Polarization of Electron Density Databases of Transferable

Total Page:16

File Type:pdf, Size:1020Kb

Polarization of Electron Density Databases of Transferable Polarization of Electron Density Databases of Transferable Multipolar Atoms Theo Leduc, Emmanuel Aubert, Enrique Espinosa, Christian Jelsch, Cristian Iordache, Benoît Guillot To cite this version: Theo Leduc, Emmanuel Aubert, Enrique Espinosa, Christian Jelsch, Cristian Iordache, et al.. Polar- ization of Electron Density Databases of Transferable Multipolar Atoms. Journal of Physical Chem- istry A, American Chemical Society, 2019, 123 (32), pp.7156-7170. 10.1021/acs.jpca.9b05051. hal- 02355909 HAL Id: hal-02355909 https://hal.archives-ouvertes.fr/hal-02355909 Submitted on 8 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: J. Phys. Chem. A 2019, 123, 7156−7170 pubs.acs.org/JPCA Polarization of Electron Density Databases of Transferable Multipolar Atoms Theó Leduc, Emmanuel Aubert, Enrique Espinosa, Christian Jelsch, Cristian Iordache, and Benoît Guillot* Universitéde Lorraine, CNRS, CRM2, F-54000 Nancy, France *S Supporting Information ABSTRACT: Polarizability is a key molecular property involved in either macroscopic (i.e., dielectric constant) and microscopic properties (i.e., interaction energies). In rigid molecules, this property only depends on the ability of the electron density (ED) to acquire electrostatic moments in response to applied electric fields. Databases of transferable electron density fragments are a cheap and efficient way to access molecular EDs. This approach is rooted in the relative conservation of the atomic ED between different molecules, termed transferability principle. The present work discusses the application of this transferability principle to the polarizability, an electron density-derived property, partitioned in atomic contributions using the Quantum Theory of Atoms In Molecules topology. The energetic consequences of accounting for in situ deformation (polarization) of database multipolar atoms are investigated in detail by using a high-quality quantum chemical benchmark. 1. INTRODUCTION subatomic resolution X-ray diffraction data. HCMM allows to fi Electrostatic interactions play a major role in noncovalent describe and quantify ne details in the molecular ED, such as intermolecular interactions occurring in crystal packings and bonding and lone pair electrons. It also allows the modeling of between ligands and biological macromolecules. These ED in intermolecular regions, giving access to the quantitative interactions are often a main driving force in intermolecular characterization of intermolecular interactions such as hydro- binding. At equilibrium distances, the usual order of magnitude gen bonds. Globally, all ED deformation features, such as the of electrostatic interactions makes them an important electron redistribution upon covalent bond formation in a 1 molecule or intermolecular polarization effects when a contribution to the total interaction energy. Moreover, fl binding sites in proteins usually show electrostatic comple- molecular ED is under the in uence of neighboring molecules Downloaded via 193.48.208.41 on November 8, 2019 at 13:39:34 (UTC). mentarity with their ligand. Molecular dynamics force fields in in a crystal, are within the scope of the HCMM modeling. biomolecular modeling include calculations of electrostatic Consequently, HCMM modeling gives access to a wealth of ED descriptors [source function,5 quantum theory of atoms in interaction energies with, for instance, the use of partial atomic 6 charges to describe the Coulombic term. However, molecular molecules (QTAIM) topology. ..] used to characterize intra- See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. electrostatic properties originate from the total charge and intermolecular interactions. Finally, an experimental ED, distribution of the molecule under examination, that is, from once modeled in the HCMM approach, allows derivation of the atom nuclei and from the electron distribution in the important molecular properties such as electrostatic potential molecule. The latter property, the molecular electron density (ESP), electric moments, or atomic charges. (ED), can actually be obtained by first-principle calculations or The literature describing various applications of charge be measured by ultrahigh-resolution X-ray diffraction experi- density research is extremely vast and goes to organic small ments. The molecular ED can be represented as a summation molecules with biological activities to inorganic