Guidelines for the Avon Basin

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for the Avon Basin FIRE & BIODIVERSITY GUIDELINES FOR THE AVON BASIN PREPARED FOR THE AVON CATCHMENT COUNCIL AND DEPARTMENT OF ENVIRONMENT AND CONSERVATION BY ERICA SHEDLEY FIRE AND BIODIVERSITY GUIDELINES FOR THE AVON BASIN Consultant Report to the Avon Catchment Council and the Department of Environment and Conservation, August 2007. ERICA SHEDLEY BSc (Hons), PhD WINNIJUP WILDFLOWERS RMB 382 BRIDGETOWN Western Australia 6255 (08) 97617512 [email protected] ii ACKNOWLEDGEMENTS This project was made possible by funding from the National Heritage Trust, administered through the Avon Catchment Council and the Department of Environment and Conservation. The GIS support provided by Ms Nicki Warnock from the Mundaring DEC is gratefully acknowledged. Graeme Keals as project manager in Narrogin DEC provided positive ongoing support and direction, as did members of the project management team. Useful discussions and valuable feedback came from Brett Beecham, Colin Yates, Carl Gosper, Angas Hopkins, Ian Wilson, Kim Williams, Joel Collins, Mitchell Davies, Roger Armstrong and Wendy Johnson. Useful comments were also received as a result of several public meetings held in April 2007 in Hyden, Merredin and Northam, particularly from landholders, FESA and volunteer fire brigade members. Consultant Report to the Avon Catchment Council and the Department of Environment and Conservation, August 2007. The report was compiled by Dr Erica Shedley during the period August 2006 to August 2007 with assistance of staff of the Department of Environment and Conservation. The Report does not represent the views or policies of the Department or the Avon Catchment Council. Cover photograph by Graeme Keals Other photographs and images by Erica Shedley Printed by Drum Print + Publications, Mandurah, Western Australia Email: [email protected] Disclaimer The information contained in this report is based on sources believed to be reliable. While every care has been taken in the preparation of this report, Erica Shedley gives no warranty that the said base sources are correct and accepts no responsibility for any resultant errors contained herein and any damage or loss, howsoever caused, suffered by any individual or corporation. iii Table of Contents PREFACE vii EXECUTIVE SUMMARY viii PART ONE GENERAL GUIDELINES 1. INTRODUCTION 1 1.1 Description of Avon Basin 1 1.2 The need to conserve biodiversity 2 1.3 Fire regimes 4 1.4 Fire in the Avon Basin 4 1.5 Scope and objectives for the Guidelines 5 2. FIRE MANAGEMENT PRINCIPLES AND OBJECTIVES 7 2.1 Principles for fire management 7 2.2 Objectives for ecological fire management 9 2.3 Information 10 3. RESPONSES TO FIRE 12 3.1 Plants 12 3.2 Animals 17 3.2.1 Mammals 17 3.2.2 Reptiles 19 3.2.3 Birds 19 3.2.4 Invertebrates 23 3.3 Fungi 24 4. ECOLOGICAL FIRE MANAGEMENT GUIDELINES 25 4.1 Determining appropriate fire interval ranges 25 4.2 Ecological fire models 27 4.3 Obtaining fire regime variability 30 4.4 Allowing for no planned burn areas 32 4.5 Allowing for wildfire 34 4.6 Allowing for drought 36 4.7 Community protection burns 38 5. PLANNING FRAMEWORK, PRIORITIES AND PROCESSES 39 5.1 Planning guidelines 39 5.2 Levels, objectives and responsibilities of fire planning 40 5.3 Priorities for fire management 46 5.4 Fire planning model 52 5.5 Fire planning for private remnant vegetation 56 6. MANAGING FIRE IN A FRAGMENTED LANDSCAPE 56 6.1 Fragment size, shape and connectivity 56 6.2 Fire and weed interaction 58 6.3 Fire and grazing pressure 60 6.4 Fire and salinity 62 iv 7. VEGETATION MAPPING 64 7.1 Vegetation mapping in the Avon Basin 64 7.2 Ecological fire planning units 66 7.3 Managing complex vegetation landscapes 69 8. ECOLOGICAL IMPACTS OF PRE-BURN PREPARATION 70 8.1 Firebreak construction 70 8.2 Weed control 73 8.3 Soil erosion control 75 8.4 Disease control 76 8.5 Feral animal control 78 9. MANAGEMENT AND RESEARCH GAPS 79 9.1 Management gaps 79 9.2 Research gaps 82 10. ECOLOGICAL MONITORING GUIDELINES 83 10.1 Monitoring of fire planning objectives 83 10.2 Key evaluation questions 84 10.3 Adaptive management 85 10.4 Fire research 86 10.5 Priorities for monitoring fire management objectives 87 PART TWO FIRE GUIDELINES FOR VEGETATION CLASSES 1. BROAD VEGETATION STRUCTURAL CLASSES 94 2. WOODLAND 95 2.1 Distribution of major woodlands 95 2.2 Fire management in woodlands 99 3. LOW WOODLAND 103 3.1 Distribution of low woodlands 103 3.2 Fire management in low woodlands 104 4. MALLEE SHRUBLAND 105 4.1 Distribution of mallee shrublands 105 4.2 Fire management in mallee shrublands 107 5. SHRUBLAND 110 5.1 Distribution of shrublands 110 5.2 Fire management in shrublands 113 6. SHRUB HEATH 115 6.1 Distribution of shrub heath 115 6.2 Fire management in shrub heath 118 v 7. SUCCULENT STEPPE 120 7.1 Distribution of succulent steppe 120 7.2 Fire management in succulent steppe 123 8. MOSAIC VEGETATION 123 8.1 Distribution of mosaic vegetation 