The Turing Degrees: Global and Local Structure 1

Total Page:16

File Type:pdf, Size:1020Kb

The Turing Degrees: Global and Local Structure 1 The Turing Degrees: Global and Local Structure 1 Richard A. Shore c May 20, 2015 1THIS IS A ROUGH DRAFT. CORRECTIONS, COMMENTS AND SUGGGESTIONS ARE WELCOME. PLEASE SEND TO [email protected]. PLEASE IN- CLUDE THE DATE OF THE DRAFT. THANKS. ii Contents Introduction ix 0.1 Notation.................................... ix 0.2 Pairing and ordered sequences . ix 1 An Overview 1 1.1 History, intuition, undecidability, formalization, ... 1 1.2 Formal de…nitions, models of computation . 1 1.3 Relative computability: Turing machines with oracles . 1 1.4 Degrees, types of questions . 2 2 The Basics 3 2.1 Coding Turing machines with oracles . 3 3 The Turing Degrees 7 4 R.E. Sets and the Turing Jump 11 4.1 TheJumpOperator ............................. 11 4.2 Trees and König’sLemma . 12 4.3 Recursively Enumerable Sets . 16 4.4 Arithmetic Hierarchy . 21 4.5 The Hierarchy Theorem . 24 4.5.1 Indexsets ............................... 25 4.6 JumpHierarchies ............................... 25 5 Embeddings into the Turing Degrees 27 5.1 Embedding Partial Orders in ....................... 27 D 5.2 Extensions of embeddings . 37 5.3 Therangeofthejump ............................ 43 5.3.1 The Friedberg Jump Inversion Theorem . 44 5.3.2 The Shoen…eld Jump Inversion theorem . 45 5.4 Trees and sets of size the continuum . 46 iii iv CONTENTS 6 Forcing in Arithmetic and Recursion Theory 49 6.1 Notions of Forcing and Genericity . 49 6.2 The Forcing Language and Deciding Classes of Sentences . 55 6.3 Embedding Lattices . 63 6.4 E¤ective Successor Structures . 72 7 The Theories of and ( 00) 77 7.1 Interpreting ArithmeticD D . 77 7.2 Slaman-Woodin Forcing and T h( ) ..................... 79 D 7.3 T h(D 00) .................................. 84 8 Domination Properties 91 8.1 Introduction.................................. 91 0 8.2 R.E. and 2 degrees ............................. 92 8.3 High and GL2 degrees ............................ 96 8.4 De…nability and Biinterpretability in ( 00) ............... 105 8.5 Array Nonrecursive Degrees . .D . 112 9 Minimal Degrees and Their Jumps 117 9.1 Introduction.................................. 117 9.2 Perfect forcing and Spector minimal degrees . 117 9.3 Partial trees and Sacks minimal degrees . 124 9.4 Minimal degrees below degrees in H1 and GH1 .............. 126 9.5 Jumps of minimal degrees . 127 9.5.1 Narrow trees and GL1 minimal degrees . 127 9.5.2 Cooper’sjump inversion theorem . 128 9.6 The minimal degrees generate ....................... 131 D 10 Lattice Initial Segments of 137 10.1 Lattice Tables, trees and theD notion of forcing . 137 10.2 Initial segment conditions . 142 10.3 Constructing lattice tables . 147 10.4 Decidability of two quanti…er theory . 151 10.5 Undecidability of three quanti…er theory. 151 0 11 1 Classes 153 11.1Binarytrees .................................. 153 11.2 Finitely branching trees . 160 12 Pseudo-Jump Operators: De…ning 163 12.1 Completeness Theorems for REA operatorsA . 164 12.2 RE Operators and Minimal Covers . 171 12.3 The Join Theorem for !-r.e. Operators . 173 CONTENTS v 12.4 The De…nability of and the Failure of Homogeneity . 175 12.5 The Join Theorem forA REA operators . 176 13 Global Results 177 14 De…ning the Turing Jump 179 15 Appendices 181 15.1 Trees, Cantor and Baire space; topology; perfect sets . 181 15.2 Structures, Orders and Lattices . 181 15.3 Interpreting Structures and Theories . 182 16 Bibliography 183 vi CONTENTS preface Preface ....Thank previous students and especially Mia Minnes who took notes in TeX for the entire course in 2007 along with the other students that term who all took turns preparing lecture notes..... vii viii PREFACE intro Introduction The introduction Reference Style to Chapters Chapter n Sections §n.m?? notation 0.1 Notation N a; b; c; d; e; i; j; k; l; m; n; r; s; t; u; v; w; x; y; z N N f; g; h ! N 2 sets A; B; C; U; V; W; X; Y; Z f ambiguous! partial functions ; '; ::: Functionals ; ; ::: (continuous) 0.2 Pairing and ordered sequences Choice. Uniformity. 