White Rust) in Threatened Coastal Cresses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Description of Albugo Fungi- an Obligate Parasite
Description of Albugo fungi- an obligate parasite Dr. Pallavi J.N.L. College Khagaul Classification Kingdom: Fungi Phylum: Oomycota Class: Oomycetes Order: Peronosporales Family: Albuginaceae Genus: Albugo Species: Albugo candida Distribution of Albugo • This genus is represented by 25 species distributed all around the world • They are all plant parasite. • Albugo candida also known as Cystopus candidus is the most important pathogen of Brassicaceae/Crucifereae members, causing white rust. Other families that are prone to attack of this fungi are Asteraceae, Convolvulaceae and Chenopodiaceae. Signs and Symptoms • This pathogen attack all the above ground parts. Infection takes place through stomata. • The disease results in the formation of shiny white irregular patches on leaves or stems. In the later stages, these patches turn powdery. The flowers and fruits gets deformed. Hypertrophy (increase in size of the cells and organs) is also a symptom of the disease. Deformed leaves of cabbage infected with Albugo candida Reproduction in Albugo • The fungus reproduces both by asexual and sexual methods • Asexual Reproduction: • The asexual reproduction takes place by conidia, condiosporangia or zoosporangia. They are produced on the sporangiophores. Under suitable conditions the mycelium grows and branches rapidly. • After attaining a certain age of maturity, it produces a dense mat like growth just beneath the epidermis of the host and some of the hyphae start behaving as sporangiophores or conidiophores. These sporangiophores contain dense cytoplasm and about a dozen nuclei. Later, the apical portion of sporangiophore gets swollen and a constriction appears below the swollen end and results in the formation of first sporangium. A second sporangium is similarly formed from the tip just beneath the previous one. -
Phytopythium: Molecular Phylogeny and Systematics
Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses. -
Albugo Candida on Isatis Emarginata
Journal of Plant Pathology (2018) 100:587 https://doi.org/10.1007/s42161-018-0091-1 DISEASE NOTE First confirmed report of white blister rust disease caused by Albugo candida on Isatis emarginata Mohammad Reza Mirzaee1 & Sebastian Ploch2 & Lisa Nigrelli2,3 & Sepide Sajedi4 & Marco Thines2,3 Published online: 7 June 2018 # Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018 Isatis emarginata Kar. & Kir. (syn. I. violascens Bunge)isan (10–)11.8–16.6(−21) μm (mean 14.2 μm) (n =50).Primary annual therophyte belonging to the Brassicaceae. It is distrib- sporangia and secondary sporangia were morphologically uted in Iran, Afghanistan, Pakistan, and East Anatolia. In similar except that the former had slightly thicker walls than April 2011, white blister rust disease symptoms including the latter. No oospores were found in infected tissue. The whitish sori, usually on the lower leaf surfaces of I. identity of the pathogen was further analysed by sequencing emarginata, were noticed in Mighan, Nehbandan, South the mitochondrial locus cox2 and the nuclear ribosomal inter- Khorasan province of Iran. Recent phylogenetic analyses have nal transcribed spacers (ITS) (Mirzaee et al. 2013). The con- revealed that besides Albugo candida, several specialised spe- sensus sequences of ITS (MF580755) and cox2 (MF580756) cies are present in the genus Albugo (Ploch et al. 2010). Dried were identical with A. candida sequences in GenBank (100% specimens of I. emarginata (voucher FR0046090) with white identity to DQ418500 and DQ418511, for ITS and cox2, re- blister symptoms were examined in terms of the morphology spectively). Therefore, the species causing white blister rust of the pathogen and molecular phylogeny. -
Albugo Bliti
12:77-84, 2003 (Albugo bliti) 1,3 2 1 2 3 [email protected] +886-4-23321478 92 4 15 . 2003. (Albugo bliti) . 12:77-84. Albugo bliti (Amaranthus mangostanus) (A. mangostanus forma ruber) (A. lividus) 4 4 20 - 40 min 4hr 12-28 20-24 32 20 4hr 36 16 20 3.4% A. bliti 4 4hr Albugo bliti (Stramenopila) (Peronosporales) (6,10) (Amaranthus spp., edible amaranth) (zoosporangia) (zoospores) (Amaranthaceae) (oospores) (A. viridis L.) (A. lividus L.) (A. mangostanus (vesicle) L.) (A. mangostanus L. forma ruber Makino) (indirect germination) (A. hypochondriacus L., A. caudatus L.) (cyst) (18-23 ) (direct germination) (40 ) (8,11,13) (1,4) 22 - 30 Albugo bliti (8) (Biv.) Kuntze (white rust) (5) Pythium spp. (12) 8-12hr (damping-off) Rhizoctonia solani (haustoria) (9,12) (seedling blight) R. solani AG 2-2IIIB (foliage blight) (3) Albugo bliti (sori) A. bliti (2) 0% 70% 78 12 2 2003 4-5 24 2 24 2hr (lactophenol cotton blue) ( A-D) (%)=( ( A-C) / ) 100 4 100 Abw, Abr, Abl - 200 3 (analysis of variance, ANOVA) 1% 30 sec 1 min 50 30 11 cm3 24 4 ( 4 ) 4hr 24 4 hr 5-7 20 min 4hr ANOVA ( D) V (90 mm ) 24 1.5 ml 2hr Parafilm "M" (American National CanTM) (25 ) 5 min 8-36 ( 4 ) 4hr 4 100 - 200 1ml Mini-BeadbeaterTM (Biospec Products) 3000 rmp 1 min ( E, F) 1 105 (%) = ( / ) 100 V 3 Parafilm "M" 32 28 (Albugo bliti) 79 A D B E C F ( ) ( ) A. B. C. D. E. (A) (B) (C) F. -