123 8.2 Fire management in mosaic vegetation 124 9. ROCK OUTCROPS 126 9.1 Distribution of rock outcrops 126 9.2 Fire management of rock outcrops 128 10. SALT LAKES AND WETLANDS 131 10.1 Distribution of salt lakes and wetlands 131 10.2 Fire management of wetlands 132 11. REFERENCES 134 PART THREE APPENDICES 149 Appendix I Vegetation associations in the Avon Basin 149 Appendix II Vegetation classes in the Avon Basin 154 Appendix III Vegetation associations in the IBRA sub-regions 157 Appendix IV Key flora indicator species in the IBRA sub-regions 163 Appendix V Rare and priority species in the IBRA sub-regions 180 vi PREFACE While preparing these guidelines and in discussions with people involved with fire management, it became apparent that the scope of the project was very ambitious and that one person was unlikely to come up with a set of detailed guidelines that meet ecological fire requirements for the large area covered by the Avon Basin. This was in part due to the scarcity of scientific knowledge and fire management experience about different vegetation communities in this semi-arid region. Similar guidelines in other states have taken many years to develop with the full support of the scientific community. But it was also ambitious in that there was insufficient time for much wider debate within the Department of Environment and Conservation, and with Fire and Emergency Services, Local Government, environment groups and the community. This debate and community engagement is required before more comprehensive fire management guidelines can be developed to meet the needs of all concerned. Given the short time frame for the project it was decided that these guidelines would aim to compile existing knowledge of the ecological fire requirements for a range of vegetation communities within the Avon Basin, and highlight areas where there are gaps in our knowledge and management experience. In this context, the guidelines should be regarded as a preliminary step in the development of fire management guidelines for the Avon Basin, and not be used in a prescriptive way. The guidelines should hopefully stimulate further debate and research that is targeted to meeting the gaps in our knowledge. Due to the low level of fire management in the Avon Basin in the past, there was seen to be a need to develop a more strategic and regional approach to fire management. Much of the content of these guidelines is aimed at this level, rather than at the local district or prescriptive level. Regional management structures and processes are discussed along with a simple means to prioritise prescribed burns. This prioritization process is an important part of regional planning due to the limited resources available to complete the work, and can be developed further as a decision model within a spatial GIS framework or as a Master Burn database that can be used at all levels of fire management. An ArcGIS project was developed during this project that has a number of layers of DEC corporate spatial data clipped to the four main IBRA sub-regional natural resource management boundaries in the Avon Basin. This tool can be used as a basis for strategic fire planning although it needs to be updated with other important layers such as fire history and reserve condition data as this information becomes available. A summary of the vegetation associations, vegetation classes, key fire response species and threatened flora for each of the four main IBRA sub-regions is presented as tables in the Appendices section. This information enables strategic fire planning to be managed at the IBRA sub-regional level should this be required in the future. vii EXECUTIVE SUMMARY This report has presented the current knowledge about biodiversity values in the Avon Wheatbelt and aspects of their conservation with respect to fire management. A basic structure and process has been recommended for implementing and monitoring fire management for biodiversity conservation as a priority. This is based on using Beard- Hopkins vegetation associations as the basic fire planning unit and developing a GIS spatial database to identify areas available for burning. Fire management for biodiversity conservation needs to be considered in association with priorities for community protection as detailed in the associated Wildfire Threat Analysis report. In compiling this report several issues were outstanding in their need for urgent attention. 1. Many areas have not been burnt for at least 50 years and are in urgent need of regeneration before they lose their reproductive capacity. This is particularly so for many of the smaller reserves and areas of remnant vegetation. 2. High priority vegetation communities and species requiring sensitive fire management include: • Granite rock and ironstone outcrops • Heath communities • Salmon gum woodlands • Fresh and brackish wetlands • Malleefowl habitat • Hollow dependent fauna habitat (eg numbats, red tailed phascogales, cockatoos) 3.
