Planktonic Communities As Indicators of Water Quality in Mangrove Lagoons; a Jamaican Case Study Primrose E

Total Page:16

File Type:pdf, Size:1020Kb

Planktonic Communities As Indicators of Water Quality in Mangrove Lagoons; a Jamaican Case Study Primrose E View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESE - Salento University Publishing Transitional Waters Bulletin TWB, Transit. Waters Bull. 3(2008), 39-63 ISSN 1825-229X, DOI 10.1285/i1825229Xv2n3p39 http://siba2.unile.it/ese/twb Planktonic communities as indicators of water quality in mangrove lagoons; a Jamaican case study Primrose E. Campbell BSc., M.Phil., Janette A. Manning BSc. M.Phil., Mona K. Webber BSc., M.Phil. Ph.D.,Dale F. Webber BSc. Ph.D. Department of Life Sciences, University of the West Indies, Mona, Kingston RESEARCH ARTICLE 7 Jamaica. WI, Mona K. Webber – Corresponding author. Department of Life Science, 4 Anguila Close. UWI Mona Campus, Kingston 7 Jamaica WI [email protected]; Tel: 876 927-1202; Fax: 876 977-1075 Abstract 1 - In mangrove lagoons, where natural conditions of high turbidity, detritus and microbiological activity combined with low light render traditional water quality indices unreliable, the planktonic community is proposed as a more appropriate and accurate index of eutrophication status. 2 - Over a 12 month period, monthly sampling was conducted at 9 stations representing different degrees of eutrophication. 3 - Phytoplankton size fractionated biomass, species composition and abundance as well as zooplankton total abundance, species composition and abundances of selected groups were examined along with depth, temperature, salinity, dissolved oxygen, pH, particulate organic matter, and reduction / oxidation potential (redox). 4 - Phytoplankton were collected using a horizontal niskin whole water sampler, zooplankton hauls (vertical/oblique) were taken using a modified Wildco net (158 µm mesh aperture 0.2 m hoop diameter) and a Hydrolab Surveyor IV Water Quality Data System was used to collect physic- chemical data in situ. 5 - While dissolved oxygen, salinity and pH demonstrated potential for use as water quality indicators, particulate organic matter, redox and temperature demonstrated inconclusive variations or insignificant differences between lagoons of known water quality. 6 - Phytoplankton biomass (Chlorophyll a) was among the most reliable planktonic indices distinguishing four groups of stations with different water qualities: oligotrophic (0.21-0.55 mg m-3) mesotrophic (0.57 – 2.55 mg m-3) eutrophic (3.00 to 6.55 mg m-3) and extremely eutrophic (>31.17 mg m-3). 7 - This was attributed to diatom and dinoflagellate cells of differing sizes being able to characterise eutrophication even after the source of eutrophication had dissipated and while physico-chemical parameters remained unchanged. 8 - Mean zooplankton abundances were also reliable, distinguishing pristine stations (789 - 3,111 animals m-3) and highly eutrophic stations (114,970 – 563,339 animals m-3). 9 - The group ‘Larvae’ and the copepod Dioithona occulata were major contributors to mean abundances, since as small herbivores they are able to take advantage of high phytoplankton concentrations. 10 - Other taxa like Acartia tonsa and harpacticoid copepods were ubiquitous and although never numerically dominant showed high numbers at the more eutrophic sites. 11 - This makes relative abundances of cosmopolitan species as reliable an index as presence absence of key species in mangrove lagoons. Keywords: Phytoplankton, Zooplankton, communities, eutrophication, Jamaica, mangrove, lagoons. © 2008 University of Salento - SIBA http://siba2.unile.it/ese TWB 3 (2008) Campbell et al Introduction Mangrove lagoons are highly valuable and 1993; Hoilett and Webber, 2001), the productive ecosystems which are vital to water column conditions and planktonic coastal stability (Wolanski and Boto, 1990). communities are poorly understood. There is They occur in 112 countries and territories a paucity of studies, for example, comparing (Kathiresan and Bingham, 2001) with global conditions in mangrove lagoon waters coverage estimated between 10 and 24 with other pelagic areas of these systems. million hectares. Mangroves form a range Furthermore, while extensive work has been of estuarine, coastal fringe, basin and scrub done on water quality monitoring in Jamaican communities; frequently associated with salt bays, the monitoring