1 2 2 speci…c pairing polynomial 2 (x + 2xy + y + 3x + y) then n-tuples by recursion. then picture for listing the elements of a countable family of countable sets. Pairing functions: desiderata for x; y . x y 1 2 2 h i 2 3 ; 2 (x + 2xy + y + 3x + y) x; y; z = x; y; z etc. h i h h ii x1; : : : xn = n; x1; x2 ::: Uniformityh i overh lengthh h n. iii xi+1 p 1 for x1; : : : xn i h i pairing for functions f g; ifi Q Ai fi Ai :::i::: f j g strings ; ; ; ; ; ; String notation functional form if = x1; : : : xn then (i) = xi+1 (perhaps prefer h i x0; : : : xn 1 ); dom() = n = length of ; order by initial segments ; restriction h i j j for m , m and m = m. Apply to functions on all of N as well: f; j j j j f m. so strings as …nite sequences ix x INTRODUCTION Notation: set of all …nite sequences of elements of S denoted by S<! set of sequences of length n by Sn binary strings 0; 1 n 0; 1 <! Identify 0; 1 fwithg 2 fandg more generally 0; 1; : : : ; n 1 with n and so write 2n, 2<! 2N ... f g f g Also pairing for strings... Chapter 1 overview An Overview 1.1 History, intuition, undecidability, formalization, hist ... formal 1.2 Formal de…nitions, models of computation Turing machines (multitape with input, output and others) n-ary functions formally view as given by input an n-tuple x1; : : : ; xn coded on same input tape e.g. as B1x1 B1x2 :::B1xn B::: ??or in some nice way e.g. machine e; n ... or just realize can mimic such functions ...and use notation of n-ary inputs as shorthand.?h i Also allow multiple oracles f1; : : : fn ... Other notions: prim recursive + (search); register machines; equation calcu- lus?.. 1.3 Relative computability: Turing machines with relcomp oracles de…ne Turing machines, input (note how to deal with n-tuples as input coded on same on tape) above, output, computation also for oracles (functions) , Turing reducibility T de…ne formally do for explicitly for unary functions can do n-ary in same way or by coding n-tuples as numbers also oracles - could have tuple of oracles or view as code by function pairing ref speci…c coding procedures in . Church-Turing Thesis equality for partial functions = for if either are de…ned at x then both are de…ned and their values are equal. 1 2 CHAPTER 1. AN OVERVIEW use here example Proposition 1.3.1 Turing reducibility is re‡exive and transitive. Recursive. (continuous) Functionals; oracles as inputs degrees 1.4 Degrees, types of questions We have seen that Turing reducibility, T , is a re‡exive and transitive relation and so we can consider the equivalence classes for this relation, i.e. the classes of the form g g f & f g for any function f. These classes are called the Turing degrees, T T degset orf j simply the degrees. g As, by Exercise 1.4.1, every Turing degree contains a set (i.e. a characteristic function) and so we may, without any loss consider just the degrees of sets or the classes B B T A & A T B . We denote the collection of all degrees by . We typically denotef j the degree containing g f or A by f or a. The class is a partialD order D welldef under the induced relation de…ned by f g f T g. (See Exercise 1.4.2.) . , degset Exercise 1.4.1 For every function f NN there is a set A 2N of the same Turing 2 2 degree, i.e. f T A and A T f. welldef Exercise 1.4.2 The relation de…ned above is well de…ned, re‡exive and transitive on the degrees and so makes them into a partial order. N Notation 1.4.3 For functions f; g N , we write f T g to denote that f and g are 2 j Turing incomparable, i.e. f T g and g T f. Similarly, we write f g when f g and j g f. outline book algebraic, local... second order, global: de…nability, automorphisms, theory mention appendices Chapter 2 basics The Basics codeTM 2.1 Coding Turing machines with oracles To aid in our analysis of Turing machines with oracles and relative computability as relcomp described in 1.3, we introduce a master (universal) recursive function in two forms. First we have '(f; e; x; s) = y. Here the variables are f a function, e