Recommended publications
  • Acacia Heterochroa Subsp. Heterochroa Occurrence Map
    WATTLE Acacias of Australia Acacia heterochroa Maslin subsp. heterochroa Source: W orldW ideW attle ver. 2. Source: Australian Plant Image Index (dig.948). Published at: w w w .w orldw idew attle.com ANBG © M. Fagg, 2005 B.R. Maslin Buds. Mt Desmond, W A. Mary Hancock Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin See illustration. Acacia heterochroa subsp. heterochroa occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Family Fabaceae Distribution Common in the Ravensthorpe Ra. from Mt Short SE to the vicinity of Elverdton Mine (c. 15 km SE of Ravensthorpe), with several outlying populations about 20–30 km E and 40 km N of Ravensthorpe. Description Phyllodes elliptic with some tending obovate or ovate, sometimes broadly elliptic or almost circular, 1.5–3.5 cm long, (0.8–) 1–2.5 (–2.9) cm wide, with apical point ±pungent. Peduncles 1–2.5 cm long, normally single in axils of reduced phyllodes on upper portion of branchlets, sometimes a few interspersed in short racemes 5-17 mm long; heads 8–12-flowered. Habitat Grows in a variety of habitats but commonly in gravelly sand, laterite or rocky clay or clayey sand, on ridgelines or moderately exposed gentle slopes, in tall dense to low open mallee scrub with a dense sclerophyllous understorey.
    [Show full text]
  • 5.3.1 Flora and Vegetation
    Flora and fauna assessment for the Calingiri study area Prepared for Muchea to Wubin Integrated Project Team (Main Roads WA, Jacobs and Arup) 5.3 FIELD SURVEY 5.3.1 Flora and vegetation A total of 296 plant taxa (including subspecies and varieties) representing 154 genera and 55 families were recorded in the study area. This total is comprised of 244 (82.4%) native species and 52 (17.6%) introduced (weed) species, and included 60 annual, 223 perennial species, one species that is known to be either annual or perennial and 12 unknown life cycles (Appendix 8). The current survey recorded a similar number of species to previous flora surveys conducted along GNH and higher average diversity (average number of taxa per km) (Table 5-7). Table 5-7 Comparison of floristic data from the current survey with previous flora surveys of GNH between Muchea and Wubin Survey Road Vegetation Taxa Av. taxa Families Genera Weeds length types (no.) per km (no.) (no.) (no.) (km) (no.) Current survey 19 25 296 16 55 154 52 Worley Parsons (2013) 21 12 197 9 48 114 29 ENV (ENV 2007) 25 18 357 14 59 171 44 Western Botanical (2006) 68 34 316 5 52 138 26 Ninox Wildlife Consulting (1989) 217 19 300 1 59 108 40 The most prominent families recorded in the study area were Poaceae, Fabaceae, Proteaceae, Myrtaceae, Asteraceae and Iridaceae (Table 5-8). The dominant families recorded were also prominent in at least some of the previous flora surveys. Table 5-8 Comparison of total number of species per family from the current survey with previous flora surveys Family Current survey Worley Parsons ENV (2007) Western Botanical Ninox Wildlife (2013) (2006) Consulting (1989) Poaceae 40 N/A1 42 4 15 Fabaceae 36 31 50 64 60 Proteaceae 30 N/A1 38 48 43 Myrtaceae 23 30 29 64 40 Asteraceae 19 N/A1 22 5 7 Iridaceae 14 N/A1 6 3 - 1 data not available.