tends to concentrate marshes and salinas. They develop best in on the open, deeper waters of the bay or in low lying areas of the coast where there is areas not immediately affected by mangroves river discharge and shelter provided by sand (Grahame, 1976; Youngbluth, 1980; Dunbar banks or offshore reefs. Mangroves are and Webber, 2003; Webber et al., 2005). found on protected shallow shores where The findings are usually extrapolated to there is often an association with estuarine include the mangrove lagoons or mangrove conditions (Chapman, 1976). They provide a dominated areas of the bay. However, there buffer between the adjacent land and marine is the danger of not confirming eutrophic areas by reducing the quantities of sediment, conditions in mangrove waters because they nutrients and fresh water in land runoff. It may be masked or modified by the natural is hypothesised that mangrove lagoons all conditions. have similar background physicochemical Both phytoplankton and zooplankton conditions and therefore eutrophication communities have been successfully used status will not be evident using traditional in coastal water quality monitoring and as water quality monitoring techniques. These bioindicators of pollution (Clutter, 1972; traditional water quality indices include: Youngbluth, 1980; Elnabarawy and Welter, nutrients, water clarity (light penetration), 1984; Turner, 1994; Wang et al., 1999; biochemical oxygen demand, chemical Brooks et al., 1999; Dunbar and Webber, contaminants, and bacterial content (Webber 2003; Webber et al., 2005) but most studies and Webber, 1998). The failure of these indices have been focused in bays and not enough to accurately represent the mangal ecosystem is known about the potential of planktonic water quality may be due to opaque tannin communities as descriptors in mangrove coloured waters, low light conditions from lagoons. Although high phytoplankton tree self-shading, high detrital, microbial biomass can be a reliable indicator of and algal productivity and high suspended eutrophic mangals, low phytoplankton material, among other natural properties. biomass due to inhibitory effects of phenolic Eutrophication of coastal systems seems to materials (tannins) in the water may mask be increasing due to various anthropogenic the condition (Herrera-Silvera and Ramirez- influences (Holdgate, 1980; Lindo, 1991; Ramirez, 1996). Moreover, zooplankton Hessen, 1999). While mangrove forest grazing not only reduces phytoplankton communities in Jamaica have been extensively biomass, but removes other suspended studied (Chow, 1997; Alleng, 1997; Bacon particles from the water by concentration into and Alleng, 1992; Morgan, 1995; McDonald much denser faecal pellets which then fall et al., 2003) and mangrove root communities to the benthos. Consequently, the estuarine are well known (Bingham, 1990; Goodbody, waters appear clearer and bottom sediments © 2008 University of Salento - SIBA http://siba2.unile.it/ese 40 TWB 3 (2008) Planktonic communities as indicators of water quality. richer in nutrients (Ward and Montague, were expected to demonstrate a range of 1996). Because of the importance of mangals water qualities and so were organized in and the potential impact on other ecosystems, the following order from most eutrophic to there is need to develop reliable indices and least eutrophic status: The Great Salt Pond appropriate standards of monitoring water (GSP), Hunts Bay (HB), Buccaneer Swamp quality in these areas. This study will examine (Yacht Club) (YC), Fort Rocky Lagoon the use of the phytoplankton and zooplankton (FRL), Bowden Bridge (BB), Bowden West communities as reliable indices of water (BW), Galleon Harbour East (GHE), Galleon quality in mangrove lagoons experiencing Harbour West (GHW), and Wreck Bay varying levels of eutrophication. (WB). The stations were selected because they are exposed to different environmental Materials And Methods conditions such that they ranged from Study area eutrophic, sewage outfall point at the Great Nine stations were selected for the Salt Pond and disturbed lagoons in Kingston examination of water quality indices in Harbour/Hunts Bay to pristine mangrove mangrove dominated coastal lagoons on the areas with clear subterranean springs in South Coast of Jamaica (Figure 1). These Wreck Bay (McDonald et al., 2003; Webber Figure 1. Map of Jamaica with details of eastern half showing the south coast bays where