a number (index), x a number (input), s a number (steps) and the expression means that the Turing machine with index e and oracle j given input x and run for s many steps converges and outputs y. Secondly we have an approximation version '(; e; x; s) = y where the variables are a string (so an initial segment of a function), e a number (index), x a number (input), s a number (steps, use); and the expression means that the Turing machine with index e and oracle restricted to given input x and run for s many steps converges and outputs y. We say that '(f; e; x; s) or '(; e; x; s) converges, if there is such a y. The standard notation for this is '(f; e; x; s) or '(; e; x; s) . ??(In later chapters it will at times be convenient to# allow to be more# generally a …nite partial function from N to N rather than restricting its domain to be an initial segment of N.
Recommended publications
  • A Bounded Jump for the Bounded Turing Degrees
    A bounded jump for the bounded Turing degrees Bernard A. Anderson Barbara F. Csima ∗ Department of Pure Mathematics Department of Pure Mathematics University of Waterloo University of Waterloo [email protected] [email protected] www.math.uwaterloo.ca/∼b7anders www.math.uwaterloo.ca/∼csima Abstract b We define the bounded jump of A by A = fx 2 ! j 9i ≤ x['i(x) # A'i(x) nb ^ Φx (x)#]g and let A denote the n-th bounded jump. We demon- strate several properties of the bounded jump, including that it is strictly increasing and order preserving on the bounded Turing (bT ) degrees (also known as the weak truth-table degrees). We show that the bounded jump is related to the Ershov hierarchy. Indeed, for n ≥ 2 we have nb n nb X ≤bT ; () X is ! -c.e. () X ≤1 ; , extending the classical 0 result that X ≤bT ; () X is !-c.e.. Finally, we prove that the ana- logue of Shoenfield inversion holds for the bounded jump on the bounded b 2b Turing degrees. That is, for every X such that ; ≤bT X ≤bT ; , there b b is a Y ≤bT ; such that Y ≡bT X. 1 Introduction In computability theory, we are interested in comparing the relative computa- tional complexities of infinite sets of natural numbers. There are many ways of doing this, and which method is used often depends on the purpose of the study, or how fine a comparison is desired. Two sets of the same computational com- plexity (X ≤ Y and Y ≤ X) are said to be in the same degree.
    [Show full text]
  • THERE IS NO DEGREE INVARIANT HALF-JUMP a Striking
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 10, October 1997, Pages 3033{3037 S 0002-9939(97)03915-4 THERE IS NO DEGREE INVARIANT HALF-JUMP RODNEY G. DOWNEY AND RICHARD A. SHORE (Communicated by Andreas R. Blass) Abstract. We prove that there is no degree invariant solution to Post's prob- lem that always gives an intermediate degree. In fact, assuming definable de- terminacy, if W is any definable operator on degrees such that a <W (a) < a0 on a cone then W is low2 or high2 on a cone of degrees, i.e., there is a degree c such that W (a)00 = a for every a c or W (a)00 = a for every a c. 00 ≥ 000 ≥ A striking phenomenon in the early days of computability theory was that every decision problem for axiomatizable theories turned out to be either decidable or of the same Turing degree as the halting problem (00,thecomplete computably enumerable set). Perhaps the most influential problem in computability theory over the past fifty years has been Post’s problem [10] of finding an exception to this rule, i.e. a noncomputable incomplete computably enumerable degree. The problem has been solved many times in various settings and disguises but the so- lutions always involve specific constructions of strange sets, usually by the priority method that was first developed (Friedberg [2] and Muchnik [9]) to solve this prob- lem. No natural decision problems or sets of any kind have been found that are neither computable nor complete. The question then becomes how to define what characterizes the natural computably enumerable degrees and show that none of them can supply a solution to Post’s problem.