    [Show full text]
  • FINAL REPORT 2019 Canna Reserve
    FINAL REPORT 2019 Canna Reserve This project was supported by NACC NRM and the Shire of Morawa through funding from the Australian Government’s National Landcare Program Canna Reserve BioBlitz 2019 Weaving and wonder in the wilderness! The weather may have been hot and dry, but that didn’t stop everyone having fun and learning about the rich biodiversity and conservation value of the wonderful Canna Reserve during the highly successful 2019 BioBlitz. On the 14 - 15 September 2019, NACC NRM together with support from Department of Biodiversity Conservation and Attractions and the Shire of Morawa, hosted their third BioBlitz at the Canna Reserve in the Shire of Morawa. Fifty professional biologists and citizen scientists attended the event with people travelling from near and far including Morawa, Perenjori, Geraldton and Perth. After an introduction and Acknowledgement of Country from organisers Jessica Stingemore and Jarna Kendle, the BioBlitz kicked off with participants separating into four teams and heading out to explore Canna Reserve with the goal of identifying as many plants, birds, invertebrates, and vertebrates as possible in a 24 hr period. David Knowles of Spineless Wonders led the invertebrate survey with assistance from, OAM recipient Allen Sundholm, Jenny Borger of Jenny Borger Botanical Consultancy led the plant team, BirdLife Midwest member Alice Bishop guided the bird survey team and David Pongracz from Department of Biodiversity Conservation and Attractions ran the vertebrate surveys with assistance from volunteer Corin Desmond. The BioBlitz got off to a great start identifying 80 plant species during the first survey with many more species to come and even a new orchid find for the reserve.
    [Show full text]
  • Annual Report 2008 for the Yilgarn District Threatened Flora And
    1 YILGARN DISTRICT THREATENED FLORA AND COMMUNITIES MANAGEMENT PROGRAM Annual Report 2008 For the Yilgarn District Threatened Flora and Communities Recovery Team Ben Lullfitz Conservation Officer (Flora) Daviesia microcarpa seedling (Photo: Hayden Cannon) Property and copyright of this document is vested jointly in the Director, Threatened Species and Communities Section, Environment Australia and the Executive Director, Western Australia Department of Environment and Conservation The Commonwealth disclaims responsibility for the views expressed Department of Environment and Conservation PO Box 332 Merredin WA 6415 Yilgarn District Threatened Flora and Communities Management Program 2008 Annual Report 2 TABLE OF CONTENTS 1. SUMMARY OF KEY RECOVERY ACTIONS COMPLETED IN 2008 3 2. THREATENED FLORA AND COMMUNITIES RECOVERY TEAM 4 2.1. ROLES AND RESPONSIBILITIES 4 2.2. MEMBERS 4 2.3. RECOVERY TEAM MEETING 5 3. FUNDING 6 4. SPECIES AND COMMUNITIES BRANCH – INTERIM RECOVERY PLANS 6 4.1. IRPs OUTSTANDING 6 5. YILGARN DISTRICT THREATENED FLORA MANAGEMENT PROGRAM 6 5.1. YILGARN DISTRICT THREATENED FLORA SCHEDULE 6 6. IMPLIMENTATION OF RECOVERY ACTIONS 7 6.1. CRITICALLY ENDANGERED 7 6.2. ENDNGERED 8 6.3. VULNERABLE 8 6.4. PRIORITY ONE 9 6.5. PRIORITY TWO 9 6.6. PRIORITY THREE 9 6.7. PRIORITY FOUR 10 7. TRANSLOCATIONS 10 8. INDUCED RECRUITMENT BURNS 10 9. APPLICATIONS TO TAKE RARE FLORA 11 10. EDUCATION AND PUBLICITY 11 11. DISTRICT THREATENED FLORA HERBARIUM 11 12. PRIORITY ECOLOGICAL COMMUNITIES 11 13. CONCLUSION 12 APPENDIX 1: YILGARN DISTRICT THREATENED FLORA LIST 2008 13 Yilgarn District Threatened Flora and Communities Management Program 2008 Annual Report 3 1. SUMMARY OF KEY RECOVERY ACTIONS COMPLETED IN 2008 • Flora survey works in 2008 resulted in the discovery of 11 new populations of declared rare and priority flora in the Yilgarn district (2 endangered, 4 vulnerable and 5 priority species).