Blanco-Sanchez Et Al
1 Phylogeography of a gypsum endemic plant across its entire distribution 2 range in the western Mediterranean 3 Mario Blanco-Sánchez1*, Michael J. Moore2, Marina Ramos-Muñoz1, Beatriz Pías3, Alfredo 4 García-Fernández1, María Prieto1, Lidia Plaza1, Ignacio Isabel1, Adrián Escudero1 and Silvia 5 Matesanz1 6 7 1 Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/ Tulipán s/n, 28933, 8 Móstoles, Spain. 9 2 Department of Biology, Oberlin College, Oberlin, Ohio 44074, U.S.A. 10 3 Departamento de Biodiversidad, Ecología y Evolución. Universidad Complutense de Madrid. 11 C/José Antonio Nováis 2, 28040, Madrid, Spain. 12 *Author for correspondence: [email protected] 13 14 Manuscript received _______; revision accepted _______. 15 16 Running head: Phylogeography of a gypsum endemic plant 1 17 ABSTRACT 18 Premise of the study: Gypsum soils in the Mediterranean Basin house large numbers of edaphic 19 specialists that are adapted to stressful environments. The evolutionary history and standing 20 genetic variation of these taxa have been influenced by the geological and paleoclimatic 21 complexity of this area and the long-standing effect of human activities. However, little is 22 known about the origin of Mediterranean gypsophiles and the factors affecting their genetic 23 diversity and population structure. 24 Methods: Using phylogenetic and phylogeographic approaches based on microsatellites and 25 sequence data from nuclear and chloroplast regions, we evaluated the divergence time, genetic 26 diversity and population structure of 27 different populations of the widespread Iberian 27 gypsophile Lepidium subulatum throughout its entire geographic range. 28 Results: Lepidium subulatum diverged from its nearest relatives ~3 Mya, and the ITS and 29 psbA/matK trees supported the monophyly of the species. -
Diseases of Leafy Crucifer Vegetables (Collards, Kale, Mustard, Turnips)
Oklahoma Cooperative Extension Service EPP-7666 Diseases of Leafy Crucifer Vegetables (collards, kale, mustard, turnips) John Damicone Extension Plant Pathologist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Vegetable crops in the crucifer family, grown for their ed- http://osufact.okstate.edu ible leaves include collards, kale, mustard, turnips, and turnip x mustard hybrids. These cool-season crops are well adapted cabbage, cauliflower, broccoli, radish, etc.) are avoided for spring and fall production in Oklahoma. While most of the for at least two years. Rotations with corn, grain sorghum, production is for processing, both processing and fresh markets or another summer grass crops particularly are beneficial demand high-quality produce free of blemishes. Diseases are for reducing levels of root-knot nematodes. important factors limiting the production of leafy greens. Dis- Site selection and preparation - Selecting well-drained soils eases mainly cause damage by reducing crop quality. Severe and forming raised beds helps avoid damping-off, root disease development can reduce quality to the point where rot, and wilt diseases promoted by water-logged soils. the crop is unmarketable. Preparing a good seed bed promotes rapid seedbed Agents (pathogens) that cause the most common dis- germination and seedling growth. Acid soils should be eases of leafy greens are molds (fungi) and bacteria, but avoided or corrected with lime. Maintaining records on diseases caused by viruses and nematodes also can be the disease history of fields helps avoid disease problems a problem. This Fact Sheet is intended to aid growers in and the timely use of control measures. -
Trilepidea Newsletter of the New Zealand Plant Conservation Network
TRILEPIDEA NEWSLETTER OF THE NEW ZEALAND PLANT CONSERVATION NETWORK NO. 118. President’s message September 2013 Several important announcements and articles are presented in this newsletter. First, Deadline for next issue: the AGM on 6 November; we look forward to seeing you there; and secondly, we Monday 14 October 2013 repeat the call for nominations for our awards, which will be presented at the AGM. SUBMIT AN ARTICLE Please forward these to Melissa Hutchison, our awards convener. Congratulations to TO THE NEWSLETTER John Braggins for the 2013 Alan Mere Award, and to Nicholas Head for winning the Contributions are welcome Loder Cup; two very worthy recipients who have contributed enormously to plant to the newsletter at any conservation in New Zealand. time. The closing date for articles for each issue is I was recently lucky enough to approximately the 15th of travel to