    [Show full text]
  • An Introduction to Computability Theory
    AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of com- putability theory. Based on Robert Soare's textbook, The Art of Turing Computability: Theory and Applications, we examine concepts including the Halting problem, properties of Turing jumps and degrees, and Post's Theo- rem.1 In the paper, we will assume the reader has a conceptual understanding of computer programs. Contents 1. Basic Computability 1 2. The Halting Problem 2 3. Post's Theorem: Jumps and Quantifiers 3 3.1. Arithmetical Hierarchy 3 3.2. Degrees and Jumps 4 3.3. The Zero-Jump, 00 5 3.4. Post's Theorem 5 Acknowledgments 8 References 8 1. Basic Computability Definition 1.1. An algorithm is a procedure capable of being carried out by a computer program. It accepts various forms of numerical inputs including numbers and finite strings of numbers. Computability theory is a branch of mathematical logic that focuses on algo- rithms, formally known in this area as computable functions, and studies the degree, or level of computability that can be attributed to various sets (these concepts will be formally defined and elaborated upon below). This field was founded in the 1930s by many mathematicians including the logicians: Alan Turing, Stephen Kleene, Alonzo Church, and Emil Post. Turing first pioneered computability theory when he introduced the fundamental concept of the a-machine which is now known as the Turing machine (this concept will be intuitively defined below) in his 1936 pa- per, On computable numbers, with an application to the Entscheidungsproblem[7].
    [Show full text]
  • Arithmetical Hierarchy
    Arithmetical Hierarchy Klaus Sutner Carnegie Mellon University 60-arith-hier 2017/12/15 23:18 1 The Turing Jump Arithmetical Hierarchy Definability Formal Systems Recall: Oracles 3 We can attach an orcale to a Turing machine without changing the basic theory. fegA eth function computable with A A A We = domfeg eth r.e. set with A The constructions are verbatim the same. For example, a universal Turing machine turns into a universal Turing machine plus oracle. The Use Principle 4 We continue to confuse a set A ⊆ N with its characteristic function. For any n write A n for the following finite approximation to the characteristic function: ( A(z) if z < n, (A n)(z) ' " otherwise. For any such function α write α < A if α = A n for some n. Then fegA(x) = y () 9 α < A fegα(x) = y with the understanding that the computation on the right never asks the oracle any questions outside of its domain. Of course, a divergent computation may use the oracle infinitely often. Generalized Halting 5 Definition Let A ⊆ N. The (Turing) jump of A is defined as A0 = KA = f e j fegA(e) # g So ;0 = K; = K is just the ordinary Halting set. The nth jump A(n) is obtained by iterating the jump n times. Jump Properties 6 Let A; B ⊆ N. Theorem A0 is r.e. in A. A0 is not Turing reducible to A. 0 B is r.e. in A iff B ≤m A . Proof. The first two parts are verbatim re-runs of the oracle-free argument.