mangrove lagoons stations were located. GSP – Great Salt Pond, HB- Hunts Bay, YC- Yacht Club, FRL- Fort Rocky Lagoon, BB- Bowden Bridge, BW- Bowden West, GHE- Galleon Harbour East, GHW Galleon Harbour West and WB- Wreck Bay. © 2008 University of Salento - SIBA http://siba2.unile.it/ese 41 TWB 3 (2008) Campbell et al and Wilson-Kelly, 2003). All these lagoons, 90 % acetone (Lorenzen and Jeffrey, 1978) however, share the characteristics of low and was determined using a Turner Designs light penetration because of tannin coloured TD700 version 1.8 laboratory fluorometer (of waters, high productivity, high turbidity and sensitivity < 20 picograms ml-1 at standard high detritus and microbial activity. wavelength 300 - 650 nm and optional red sensitive wavelength 185 - 870nm). Sampling Identification and enumeration of Sampling was conducted routinely at phytoplankton samples were conducted
Recommended publications
  • Invert3 2 115 135 Abiahy at All.PM6
    Invertebrate Zoology, 2006, 3(2): 115-135 INVERTEBRATE ZOOLOGY, 2006 published online 06.01.2007 accepted for publication 21.11.2006 Redescription of Limnoithona tetraspina Zhang et Li, 1976 (Copepoda, Cyclopoida) with a discussion of character states shared with the Oithonidae and older cyclopoids Bernardo Barroso do Abiahy\ Carlos Eduardo Falavigna da Rocha^, Frank D. Ferrari^ ' Avenida Manuel Hipolito do Rego 1270/ap. 09, 11.600-000 Sao Sebastiao, SP, Brasd ^ Universidade de Sao Paulo, Instituto de Biociencias, Departamento de Zoologia, Rua do Matdo, travessa 14, No. 321, 05508-900 Sao Paulo, Brazd 'Department of Invertebrate Zoology, MRC-534, National Museum of Natural History, Smithso- nian Institution, 4210 Silver Hill Rd., Suitland, MD 20746 U.S.A. ABSTRACT: Limnoithona tetraspina Zhang et Li, 1976 is redescribed, and the morpho- logy of the cephalosome, rostral area, oral appendages, legs 1-6 andurosome of adult males and females is illustrated. Morphological features separating L. tetraspina from its only congener,Z.5/«e«5;5, include: a more pronounced rostrum; 1 seta more on the proximal lobe of the basis of the maxillule; 1 seta more on the endopod of the maxillule; middle endopodal segment of swimming legs 2-A with 1 seta more; proximal and distal seta of the middle endopodal segment of swimming leg 4 with a flange; exopod of leg 5 with a proximal lateral seta; male cephalosome ventrally with pores with cilia. A rounded projection between labrum and rostrum is a shared derived state for both species of Limnoithona. Derived morphological features of the remaining species of Oithonidae, which are not shared with L.
    [Show full text]
  • Composition and Sources of Near Reef Zooplankton on a Jamaican Forereef Along with Implications for Coral Feeding
    Coral Reefs (2004) 23: 263–276 DOI 10.1007/s00338-004-0375-0 REPORT K. B. Heidelberg Æ K. P. Sebens Æ J. E. Purcell Composition and sources of near reef zooplankton on a Jamaican forereef along with implications for coral feeding Received: 20 September 2001 / Accepted: 17 April 2003 / Published online: 10 March 2004 Ó Springer-Verlag 2004 Abstract Nocturnal near-reef zooplankton from the Keywords Demersal zooplankton Æ Coral feeding Æ forereef of Discovery Bay, Jamaica, were sampled dur- Copepod Æ Reef ing winter and summer 1994 using a diver-operated plankton pump with an intake head positioned within centimeters of benthic zooplanktivores. The pump col- lected zooplankton not effectively sampled by conven- Introduction tional net tows or demersal traps. We found consistently greater densities of zooplankton than did earlier studies Coral reef zooplankton are an important trophic link that used other sampling methods in similar locations. between primary producers and higher trophic levels on There was no significant difference between winter reefs, including scleractinian corals and fish (Porter (3491±578 mÀ3) and summer (2853±293 mÀ3)zoo- 1974; Hobson and Chess 1978; Gottfried and Roman plankton densities. Both oceanic- and reef-associated 1983; Hamner et al. 1988; Sedberry and Cuellar 1993). forms were found at temporal and spatial scales relevant Zooplankton that are potential prey to benthic organ- to benthic suspension feeders. Copepods were always the isms come from several sources and include holoplank- most abundant group, averaging 89% of the total zoo- tonic, meroplanktonic, demersal, and epibenthic species plankton, and most were not of demersal origin.
