Strategies to Improve Reference Databases for Soil Microbiomes

Total Page:16

File Type:pdf, Size:1020Kb

Strategies to Improve Reference Databases for Soil Microbiomes The ISME Journal (2017) 11, 829–834 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej PERSPECTIVE Strategies to improve reference databases for soil microbiomes Jinlyung Choi1, Fan Yang1, Ramunas Stepanauskas2, Erick Cardenas3, Aaron Garoutte4, Ryan Williams1, Jared Flater1, James M Tiedje4, Kirsten S Hofmockel5,6, Brian Gelder1 and Adina Howe1 1Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA; 2Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA; 3Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada; 4Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA; 5Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA and 6Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA The ISME Journal (2017) 11, 829–834; doi:10.1038/ismej.2016.168; published online 9 December 2016 Introduction and developed a reference catalog of 3000 genomes that were isolated and sequenced from human-associated Microbial populations in the soil are critical in our lives. microbial populations (Huttenhower et al., 2012). This The soil microbiome helps to grow our food, nourishing publicly available reference set of microbial isolates and and protecting plants, while also providing important their genomic sequences aids in the analysis of human ecological services such as erosion protection, water microbiome sequencing data (Wu et al., 2009; Segata filtration and climate regulation. We are increasingly et al., 2012) and also provides strains for which isolatese aware of the tremendous microbial diversity that has a (both culture collections and nucleic acids) are available role in soil heath; yet, despite significant efforts to as resources for experiments. isolate microbes from the soil, we have accessed only a Our increasing awareness of the links between small fraction of its biodiversity. Even with novel cell o – microbial communities and soil health has resulted isolation techniques, 1 50% of soil species have been in significant investments in using sequence-based cultivated (Janssen et al., 2002; Van Pham and Kim, approaches to understand the soil microbiome. The 2012). Metagenomic sequencing has accelerated our Earth Microbiome Project (www.earthmicrobiome.org) access to environmental microbes, allowing us to alone is characterizing 200 000 samples from research- characterize soil communities without the need to first ers all over the world. Despite increasing volumes of cultivate isolates. However, our ability to annotate and soil sequencing datasets, we currently lack soil-specific characterize the retrieved genes is dependent on the genomic resources to inform these studies. To fill this availability of informative reference gene or genome need, we have curated RefSoil (See Supplementary databases. Methods) from the genomic data that originates from The current genomic databases are not representative cultured representatives originating from soil. RefSoil of soil microbiomes. Contributions to the existing (both its genomes and associated strain isolates) databases have largely originated from human health provides a soil-specific framework with which to anno- and biotechnology research efforts and can mislead tate and understand soil sequencing projects. Addi- annotations of genes originating from soil microbiomes tionally, its curation is the first step in identifying (for example, annotations that are clearly not compatible strains that are currently gaps in our understanding of with life in soil). Soil microbiologists are not the first to soil microbiology, allowing us to strategically target face the problem of a limited reference database. The them for cultivation and characterization. In this NIH Human Microbiome Project (HMP) recognized the perspective, we introduce RefSoil and highlight several critical need for a well-curated reference genome dataset examples of its applications that would benefit diverse users. Correspondence: A Howe, Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall Ames IA, Ames IA 50011 USA. RefSoil: a soil microbiome database E-mail: [email protected] Received 28 June 2016; revised 10 October 2016; accepted We have curated a reference database of sequenced 21 October 2016; published online 9 December 2016 genomes of organisms from the soil, naming it Strategies to improve reference databases for soil microbiomes J Choi et al 830 RefSoil (See Supplementary Methods). The RefSoil How representative are our existing genomes are a subset of NCBI’s database of references in natural soils? sequenced genomes, RefSeq (release 74), and have While we are able to glimpse into soil microbial ecology been manually screened to include only organisms ’ that have previously been associated with soils. through RefSoil s genomes, its ability to inform natural RefSoil contains a total 922 genomes, 888 bacteria soils depends on the representation of laboratory and 34 archaea (Supplementary Table 1). While isolates in our soils. There are now datasets to assess sharing similar dominant organisms to the RefSeq global soil microbiomes through efforts like the Earth database (for example, Proteobacteria, Firmicutes Microbiome Project (EMP) (Gilbert et al., 2014; Rideout and Actinobacteria), RefSoil contains higher propor- et al., 2014), which have collected a total of 3035 soil tions of Armatimonadetes, Germmatimonadetes, samples and sequenced