    [Show full text]
  • Feedback Turing Computability, and Turing Computability As Feedback
    Feedback Turing Computability, and Turing Computability as Feedback Nathanael L. Ackerman Cameron E. Freer Robert S. Lubarsky Dept. of Mathematics Computer Science and AI Lab Dept. of Mathematical Sciences Harvard University Massachusetts Institute of Technology Florida Atlantic University Cambridge, MA 02138 Cambridge, MA 02139 Boca Raton, FL 33431 Email: [email protected] Email: [email protected] Telephone: +1 (561) 297–3340 Email: [email protected] Abstract—The notion of a feedback query is a natural gener- could be thought of as the most conservative notion of com- alization of choosing for an oracle the set of indices of halting putation extending ITTMs that allows the computation to ask computations. Notice that, in that setting, the computations halting questions about other computations of the same type. being run are different from the computations in the oracle: the former can query an oracle, whereas the latter cannot. A While the FITTMs in [10] are presented as generalizations of feedback computation is one that can query an oracle, which itself ITTMs, the notion of an abstract feedback computation works contains the halting information about all feedback computations. for (almost) any model of abstract computation that allows for Although this is self-referential, sense can be made of at least oracles. The fact that the development of feedback needs little some such computations. This threatens, though, to obliterate prior theory, combined with its wide applicability, makes it a the distinction between con- and divergence: before running a computation, a machine can ask the oracle whether that fundamental notion of computability theory. computation converges, and then run it if and only if the In this paper, we will consider the notion of a feedback oracle says “yes.” This would quickly lead to a diagonalization Turing machine, i.e., we will apply this notion of feedback paradox, except that a new distinction is introduced, this time to ordinary Turing machines.
    [Show full text]
  • Background on Turing Degrees and Jump Operators
    Background on Turing Degrees and Jump Operators Hayden Jananthan Vanderbilt University March 18, 2019 Hayden Jananthan (Vanderbilt University) Background on Turing Degrees and Jump Operators March 18, 2019 1 / 38 1 Basic Definitions 2 Arithmetical Theory 3 Hyperarithmetical Theory Hayden Jananthan (Vanderbilt University) Background on Turing Degrees and Jump Operators March 18, 2019 2 / 38 Basic Notation { Topological Spaces ∗ Baire Space: NN with topology generated by subbasis, for σ N , N Nσ f N σ f ∈ ∶= { ∈ S ⊂ } Cantor Space:2 N 0; 1 N with subspace topology. Proposition = { } 1 NN is homeomorphic to R Q with the subspace topology. 2 2N is compact (and is homeomorphic to any compact Hausdorff space without isolated points having∖ a countable basis of clopen sets). Elements of 2N are freely identified with subsets of N via their characteristic functions. Hayden Jananthan (Vanderbilt University) Background on Turing Degrees and Jump Operators March 18, 2019 4 / 38 Basic Notation { Partial Functions Notation: f A B is a function f dom f B where dom f A. Convergence: f x if x dom f (f converges or is defined at x) f ∶x⊆ →otherwise (f diverges∶ or is undefined→ at x). ⊆ Strong Equality:( f) ↓ g if and∈ only if f and g converge on same inputs and are( ) equal↑ when they converge. ≃ Hayden Jananthan (Vanderbilt University) Background on Turing Degrees and Jump Operators March 18, 2019 5 / 38 Partial Recursive Functions Definition (Partial Recursive) k Suppose f N N is given. f is∶⊆partial→ recursive f is algorithmically computable where `algorithm' is interpreted⇐⇒ in your favorite programming language.
    [Show full text]
  • A Galois Connection Between Turing Jumps and Limits
    Logical Methods in Computer Science Vol. 14(3:13)2018, pp. 1–37 Submitted Feb. 15, 2018 https://lmcs.episciences.org/ Published Aug. 31, 2018 A GALOIS CONNECTION BETWEEN TURING JUMPS AND LIMITS VASCO BRATTKA Faculty of Computer Science, Universit¨atder Bundeswehr M¨unchen, Germany and Department of Mathematics and Applied Mathematics, University of Cape Town, South Africa e-mail address: [email protected] Abstract. Limit computable functions can be characterized by Turing jumps on the input side or limits on the output side. As a monad of this pair of adjoint operations we obtain a problem that characterizes the low functions and dually to this another problem that characterizes the functions that are computable relative to the halting problem. Correspondingly, these two classes are the largest classes of functions that can be pre or post composed to limit computable functions without leaving the class of limit computable functions. We transfer these observations to the lattice of represented spaces where it leads to a formal Galois connection. We also formulate a version of this result for computable metric spaces. Limit computability and computability relative to the halting problem are notions that coincide for points and sequences, but even restricted to continuous functions the former class is strictly larger than the latter. On computable metric spaces we can characterize the functions that are computable relative to the halting problem as those functions that are limit computable with a modulus of continuity that is computable relative to the halting problem. As a consequence of this result we obtain, for instance, that Lipschitz continuous functions that are limit computable are automatically computable relative to the halting problem.