    [Show full text]
  • Diel Cycles of Molting, Mating, Egg Sac Production and Hatching in the Swarm Forming Cyclopoid Copepod Dioithona Oculata
    Plankton Biol. Ecol. 46 (2): 120-127, 1999 plankton biology & ecology '>"> The IMankion Socicly of Jap;in I'WJ Diel cycles of molting, mating, egg sac production and hatching in the swarm forming cyclopoid copepod Dioithona oculata Julie W. Ambler1, Frank D. Ferrari2, John A. Fornshell2 & Edward J. Buskey3 ' Department of Biology, Millersville University, Millersville. Pennsylvania 17551, U.S.A. : Department of Invertebrate Zoology, Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. JMarine Science Institute, The University of Texas at Austin, 750 Channelview Drive, Port Aransas, Texas 78373. U.S.A. Received 8 December 1998; accepted 14 June 1999 Abstract: Diel periodicity was discovered in 4 life cycle events for the swarming cyclopoid copepod Dioithona oculata: the molt to adult stage, mating, egg sac production, and egg hatching. The timing of these events was associated with swarming in which dioithonans form swarms at dawn and dis perse at dusk. A laboratory time course experiment revealed that molting of copepodid stage five (CV) to adult (CVI) occurred between midnight and dawn (0600 h). In videotaped experiments of labo ratory swarms, mating encounters were greatest at dawn and therefore would occur as soon as CV molted to adults and were present in swarms. In experiments with field collected swarms, 80% of egg sacs were produced by females between midnight and 0820 h the next morning, and 80% of the eggs hatched by the following night between midnight and 0500 h. Egg cycle duration (clutch duration plus inter-clutch interval) was 48 h, and the mean fecundity was 0.56 pairs of egg sacs d 1 or 7.6 eggs d~1.
    [Show full text]
  • Biology, Ecology and Ecophysiology of the Box Jellyfish Carybdea Marsupialis (Cnidaria: Cubozoa)
    Biology, ecology and ecophysiology of the box jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellysh Carybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecosiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been nanced by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modication of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its innite growth) are in conict with natural principles (ecology, with the niteness of natural systems) […] Jellysh are just a symptom of this situation, another warning that Nature is giving us!” Ferdinando Boero (FAO Report 2013) Thesis contents
    [Show full text]
  • Scientific Articles
    Scientific articles Abed-Navandi, D., Dworschak, P.C. 2005. Food sources of tropical thalassinidean shrimps: a stable isotope study. Marine Ecology Progress Series 201: 159-168. Abed-Navandi, D., Koller,H., Dworschak, P.C. 2005. Nutritional ecology of thalassinidean shrimps constructing burrows with debris chambers: The distribution and use of macronutrients and micronutrients. Marine Biology Research 1: 202- 215. Acero, A.P.1985. Zoogeographical implications of the distribution of selected families of Caribbean coral reef fishes.Proc. of the Fifth International Coral Reef Congress, Tahiti, Vol. 5. Acero, A.P.1987. The chaenopsine blennies of the southwestern Caribbean (Pisces, Clinidae, Chaenopsinae). III. The genera Chaenopsis and Coralliozetus. Bol. Ecotrop. 16: 1-21. Acosta, C.A. 2001. Assessment of the functional effects of a harvest refuge on spiny lobster and queen conch popuplations at Glover’s Reef, Belize. Proceedings of Gulf and Caribbean Fishisheries Institute. 52 :212-221. Acosta, C.A. 2006. Impending trade suspensions of Caribbean queen conch under CITES: A case study on fishery impact and potential for stock recovery. Fisheries 31(12): 601-606. Acosta, C.A., Robertson, D.N. 2003. Comparative spatial geology of fished spiny lobster Panulirus argus and an unfished congener P. guttatus in an isolated marine reserve at Glover’s Reef atoll, Belize. Coral Reefs 22: 1-9. Allen, G.R., Steene, R., Allen, M. 1998. A guide to angelfishes and butterflyfishes.Odyssey Publishing/Tropical Reef Research. 250 p. Allen, G.R.1985. Butterfly and angelfishes of the world, volume 2.Mergus Publishers, Melle, Germany. Allen, G.R.1985. FAO Species Catalogue. Vol. 6.