    [Show full text]
  • 1 a Survey of the Flora of Remnants Within the Waddy
    1 A SURVEY OF THE FLORA OF REMNANTS WITHIN THE WADDY FOREST LAND CONSERVATION DISTRICT Stephen Davies and Phil Ladd for the Waddy Forest Land Conservation District Committee March 2000 2 CONTENTS INTRODUCTION 1 METHODS 3 RESULTS 4 DISCUSSION 56 ACKNOWLEDGEMENTS 59 REFERENCES 60 Appendix 1 - Composite plant list 60 Appendix 2 - Plants found outside the sample sites 67 Appendix 3 - Composite bird list 67 3 INTRODUCTION The Waddy Forest Land Conservation District is about 41,000 hectares and contains 23 substantial land holdings. In 1999 the District received a grant from the National Heritage Trust to survey the flora of its remnant vegetation. Much of this is on private property and the District Committee selected thirty three plots of remnant bushland on private farms to be included in flora survey. The present report is based on visits to these thirty three remnants that lie on 14 of the 23 farms in the district. The surveys are intended to provide information about the biodiversity of the various remnants with the aim of establishing the priority for preservation, by fencing, of the remnants and to determine the value of linking some of them by the planting of corridors of vegetation. At each site the local landholder(s) joined the survey and provided invaluable background information about the history of the remnants. The vegetation of this part of the northern wheatbelt is known to be very diverse. The Marchagee Nature Reserve, lying north west of the District, was surveyed between 1975 and 1977 (Dell et al. 1979). The area was covered by Beard in his vegetation mapping project (Beard 1976), and part of the south of the District was covered in a report on Koobabbie Farm in 1990 (Davies 1990).
    [Show full text]
  • Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
    AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3.
    [Show full text]
  • Interim Recovery Plan No 62
    INTERIM RECOVERY PLAN NO. 293 Guichenotia seorsiflora INTERIM RECOVERY PLAN 2009-2014 September 2009 Department of Environment and Conservation Kensington Interim Recovery Plan for Guichenotia seorsiflora FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This plan will operate from September 2009 to August 2014 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked as Critically Endangered (CR), this IRP will be reviewed after five years and the need for further recovery actions assessed. This IRP was given regional approval in October 2009 and was approved by the Director of Nature Conservation in November 2009. The provision of funds identified in this IRP is dependent on budgetary and other constraints affecting DEC, as well as the need to address other priorities. Information in this IRP was accurate at September 2009. IRP PREPARATION This IRP was prepared by Robyn Luu1 and Andrew Brown2.
    [Show full text]
  • Structural Botany / Botánica Estructural
    Botanical Sciences 99(3): 588-598. 2021 Received: October 15, 2020, Accepted: December 1, 2020 DOI: 10.17129/botsci.2776 AcaciaOn linecornigera first: April 15, 2021 Structural Botany / Botánica Estructural FLORAL DEVELOPMENT OF THE MYRMECOPHYTIC ACACIA CORNIGERA (LEGUMINOSAE) DESARROLLO FLORAL DE LA MIRMECÓFITA ACACIA CORNIGERA (LEGUMINOSAE) SANDRA LUZ GÓMEZ-ACEVEDO1,2 1 Unidad de Morfología y Función. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México. 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México. Author for correspondence: [email protected] Abstract Background: The Neotropical ant-acacias show morphological variations in their vegetative characteristics as a consequence of their relation- ship with ants. However, there is no information regarding whether floral organs have also undergone any modification that prevents resident ants from approaching the inflorescences in anthesis. Questions: Are the patterns of floral development affected by the relationship with ants? Is there any floral organ or structure involved in avoid- ing the presence of ants during the flowering period? At what stage of development do these modifications arise, if at all? Studied species: Acacia cornigera (L.) Willd. Study site: Santiago Pinotepa Nacional, Oaxaca and Los Tuxtlas, Veracruz. March and May 2015. Methods: Dissections of inflorescences in every developmental stage from two populations, were examined using scanning electron micros- copy. Results: The inception patterns of the calyx (irregular), corolla (simultaneous), androecium (acropetally in alternate sectors) and gynoecium (precocious) agree with previous reports for non-myrmecophyic species of the Acacia genus. In mature stages, the presence of stomata is char- acteristic of bracts and petals.