    [Show full text]
  • Computability Theory and Algebra
    Computability Theory and Algebra Wu Huishan School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2017 Acknowledgments I would like to thank my supervisor, Prof. Wu Guohua, for teaching me com- putability theory and guiding my research in the past few years. His knowledge, suggestions, and discussions inspire me a lot, and I appreciate him for sharing me with his ideas. His style of teaching, writing of papers and presentations influence me a lot. I am grateful to him for all his efforts for guiding me to be a teacher and to be a researcher. I also want to thank him for supporting my PhD study by his research fund from MOE of Singapore. I would like to thank Prof. Ng Keng Meng, for teaching me a course on first- order logic. I also want to thank my peers and friends, Wang Shaoyi, Ru Junren, Yu Hongyuan, Yuan Bowen for many inspiring discussion and various seminars on logic and computability theory. Last, but not the least, I want to thank my parents for their love and support. i ii Contents Acknowledgments .............................. i Abstract .................................... vi 1 Introduction 1 1.1 Basics of computability theory . 1 1.2 Part I: Bounded-jump operator and the high/low hierarchy . 8 1.3 Part II: Degrees of orders on torsion-free abelian groups . 11 1.4 Part III: Reverse mathematics, abelian groups and modules . 17 I Bounded-jump operator and the high/low hierarchy 26 2 A bounded-low c.e.
    [Show full text]
  • The Journal of Symbolic Logic
    THE JOURNAL OF SYMBOLIC LOGIC. VOL 41. Number 1. 1976. C. T. Chong. “An infinite injury method of the unbounded type” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 1-17 Michael Beeson. “The unprovability in intuitionistic formal systems of the continuity of effective operations on the reals” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 18-24 Julia F. Knight. “Omitting types in set theory and arithmetic” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 25-32 William Boos. “Infinitary compactness without strong inaccessibility” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 33-38 Charles E. Hughes. “Two variable implicational calculi of prescribed many-one degrees of unsolvabilyty” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 39-44 Charles E. Hughes. “A reduction class containing formulas with one monadic predicate and one binary function symbol” The journal of symbolic logic. Vol. 41. Number 1, 1976 pagina 45-49 Ronald Fagin. “Probabilities on finite models” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 50-58 Victor Harnik. “Approximation theorems and model theoretic forcing” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 59-72 Zofia Adamowicz. “One more aspect of forcing and omitting types” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 73-80 Dov M. Gabbay. “Completeness properties of Heytings predicate calculus with respect to RE models” The journal of symbolic logic. Vol. 41. Number 1, 1976 página 81-94 Volker Weispfennig. “Negative- existentially complete structures and definability in free extensions” The journal of symbolic logic.