    [Show full text]
  • Nauplius Short Communication the Journal of the First Record of Oithona Attenuata Farran, Brazilian Crustacean Society 1913 (Crustacea: Copepoda) from Brazil
    Nauplius SHORT COMMUNICATION THE JOURNAL OF THE First record of Oithona attenuata Farran, BRAZILIAN CRUSTACEAN SOCIETY 1913 (Crustacea: Copepoda) from Brazil 1 e-ISSN 2358-2936 Judson da Cruz Lopes da Rosa orcid.org/0000-0001-7635-8736 www.scielo.br/nau 2 orcid.org/0000-0002-1228-2805 www.crustacea.org.br Wanda Maria Monteiro-Ribas 3 Lucas Lemos Batista orcid.org/0000-0003-2389-7132 Lohengrin Dias de Almeida Fernandes2 orcid.org/0000-0002-8579-2363 1 Programa de Pós-Graduação em Ciências Ambientais e Conservação, Laboratório Integrado de Zoologia na Universidade Federal do Rio de Janeiro. Macaé, Rio de Janeiro, Brasil. 2 Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Oceanografia, Divisão de Ecossistemas Marinhos. Arraial do Cabo, Rio de Janeiro, Brasil. 3 Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Laboratório Integrado de Zoologia na Universidade Federal do Rio de Janeiro. Macaé, Rio de Janeiro, Brasil. ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:5761ED4C-A9E3-4A61- AB50-6537E7F192C1 ABSTRACT Here, we report the first record of the marine copepodOithona attenuata Farran, 1913, in Brazil, from a costal station near Cabo Frio Island, Arraial do Cabo Municipality, Rio de Janeiro State. Specimens were found during March and May 2011 in zooplankton samples obtained from horizontal hauls using a plankton-net with a 100μm mesh size, and mouth opening of 40 cm diameter. KEYWORDS Arraial do Cabo, Cyclopoida, geographic distribution, microcrustaceans, zooplankton The order Cyclopoida consists of 44 families of mostly holoplanktonic species (Boxshall and Halsey, 2004), of which numerous members have been shown to be good indicators of the physical-chemical characteristics of water CORRESPONDING AUTHOR (Boltovskoy, 1981; Nishida, 1985; Dias and Araujo, 2006).
    [Show full text]
  • Box Jellyfish Use Terrestrial Visual Cues for Navigation
    Current Biology 21, 798–803, May 10, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.03.054 Report Box Jellyfish Use Terrestrial Visual Cues for Navigation Anders Garm,1,* Magnus Oskarsson,2,3 carrying six eyes of four morphological types: the upper and and Dan-Eric Nilsson2 lower lens eyes, the pit eyes, and the slit eyes [1, 11–15]. 1Section of Marine Biology, Department of Biology, University Two of the eye types, the upper and lower lens eyes, have of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, image-forming optics and resemble vertebrate and cepha- Denmark lopod eyes [2, 16, 17]. The role of vision in box jellyfish is known 2Lund Vision Group, Department of Biology, Lund University, to involve phototaxis, obstacle avoidance, and control of So¨ lvagaten 35, 22362 Lund, Sweden swim-pulse rate [4–6, 18], but more advanced visually guided 3Centre for Mathematical Sciences, Lund University, behaviors have not been discovered prior to this report. So¨ lvagaten 18, 22362 Lund, Sweden Most known species of box jellyfish are found in shallow water habitats where obstacles are abundant [19]. Medusae of the study species, T. cystophora, live between the prop roots Summary in Caribbean mangrove swamps [8, 20]. Here they stay close to the surface [8] to catch their prey, a phototactic copepod that Box jellyfish have an impressive set of 24 eyes of four gathers in high densities in the light shafts formed by openings different types, including eyes structurally similar to those in the mangrove canopy. The medusae are not found in the of vertebrates and cephalopods [1, 2].