South Africa—a visit each month. planned quickly to support our Articles may be edited and used in the newsletter and/ son who was selected to compete or on the website news at the World Mountain Bike page. Championships. We visited The Network will publish several areas, including Table almost any article Mountain and Cape of Good about plants and plant conservation with a Hope, and were completely blown particular focus on the plant away by the enormous diversity life of New Zealand and and colours of the South African Oceania. fl ora (and fauna). Th ere are Please send news items or event information to c.33,000 vascular plant species in Ostriches browsing on shrubs beside the Atlantic Ocean, [email protected] South Africa and almost 9,000 near the Cape of Good Hope. -
Albugo: Contents: 1
Albugo: Contents: 1. Habit and Habitat of Albugo 2. Symptoms of Albugo 3. Vegetative Structure of Albugo 4. Reproduction in Albugo 5. Biological Specialization or Physiological Specialization in Albugo 6. Control Measures of Albugo 1. Habit and Habitat of Albugo: Albugo (derived from a Latin word means white), the only genus of family Albuginaceae is represented by more than 25 species. It is an obligate parasite distributed all over the world. In India about 18 species of Albugo have been reported which attacks mostly crucifers like turnip, mustard, radish, cabbage, cauliflower etc. However, it has also been reported on some members of family Asteraceae (Composite, Convolvulaceae and Chenopodiaceae). 2. Symptoms of Albugo: The disease caused by Albugo is commonly known as white rust because it appears in the form of shiny, white, smooth irregular patches (pustules) or blisters on the leaves, stems and other aerial parts of the plant. The pustules are initially formed on the lower surface of the leaf but in several cases they may be present on both the surfaces (Fig. 1 A). With this several other effects are also produced. Increase in the size of the cells (hypertrophy) and organs takes place. It results in the formation of large galls on the various parts of the host (Fig. 1 B-D). Severe infection causes proliferation of the lateral buds, discoloration of flowers, malformation of floral parts and sterile gynoecium. 3. Vegetative Structure of Albugo: Thallus is eucarpic and mycelial. Hyphae are intercellular, coenocytic, aseptate and profusely branched(Fig. 2 B). Cell wall is composed of fungal cellulose. -
Brief Observations of Vegetation Following a Fire on Flagstaff, Dunedin
TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 198 Brief observations of vegetation following a fi re on Flagstaff , Dunedin May 2020 John Barkla ([email protected]) Deadline for next issue: On Monday 16 September 2019 a fi re swept through c. 30 ha of montane tussock- Friday 19 June 2020 shrub/fl axland on the popular Pineapple Track that traverses Flagstaff (668 m) above SUBMIT AN ARTICLE Dunedin. Billowing smoke and fl ames were clearly evident from the city and it took TO THE NEWSLETTER eight helicopters and 35 fi remen to contain the fi re. Dampening down continued Contributions are welcome through Tuesday, and surveillance of hot spots was ongoing for several days. Th e to the newsletter at any Pineapple Track was closed for a week. time. The closing date for articles for each issue is Evidence from sub-fossil logs suggests there was a cover of montane forest on Flagstaff approximately the 15th of until about 1300 AD. Chionochloa rigida-dominant tussocklands are thought to have each month. been present since at least the mid 19th century and maintained by periodic fi res Articles may be edited and used in the newsletter and/ (Wardle & Mark 1956). A hot spring fi re in late 1976 burnt c. 100 ha. Given its close or on the website news page. proximity to Dunedin, the area around Flagstaff has been a convenient research site The Network will publish for investigating the eff ects of fi re on snow tussock, e.g. Gitay et al. (1991). almost any article about plants and plant conservation I walked through the burn site on 28 September, almost two weeks aft er the fi re with a particular focus on the started (Fig. -
Dimorphism of Sporangia in Albuginaceae (Chromista, Peronosporomycetes)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2006 Band/Volume: 58 Autor(en)/Author(s): Constantinescu Ovidiu, Thines Marco Artikel/Article: Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes). 