    [Show full text]
  • Acacia in THIS ISSUE Dacacia the Name Acacia Comes This Issue of Seed Notes from the Greek Acacia, Ace Will Cover the Genus Or Acis Meaning a Point Or Acacia
    No. 9 Acacia IN THIS ISSUE DAcacia The name Acacia comes This issue of Seed Notes from the Greek acacia, ace will cover the genus or acis meaning a point or Acacia. thorn, or from acazo, to D Description sharpen, although this name applies more to African than D Geographic Australian species (Australian distribution and Acacia have no thorns or habitat larger prickles, unlike those D Reproductive biology that are native to Africa). D Seed collection Many species of Acacia, or wattles as they are commonly D Phyllodes and flowers of Acacia aprica. Photo – Andrew Crawford Seed quality called in Australia, are valuable assessment for a range of uses, in D Seed germination particular as garden plants. Description In Australia, Acacia (family is modified to form a leaf- D Recommended reading They are also used for amenity plantings, windbreaks, shade DMimosaceae) are woody like structure or phyllode. trees, groundcovers, erosion plants that range from These phyllodes may be flat and salinity control. The timber prostrate under-shrubs to or terete. Some species do of some Acacia is very hard tall trees. Acacia flowers are not have phyllodes and the and is ideal for fence posts small, regular and usually flattened stems or cladodes (e.g. A. saligna or jam). Other bisexual. They occur in spikes act as leaves. Foliage can Acacia species are used to or in globular heads and vary from blueish to dark make furniture and ornaments. range in colour from cream green to silvery grey. Most The seed of some wattles is to intense yellow. The leaves species of Acacia have glands a good food source for birds, of Acacia may be bipinnate on the axis of the phyllodes, other animals and humans (the primary leaflets being although in Australian as ‘bush tucker’.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • 080057-10.003.Pdf
    ',prT€.rtsnv Jo E]olC,,eql ur uorlEcrlqndrreql go ecue,,rpeur sed,{lolca1 Jo uoqcelaspJocel ot pup seu€u alcprlel ot s.rededgo selrJsJno sJnurtuocuorlnqutuoc srql uollJnpoJlul .,{le{EIg , .V ?9 uepretr4{octdstltssas y puc qlueg DJDJtdslqau ,uepr€tr4trttuosln[ .y '.qtueg sapotpaqda .V 'uapret\ s!sualptD8looJ y :sgureuSurtrolloJ eq] JoJpepJoJe.r ere suorlucr;rdflolcel.uortrppB uI urlsr?tr^trg .y ,(,(trurJlu ue1,.oJDluJo dsqnsstsuaw4otqtoi{ puE u,rou{un.}o) ullsEINry up,roJ 'urlsvl .Je^ .y,(.qluegelecrdsnlnu DdrDJo\iuox y { 4) ue,roC otzJpullKc DIlKqdoatals .V o} peteler) -V .y,ur1svt14 urlsEtAluB,^ oC rinBuls V'(qlueg saplotpaqda ot peteler)urTSeI ? up,roJ rpuodat .urlsul .dsqns -V,(.wqen1 uet oJ Dllolqn|od dsq\s oll{tldourJuo y l T ue,$oJ ow7n0 o Kqdotnau lluosuaqqlnTv ot petrler) .V,(8zt\J urts€I J? ue|/\oJ DJo^al l oUKqdorflra yol potBler)urts?r{ ? uet^oJ DJsaBuoJu|V'(uep\el/i. .y .^ou .tr.JS .qwor .urIseIN lluosLnl uo p3sBq) la T uE,roC (uoprEtr^l) ,urlsetrAtr tluostnI Je^pue urlsuINe uel o) otllold rp^ ? uE,ro710p1ad tero.tnauotalatl.y,(Ap>1u1g ry uoprBl\Ilrajsqa$ y ot pot€leJ,{lsnonuel) ullsel^I T u€,roJnsoqqlS V,(qluegDr auotalaq-V o! patElo])urtsutr ue^oJDlDlrnunpada .y,ullsEj,{ .y,(Tlentr .C l ? ? uB,{\oJsadtpxu.dsqns wxto|tasap l .V,(qlvegru oaut8towuponb yot pet€leJ)urTsrt{ 2ttuE^\oJ Dsslwap auopJaq yo} petele:)urtsB1,a{ uB,{|oJ 'urtsutr .dsqns 'ultsEl T) D)lrpuut) y J 4) ue,roJ sr,raau11 fluosuaqqfiJ.y I ry ule/{io}J7UDI 'dsqns .V,(u\selNDuolsawrf.y pur ur1sey41ryuu,tro3 rsr;ia dsqnsstsuarp.utSlooc ot petelel) urls€tr{ uB^\oJDiDlltlwD
    [Show full text]