    [Show full text]
  • Visual Control of Steering in the Box Jellyfish Tripedalia Cystophora
    2809 The Journal of Experimental Biology 214, 2809-2815 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.057190 RESEARCH ARTICLE Visual control of steering in the box jellyfish Tripedalia cystophora Ronald Petie1,*, Anders Garm2 and Dan-Eric Nilsson1 1Department of Biology, Lund University, Biology Building B, Sölvegatan 35, 223 62 Lund, Sweden and 2Marine Biological Section, Biological Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark *Author for correspondence ([email protected]) Accepted 14 May 2011 SUMMARY Box jellyfish carry an elaborate visual system consisting of 24 eyes, which they use for driving a number of behaviours. However, it is not known how visual input controls the swimming behaviour. In this study we exposed the Caribbean box jellyfish Tripedalia cystophora to simple visual stimuli and recorded changes in their swimming behaviour. Animals were tethered in a small experimental chamber, where we could control lighting conditions. The behaviour of the animals was quantified by tracking the movements of the bell, using a high-speed camera. We found that the animals respond predictably to the darkening of one quadrant of the equatorial visual world by (1) increasing pulse frequency, (2) creating an asymmetry in the structure that constricts the outflow opening of the bell, the velarium, and (3) delaying contraction at one of the four sides of the bell. This causes the animals to orient their bell in such a way that, if not tethered, they would turn and swim away from the dark area. We conclude that the visual system of T. cystophora has a predictable effect on swimming behaviour.
    [Show full text]
  • REFERENCES Abrantes, K., & Sheaves, M
    REFERENCES Abrantes, K., & Sheaves, M. (2009). Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science, 82, 597-607. Aksnes, D.L., & Giske, J. (1990). Habitat profitability in pelagic environments. Marine Ecology Progress Series, 64, 209-215. Albaina, A., Villate, F., & Uriarte, I. (2009). Zooplankton communities in two contrasting Basque estuaries (1999-2001): Reporting changes associated with ecosystem health. Journal of Plankton Research, 31, 739-752. Alldredge, A.L., & King, J.M. (1980). Effects of moonlight on the vertical migration patterns of demersal zooplankton. Journal of Experimental Marine Biology and Ecology, 44, 133-156. Alongi, D.M. (1990). Abundances of benthic microfauna in relation to outwelling of mangrove detritus in a tropical coastal region. Marine Ecology Progress Series, 63, 53- 63. Alongi, D.M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation, 29, 331-349. Alongi, D.M. (2007). The contribution of mangrove ecosystems to global carbon cycling and greenhouse gas emissions. In Tateda, Y., Upstill-Goddard, R., Goreau, T., Alongi, D., Nose, E., Kristensen, E., & Wattayakorn, G. (Eds.), Greenhouse Gas and Carbon Balances in Mangrove Coastal Ecosystems (pp. 1–10). Tokyo: Maruzen. Alongi, D.M., Boto, K.G., & Tirendi, F. (1989). Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Marine Ecology Progress Series, 56, 133-144. Alongi, D.M., Chong, V.C., Dixon, P., Sasekumar, A., & Tirendi, F. (2003). The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia.
