turing unsolvable problems in mathematics and computer science. computability (<T) is the (Turing) degree ofA, and a degree is Friedberg (5) and independently Mucnik (6) solved Post's c.e. if it contains a c.e. set. The extension ofembedding problem problem by producing a noncomputable incomplete c.e. set. for the c.e. degrees Qk = (R, <, 0, 0') asks, given finite partially Their method is now known as the finite injury priority ordered sets P C Q with least and greatest elements, whether method. Restated now for c.e. degrees, the Friedberg-Mucnik every embedding ofP into Rk can be extended to an embedding theorem is the first and easiest extension of embedding result of Q into Rt. Many of the most significant theorems giving an for the well-known partial ordering of the c.e.
    [Show full text]
  • Turing Degrees of Nonabelian Groups
    TURING DEGREES OF NONABELIAN GROUPS MALGORZATA DABKOWSKA, MIECZYSLAW DABKOWSKI, VALENTINA S. HARIZANOV, AND ADAM S. SIKORA Abstract. For a countable structure , the (Turing) degree spec- trum of is the set of all Turing degreesA of its isomorphic copies. If the degreeA spectrum of has the least degree d,thenwesay that d is the (Turing) degreeA of the isomorphism type of .Sofar, degrees of the isomorphism types have been studied for abelianA and metabelian groups. Here, we focus on highly nonabelian groups. We show that there are various centerless groups whose isomor- phism types have arbitrary Turing degrees. We also show that there are various centerless groups whose isomorphism types do not have Turing degrees. 2000 Mathematics Subject Classification : 03C57, 03D45 Key words: computable, Turing degree, degree spectrum, isomor- phism, group 1. Introduction, preliminaries, and notation One of the goals of computable algebra is to use the tools and meth- ods of computability theory to measure the complexity of algebraic notions and constructions. While in algebra we identify two isomor- phic structures, from the point of view of computable algebra, they can have very different computability theoretic properties. In particular, two countable isomorphic structures can have distinct Turing degrees. Since the Turing degree of a structure is not invariant under isomor- phism, Jockusch and Richter (see [27]) introduced the following com- plexity measure of the isomorphism type of a structure. To a countable structure , they assigned the least Turing degree among all Turing degrees ofA the isomorphic copies of , and called it the degree of the isomorphism type of . A We will now give exactA definitions and specify notation.
    [Show full text]
  • An Introduction to Computability Theory
    AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of com- putability theory. Based on Robert Soare's textbook, The Art of Turing Computability: Theory and Applications, we examine concepts including the Halting problem, properties of Turing jumps and degrees, and Post's Theo- rem.1 In the paper, we will assume the reader has a conceptual understanding of computer programs. Contents 1. Basic Computability 1 2. The Halting Problem 2 3. Post's Theorem: Jumps and Quantifiers 3 3.1. Arithmetical Hierarchy 3 3.2. Degrees and Jumps 4 3.3. The Zero-Jump, 00 5 3.4. Post's Theorem 5 Acknowledgments 8 References 8 1. Basic Computability Definition 1.1. An algorithm is a procedure capable of being carried out by a computer program. It accepts various forms of numerical inputs including numbers and finite strings of numbers. Computability theory is a branch of mathematical logic that focuses on algo- rithms, formally known in this area as computable functions, and studies the degree, or level of computability that can be attributed to various sets (these concepts will be formally defined and elaborated upon below). This field was founded in the 1930s by many mathematicians including the logicians: Alan Turing, Stephen Kleene, Alonzo Church, and Emil Post. Turing first pioneered computability theory when he introduced the fundamental concept of the a-machine which is now known as the Turing machine (this concept will be intuitively defined below) in his 1936 pa- per, On computable numbers, with an application to the Entscheidungsproblem[7].
    [Show full text]
  • Arithmetical Hierarchy
    Arithmetical Hierarchy Klaus Sutner Carnegie Mellon University 60-arith-hier 2017/12/15 23:18 1 The Turing Jump Arithmetical Hierarchy Definability Formal Systems Recall: Oracles 3 We can attach an orcale to a Turing machine without changing the basic theory. fegA eth function computable with A A A We = domfeg eth r.e. set with A The constructions are verbatim the same. For example, a universal Turing machine turns into a universal Turing machine plus oracle. The Use Principle 4 We continue to confuse a set A ⊆ N with its characteristic function. For any n write A n for the following finite approximation to the characteristic function: ( A(z) if z < n, (A n)(z) ' " otherwise. For any such function α write α < A if α = A n for some n. Then fegA(x) = y () 9 α < A fegα(x) = y with the understanding that the computation on the right never asks the oracle any questions outside of its domain. Of course, a divergent computation may use the oracle infinitely often. Generalized Halting 5 Definition Let A ⊆ N. The (Turing) jump of A is defined as A0 = KA = f e j fegA(e) # g So ;0 = K; = K is just the ordinary Halting set. The nth jump A(n) is obtained by iterating the jump n times. Jump Properties 6 Let A; B ⊆ N. Theorem A0 is r.e. in A. A0 is not Turing reducible to A. 0 B is r.e. in A iff B ≤m A . Proof. The first two parts are verbatim re-runs of the oracle-free argument.
    [Show full text]
  • Contents 1. Introduction 1 2. ML-Randomness 3 2.1. Turing Degrees 3 3. K-Triviality and Combinatorial Properties 4 3.1. Traceability 5 4
    RANDOMNESS AND COMPUTABILITY: OPEN QUESTIONS JOSEPH S. MILLER AND ANDRE´ NIES Contents 1. Introduction 1 2. ML-randomness 3 2.1. Turing degrees 3 3. K-triviality and combinatorial properties 4 3.1. Traceability 5 4. K-triviality, ML-randomness and Turing reducibility 5 4.1. Definability, exact pairs and bounds 5 4.2. Having a ML-random set above 6 4.3. Cupping above ! with a ML-random set 7 4.4. Almost deep degrees∅ 7 5. Notions weaker than ML-randomness 7 5.1. Lowness and bases 8 6. KL-randomness 9 7. Notions stronger than ML-randomness 11 7.1. Strong Chaitin randomness 11 7.2. Weak 2-randomness 12 7.3. Effective descriptive set theory 12 8. Chaitin’s halting probability 13 8.1. Low for Ω and weakly low for K 13 8.2. Relativizing Chaitin’s halting probability 14 8.3. Further questions 15 9. Degrees of Randomness 16 9.1. Coherence with natural randomness classes 16 9.2. The K-degrees 17 9.3. The C-degrees 18 9.4. The vL and LR-degrees 18 10. Effective dimension 19 1. Introduction. It is time for a new paper about open questions in the§ currently very active area of randomness and computability. Ambos- Spies and Kuˇcera presented such a paper in 1999 [1]. All the question 1 2 JOSEPH S. MILLER AND ANDRE´ NIES in it have been solved, except for one: is KL-randomness different from Martin-L¨of randomness? This question is discussed in Section 6. Not all the questions are necessarily hard—some simply have not been tried seriously.
    [Show full text]