their associated 16S rRNA gene Thermodesulfobacteria, Acidobacteria, Nitrospirae amplicons. Clustering at 97% sequence similarity, these and Chloroflexi, suggesting that these phyla may be EMP OTUs represent 2158 unique taxonomic assign- enriched in the soil or under-represented in RefSeq. ments (See Supplementary Methods), with varying A total of 11 RefSeq-associated phyla are not abundances estimated in each soil sample (for example, included in RefSoil and these phyla are most likely total count of amplicons). We observed that the majority of these OTUs are rare (for example, only observed in a absent or difficult to cultivate in soil environments o (Supplementary Figure 1). few samples) with 76% of OTUs observed in 10 soil RefSoil can be used to define a representative samples, and 1% of OTUs representing 81% of total framework that can provide insight into potential sequence abundance in EMP. soil functions and genes, and phyla that are To evaluate the presence of RefSoil genomes in soil associated with encoding functions. We observe that samples, EMP 16S rRNA gene amplicons and RefSoil genes related to microbial growth and reproduction 16S rRNA genes were compared, requiring an align- ment with > 97% similarity, a minimum alignment of (for example, DNA, RNA and protein metabolism) ≤ are associated with diverse RefSoil phyla; in con- 72 bp, and E-value 1e-5. Using these criteria, a total of trast, key functions related to metabolism of aromatic 53 538 EMP OTUs shared similarity with RefSoil 16S compounds and iron metabolism are enriched rRNA genes. These OTUs represent a meager 1.4% of in Proteobacteria and Actinobacteria. Similarly, all EMP diversity (unique OTUs) or 10.2% of all EMP dormancy and sporulation genes are enriched in amplicon sequences. Overall, we observe that 99% Firmicutes (Supplementary Figure 2, Supplementary (2 442 432 of 2 476 795) of observed EMP amplicons do Tables 2 and 3). Many of the broader functions not share > 97% similarity to RefSoil genes, suggesting encoded by RefSoil genes are unsurprising (for that EMP soil samples contain much higher diversity example, photosynthesis in Cyanobacteria), but as a than represented within RefSoil (Figure 1) and high- collective framework, RefSoil genomes and their lights the poor representation of our current reference associated isolated strains can allow us to look genomes. Notably, Firmicutes are observed frequently deeper into soil functions. Specifically, understand- in the RefSoil database (Supplementary Figure 3) but ing the functions encoded by specific soil member- are not observed to be highly abundant in soil ship can guide the selection and design of environments (5.7% of all EMP amplicons). Firmicutes representative mock communities for soil processes. have been well-studied as pathogens, (Rupnik et al., For example, an experimental community of isolates 2009; Buffie and Pamer, 2013), likely resulting in their known for participating in nitrogen cycling could biased representation in our databases and conse- include RefSoil strains related to that associated with quently also biased annotations in soil studies. A key assimilatory nitrate reductase nitric and nitrous advantage to the development of the RefSoil database oxide reductase ammonia monooxygenase and nitro- is the opportunity to identify these biases and to ensure gen fixation (selected from Supplementary Figure 2). increasingly representative targets for future curation Another potential opportunity for RefSoil is to efforts. In annotating soil metagenomes with public provide context that can help improve functional databases, organisms and genes that are not associated annotation of genomes. The large majority of genes with soils can consistently be identified; for example, in previously published soil metagenomes (65–90%) in an Iowa corn metagenome annotated by the cannot be annotated against known genes (Delmont MG-RAST database, we identified
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Microbial Life Under Ice: Metagenome Diversity and in Situ Activity Of
    bioRxiv preprint doi: https://doi.org/10.1101/324970; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Microbial life under ice: metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes Patricia Tran1,2, Arthi Ramachandran1, Ola Khawasik1, Beatrix E. Beisner2,3, Milla Rautio2,4, Yannick Huot,2,5, David A. Walsh1,2 1 Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada 2 Groupe de recherche interuniversitaire en limnologie et environnement aquatique (GRIL), Montréal, Québec, Canada 3 Département des sciences biologiques, Université du Québec à Montréal, Québec, Canada. 4 Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada 5 Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada Corresponding author: David Walsh, Department of Biology, Concordia University, 7141 Sherbrooke St. West Montreal, QC H4B 1R6 Canada 514-848-2424 ext 3477 [email protected] Running title: Sub-ice Verrucomicrobia genomes in Quebec lakes bioRxiv preprint doi: https://doi.org/10.1101/324970; this version posted May 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Summary 2 Northern lakes are ice-covered for a large part of the year, yet our understanding 3 of microbial diversity and activity during winter lags behind that of the ice-free period. In 4 this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in 5 seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 6 16S rRNA sequencing, metagenomics and metatranscriptomics.