    [Show full text]
  • Farran, 1913) in a Mediterranean Coastal Ecosystem
    Turkish Journal of Zoology Turk J Zool (2018) 42: 567-577 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1802-42 Contribution and acclimatization of the swarming tropical copepod Dioithona oculata (Farran, 1913) in a Mediterranean coastal ecosystem Tuba TERBIYIK KURT Department of Marine Biology, Faculty of Fisheries, Çukurova University, Adana, Turkey Received: 26.02.2018 Accepted/Published Online: 02.07.2018 Final Version: 17.09.2018 Abstract: In this study, tropical oithonid copepod Dioithona oculata was recorded for the first time in the Mediterranean Sea. This species is distinguished easily by its large ocular lenses and by the number of setae on the endopod of the maxillule. The study was conducted seasonally in the coastal area of İskenderun Bay between April 2013 and December 2016. D. oculata was first observed in October 2013 in the study area (Station 4; 3.1 ind. m–3); after this period, this species became an important contributor to zooplankton assemblages in October with the highest level seen in 2016 (Station 4, 834.5 ind. m–3). The proportion of this species in the copepod community varied from 0.14% (2014) to 29.4% (2016), and the highest proportions, observed in October 2016, were at Stations 3 and 4 (51.1% and 65.3%, respectively). Females dominated the D. oculata population and the ratio of female to male was 5.6 ± 7 on average. Copepodit stages were also observed in the population. Altogether, these data indicate that the D. oculata population increased year after year. In addition, the presence of copepodits in the population suggests that this species was established and successfully acclimatized to the conditions, becoming an important component of the zooplankton community in the İskenderun Bay ecosystem.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, B.C. Volume 117 1965 Number 3513 PLANKTONIC COPEPODS FROM BAHIA FOSFORESCENTE, PUERTO RICO, AND ADJACENT WATERS By Juan G. Gonzalez and Thomas E. Bowman* Beginning in the fall of 1957, an investigation of the plankton along the southwestern coast of Puerto Rico, from Bahia Montalva on the east to Posa de Don Eulalio on the west, was carried out by Dr. Robert E. Coker and Juan G. Gonzdlez. A map of the area showing the stations at which plankton samples were collected routinely for 2 years is given in figure 1. A description of the region, together with an account of the methods of collection and an analysis of the climatic and hydrographic conditions, is given by Coker and Gonzdlez (1960) in their ecological study of the copepod populations. The present paper is a taxonomic treatment of the planktonic copepods and is hmited to the species that occur regularly in the bays and the inner ' Gonzalez: Institute of Marine Biology, University of Puerto Rico, Mayagiiez; Bowman: Associate Curator, Division of Crustacea, Smithsonian Institution. 241 : 242 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 117 part of the shelf. Offshore species that occasionally are carried into the inner shelf and bays are not included. In the descriptions that follow we use the terms employed by Gooding (1957) for regions of the copepod body and the following abbreviations A1-A2 : PUERTO RICAN COPEPODS—GONZALEZ AND BOWMAN 243 the new family Calocalanidae. Only 2 genera remain in the Para-
    [Show full text]
  • For the Copepod Dioithona Oculata
    Marine Biology (1998) 130: 425±431 Ó Springer-Verlag 1998 E. J. Buskey Energetic costs of swarming behavior for the copepod Dioithona oculata Received: 4 June 1997 / Accepted: 18 September 1997 Abstract The cyclopoid copepod Dioithona oculata copepod Dioithona oculata (Farran) is a swarm-forming forms dense swarms within shafts of sunlight that pen- copepod commonly found in tropical marine environ- etrate the mangrove prop-root habitat of islands o the ments near coral reefs and mangrove cays (Hamner and coast of Belize. Previous studies, based on in situ video Carlton 1979; Ambler et al. 1991; McKinnon 1991). recordings and laboratory studies, have shown that Previous studies have shown that D. oculata forms D. oculata is capable of maintaining ®xed-position swarms swarms during the day near prop roots of the red in spite of currents of up to 2 cm s)1. The purpose of mangrove and that the swarms disperse at night (Ambler this study was to examine the energetic costs of main- et al. 1991). These swarms, composed mainly of adults taining these swarms, in terms of increased metabolic and late-stage copepodites, form primarily in shafts of costs of maintaining position in currents and in terms of light that penetrate through the mangrove canopy, and reduced feeding rates in densely packed swarms during light seems to be the primary cue used in swarm for- the day. Using a sealed, variable-speed ¯ow-through mation (Buskey et al. 1995). D. oculata swarms can chamber, the respiration rates of D. oculata were mea- maintain a ®xed position in currents of up to 2 cm s)1 in sured while swarms maintained position in dierent nature (Buskey et al.
    [Show full text]