    [Show full text]
  • Theory and Applications of Computability
    Theory and Applications of Computability In cooperation with the association Computability in Europe Series Editors Prof. P. Bonizzoni Università degli Studi di Milano-Bicocca Dipartimento di Informatica Sistemistica e Comunicazione (DISCo) Milan Italy [email protected] Prof. V. Brattka Universität der Bundeswehr München Fakultät für Informatik Neubiberg Germany [email protected] Prof. E. Mayordomo Universidad de Zaragoza Departamento de Informática e Ingeniería de Sistemas Zaragoza Spain [email protected] Prof. P. Panangaden McGill University School of Computer Science Montré al Canada [email protected] Founding Editors: P. Bonizzoni, V. Brattka, S.B. Cooper, E. Mayordomo More information about this series at http://www.springer.com/series/8819 Books published in this series will be of interest to the research community and graduate students, with a unique focus on issues of computability. The perspective of the series is multidisciplinary, recapturing the spirit of Turing by linking theoretical and real-world concerns from computer science, mathematics, biology, physics, and the philosophy of science. The series includes research monographs, advanced and graduate texts, and books that offer an original and informative view of computability and computational paradigms. Series Advisory Board Samson Abramsky, University of Oxford Eric Allender, Rutgers, The State University of New Jersey Klaus Ambos-Spies, Universität Heidelberg Giorgio Ausiello, Università di Roma, “La Sapienza” Jeremy Avigad, Carnegie Mellon University
    [Show full text]
  • Well Quasiorders and Hierarchy Theory
    Well Quasiorders and Hierarchy Theory Victor Selivanov A.P. Ershov Institute of Informatics Systems SB RAS and Kazan Federal University Abstract We discuss some applications of WQOs to several fields were hierarchies and reducibilities are the principal classification tools, notably to Descriptive Set Theory, Computability theory and Automata Theory. While the classical hierarchies of sets usually degenerate to structures very close to ordinals, the extension of them to functions requires more complicated WQOs, and the same applies to re- ducibilities. We survey some results obtained so far and discuss open problems and possible research directions. Keywords. Well quasiorder, better quasiorder, quasi-Polish space, Borel hierarchy, Hausdorff hierarchy, Wadge hierarchy, fine hierarchy, reducibility, k-partition, labeled tree, h-quasiorder. 1 Introduction WQO-theory is an important part of combinatorics with deep connections and applications to several parts of mathematics (proof theory, reverse mathematics, descriptive set theory, graph theory) and computer science (verification of infinite-state systems, combinatorics on words and formal languages, automata theory). In this paper we discuss some applications of WQOs to several fields where hierarchies and re- ducibilities are the principal classification tools, notably to descriptive set theory (DST), computability theory and automata theory. The starting point of our discussion are three important parts of DST: (1) The classical Borel, Luzin, and Hausdorff hierarchies in Polish spaces, which are defined using set-theoretic operations. (2) The Wadge hierarchy which is non-classical in the sense that it is based on a notion of reducibility that was not recognized in the classical DST, and on using ingenious versions of Gale-Stewart games rather than the properties of set-theoretic operations.
    [Show full text]
  • Decidability in the Hyperdegrees and a Theorem of Hyperarithmetic Analysis
    DECIDABILITY IN THE HYPERDEGREES AND A THEOREM OF HYPERARITHMETIC ANALYSIS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by James Barnes August 2018 This document is in the public domain. DECIDABILITY IN THE HYPERDEGREES AND A THEOREM OF HYPERARITHMETIC ANALYSIS James Barnes, Ph.D. Cornell University 2018 In this thesis we explore two different topics: the complexity of the theory of the hyperdegrees, and the reverse mathematics of a result in graph theory. For the first, we show the Σ2 theory of the hyperdegrees as an upper-semilattice is decidable, as is the Σ2 theory of the hyperdegrees below Kleene's O as an upper-semilattice with greatest element. These results are related to questions of extensions of embeddings into both structures, i.e., when do embeddings of a structure extend to embeddings of a superstructure. The second part is joint work with Richard Shore and Jun Le Goh. We inves- tigate a theorem of graph theory and find that one formalization is a theorem of hyperarithmetic analysis: the second such example found, as it were, in the wild. This work is ongoing, and more may appear in future publications. BIOGRAPHICAL SKETCH James Barnes was born and raised in the UK. In his early years he loved mathe- matics, but his relationship with it became more mixed when he was a teen. Out of worry he would be bored, he decided to pursue a bachelor's degree in mathematics and philosophy at the Warwick University rather than just studying mathematics.
    [Show full text]