178-190 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes) O. Constantinescu1 & M. Thines2 1 Botany Section, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden 2 Institute of Botany, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany Constantinescu O. & Thines M. (2006) Dimorphism of sporangia in Albugi- naceae (Chromista, Peronosporomycetes). - Sydowia 58 (2): 178 - 190. By using light- and scanning electron microscopy, the dimorphism of sporangia in Albuginaceae is demonstrated in 220 specimens of Albugo, Pustula and Wilsoniana, parasitic on plants belonging to 13 families. The presence of two kinds of sporangia is due to the sporangiogenesis and considered to be present in all representatives of the Albuginaceae. Primary and secondary sporangia are the term recommended to be used for these dissemination organs. Key words: Albugo, morphology, sporangiogenesis, Pustula, Wilsoniana. The Albuginaceae, a group of plant parasitic, fungus-like organisms traditionally restricted to the genus Albugo (Pers.) Roussel (Cystopus Lev.), but to which Pustula Thines and Wilsoniana Thines were recently added (Thines & Spring 2005), differs from other Peronosporomycetes mainly by the sub epidermal location of the unbranched sporangiophores, and basipetal sporangiogenesis resulting in chains of sporangia. A feature only occasionally described is the presence of two kinds of sporangia. Tulasne (1854) was apparently the first to report this character in Wilsoniana portulacae (DC. -
Titel Vorname Name
Online data base of plant protection products Explanations and dictionary Currently the online data base is available in German language only. Therefore explanations and translations are provided on these pages. Standard search The "Standard search" contains all criteria in one form. Trade name Author. no. Active substance Home and garden / all Field of use Alle All Ackerbau Agricultural crops Baumschulen Nurseries Forst Forestry Gemüsebau Vegetable growing Grünland Grassland Hopfenbau Hop growing Nichtkulturland Non cultivated areas Obstbau Fruit growing Crop Pest Search Clear Vorratsschutz Protection of stored products (see table 1) (see table 2) Weinbau Viticulture Zierpflanzenbau Ornamental growing Function Alle All Akarizid Acaricide ... ... Keimhemmungsmittel Sprout inhibitor Leime, Wachse Glue, sealing wax Wachstumsregler Plant growth regulator 2 Stepwise search The "Stepwise search" will prompt the criteria in a defined sequence. The form starts with an entry line for the field of use. It is then a choice either to show the results or to continue with entering more criteria. Next is function, then crop, and finally pest. Field of use Alle All Ackerbau Agricultural crops Baumschulen Nurseries Forst Forestry Gemüsebau Vegetable growing Grünland Grassland Hopfenbau Hop growing Nichtkulturland Non cultivated areas Obstbau Fruit growing Vorratsschutz Protection of stored products Weinbau Viticulture Zierpflanzenbau Ornamental growing Show results Continue Search functions If several criteria are selected then they are logically combined with AND. That means: The result contains products which fulfil all criteria. The addition of more criteria will narrow the result. Hierarchical organisation of crops Plant protection products may be authorised for certain crop species, or a list of several crop species, or for crop groups (sometimes with exceptions). -
Review of Horseradish Breeding for Improved Root Quality and Yield in Illinois, USA
agronomy Review Review of Horseradish Breeding for Improved Root Quality and Yield in Illinois, USA Stuart Alan Walters School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; [email protected]; Tel.: +1-618-453-3446 Abstract: Horseradish cultivars are highly heterozygous clones and are maintained through asexual propagation, using root cuttings. For many years, horseradish was believed to be sterile and therefore impossible to improve by traditional sexual crosses. Prior to the 20th century, the only way to improve horseradish was to select and plant root cuttings from the most desirable plants. Moreover, the development of new improved horseradish cultivars has also been somewhat limited by the lack of viable seed resulting from low fertility of horseradish flowers. However, in Illinois, USA, a horseradish breeding program was initiated in the 1950s to develop additional cultivars to widen the genetic base of the few cultivars being grown at the time. In more recent years, the proven cross breeding technique has been primarily used to obtain new genotypes of horseradish, since it is more efficient in producing new improved cultivars, compared to the polycross method that had been previously used for decades to obtain new genetic combinations. Since horseradish is a minor specialty crop with very little available information regarding breeding procedures, this review was developed to provide a better understanding of pollination barriers and methods for fertility improvement, traditional breeding procedures and cultivar development, and traditional breeding achievements and limitations. The development of new horseradish cultivars is essential for the sustained success of the Illinois, USA industry since it provides growers with a continuous supply of new selections that have increased vigor, outstanding root quality, and high yields.