    [Show full text]
  • Global Metagenomic Survey Reveals a New Bacterial Candidate Phylum in Geothermal Springs
    ARTICLE Received 13 Aug 2015 | Accepted 7 Dec 2015 | Published 27 Jan 2016 DOI: 10.1038/ncomms10476 OPEN Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs Emiley A. Eloe-Fadrosh1, David Paez-Espino1, Jessica Jarett1, Peter F. Dunfield2, Brian P. Hedlund3, Anne E. Dekas4, Stephen E. Grasby5, Allyson L. Brady6, Hailiang Dong7, Brandon R. Briggs8, Wen-Jun Li9, Danielle Goudeau1, Rex Malmstrom1, Amrita Pati1, Jennifer Pett-Ridge4, Edward M. Rubin1,10, Tanja Woyke1, Nikos C. Kyrpides1 & Natalia N. Ivanova1 Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. 1 Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. 2 Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Pdf Accessed 2013 Feb 25
    Pyrosequencing Reveals High-Temperature Cellulolytic Microbial Consortia in Great Boiling Spring after In Situ Lignocellulose Enrichment Joseph P. Peacock1,2, Jessica K. Cole1, Senthil K. Murugapiran1, Jeremy A. Dodsworth1, Jenny C. Fisher2, Duane P. Moser1,2, Brian P. Hedlund1* 1 School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America, 2 Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America Abstract To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber- explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85uC in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags) from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture. Citation: Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, et al.
    [Show full text]
  • Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
    Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes %
    [Show full text]
  • Effects of Different Straw Biochar Combined with Microbial Inoculants on Soil Environment of Ginseng
    Effects of Different Straw Biochar Combined With Microbial Inoculants on Soil Environment of Ginseng Yuqi Qi Jilin Agricultural University Haolang Liu Jilin Agricultural University Jihong Wang ( [email protected] ) Jilin Agricultural University Yingping Wang Jilin Agricultural University Research Article Keywords: Microbial agent, Ginseng, Biochar, Soil remediation, Microbiota Posted Date: February 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-189319/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 19th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94209-1. Page 1/23 Abstract Ginseng is an important cash crop. The long-term continuous cropping of ginseng causes the imbalance of soil environment and the exacerbation of soil-borne diseases, which affects the healthy development of ginseng industry. In this study, ginseng continuous cropping soil was treated with microbial inocula using broad-spectrum biocontrol microbial strain Frankia F1. Wheat straw, rice straw and corn straw were the best carrier materials for microbial inoculum. After treatment with microbial inoculum prepared with corn stalk biochar, the soil pH value, organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium were increased by 11.18%, 55.43%, 33.07%, 26.70%, 16.40%, and 9.10%, the activities of soil urease, catalase and sucrase increased by 52.73%, 16.80% and 43.80%, respectively. A Metagenomic showed that after the application of microbial inoculum prepared fromwith corn stalk biochar, soil microbial OTUs, Chao1 index, Shannon index, and Simpson index increased by 19.86%, 16.05%, 28.83%, and 3.16%, respectively.
    [Show full text]
  • Characterization of the First Cultured Representative of Verrucomicrobia Subdivision 5 Indicates the Proposal of a Novel Phylum
    The ISME Journal (2016) 10, 2801–2816 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum Stefan Spring1, Boyke Bunk2, Cathrin Spröer3, Peter Schumann3, Manfred Rohde4, Brian J Tindall1 and Hans-Peter Klenk1,5 1Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 2Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 3Department Central Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany and 4Central Facility for Microscopy, Helmholtz-Centre of Infection Research, Braunschweig, Germany The recently isolated strain L21-Fru-ABT represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-ABT represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate.
    [Show full text]
  • Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
    Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota
    [Show full text]
  • Open Thweattetd1.Pdf
    The Pennsylvania State University The Graduate School CHARACTERIZATION OF PIGMENT BIOSYNTHESIS AND LIGHT-HARVESTING COMPLEXES OF SELECTED ANOXYGENIC PHOTOTROPHIC BACTERIA A Dissertation in Biochemistry, Microbiology, and Molecular Biology and Astrobiology by Jennifer L. Thweatt 2019 Jennifer L. Thweatt Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2019 ii The dissertation of Jennifer L. Thweatt was reviewed and approved* by the following: Donald A. Bryant Ernest C. Pollard Professor in Biotechnology and Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee Squire J. Booker Howard Hughes Medical Investigator Professor of Chemistry and Professor of Biochemistry and Molecular Biology Eberly Distinguished Chair in Science John H. Golbeck Professor of Biochemistry and Biophysics Professor of Chemistry Jennifer L. Macalady Associate Professor of Geosciences Timothy I. Miyashiro Assistant Professor of Biochemistry and Molecular Biology Wendy Hanna-Rose Professor of Biochemistry and Molecular Biology Department Head, Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT This dissertation describes work on pigment biosynthesis and the light-harvesting apparatus of two classes of anoxygenic phototrophic bacteria, namely the green bacteria and a newly isolated purple sulfur bacterium. Green bacteria are introduced in Chapter 1 and include chlorophototrophic members of the phyla Chlorobi, Chloroflexi, and Acidobacteria. The green bacteria are defined by their use of chlorosomes for light harvesting. Chlorosomes contain thousands of unique chlorin molecules, known as bacteriochlorophyll (BChl) c, d, e, or f, which are arranged in supramolecular aggregates. Additionally, all green bacteria can synthesize BChl a, the and green members of the phyla Chlorobi and Acidobacteria can synthesize chlorophyll (Chl) a.
    [Show full text]