or organo- metallic compounds, with applications toward crystal engineer- of appropriately modeled atomic ED. Such approach is 7,8 9,10 11 commonly followed in charge density research, which recently ing, medicinal chemistry, catalysis, etc. The exper- evolved into a new field termed “Quantum Crystallography”.2 imental approach of charge density modeling, however, ff ED modeling relies, in a vast majority of experimental cases, on strongly relies on the accuracy and resolution of the di raction fi the multipolar atom model of Hansen and Coppens data used for the re nement of the ED model. Indeed, in the (HCMM).3,4 This model provides not only reliable atomic case of an experimental determination of a molecular ED, it is coordinates and thermal displacement parameters but also allows for accounting most of the aspherical features of atomic Received: May 28, 2019 EDs. HCMM describes the molecular ED using multipolar Revised: July 5, 2019 parameters (see Methods section) that can be fitted against Published: July 11, 2019 © 2019 American Chemical Society 7156 DOI: 10.1021/acs.jpca.9b05051 J. Phys. Chem. A 2019, 123, 7156−7170 The Journal of Physical Chemistry A Article commonly admitted within the charge density science degree) but neglecting the noncovalent environment, such as community that an X-ray data resolution of about 0.5 Å is crystal field effect, ionic bridges, van der Waals contacts, or compulsory to obtain reliable results. This obviously hinders hydrogen bonds. Hence, the averaging process on which the the application of a charge density refinement to biological construction of the ELMAM2 library relies includes similar macromolecules whose crystals, besides very few exceptional atomic multipolar EDs extracted from various noncovalent cases,12,13 cannot give access to such high quality and high- environments. In addition to the averaging procedure, the resolution diffraction data. However, scientists of the charge spherical harmonic functions used in the multipolar expansion density community have observed that multipolar parameters of ELMAM2 atoms are constrained to follow the local of atoms characterized by similar chemical environments in symmetry of the atom. This leads to a reduction in the different crystals are very similar and could reliably be number of multipole populations needed to model a given 14 transferred from a molecule to another. This, termed as atom type.29 As a consequence, the transferable ED fragments the transferability principle, has led to the construction of lack noncovalent context-sensitive features such as intermo- libraries of multipolar pseudoatoms, (i.e., sets of atomic lecular polarization effects, limiting possible interpretations of multipolar parameters), allowing quasi-instantaneous recon- fine, local, electrostatic details that could be induced by a struction of ED distributions of very large molecular systems molecular environment. This averaging process is believed to such as biological macromolecules, without the need of cause some partial loss of atomic polarization that this work fi performing a full multipole re nement against experimental aims to reconstruct. data. The seminal paper for the creation of pseudoatom fi 15 It must be noted that some molecular mechanics force elds databanks dates back to 1995 when Pichon-Pesme et al. have already include explicit computation of inducible electrostatics, reconstructed the charge distribution of a peptide backbone such as AMOEBA30 or SIBFA.31 In these force fields, iterative using multipolar parameters previously obtained from the fi algorithms apply polarization on each atom, until convergence, experimental ED re nements of small peptides and isolated using a tensor formalism to symbolize the electrostatic amino acids. This has led the Nancy group to the construction induction up to the quadrupolar level. In the field of charge of the experimental library of multipolar atom model density research, noteworthy efforts to obtain polarization (ELMAM), which contains all the possible chemically unique fi energies based on the ED encompass up to now the PIXEL pseudoatoms (i.e., atoms as de ned in the multipolar method from Gavezzotti32,33 and the CrystalExplorer software formalism) found in the 20 proteinogenic natural amino 1,34 16 from Spackman. acids. The database has been improved afterward The present article, however, describes and tests a new (ELMAM2) so that it covers now most
Recommended publications
  • Appendix 1 Dynamic Polarizability of an Atom
    Appendix 1 Dynamic Polarizability of an Atom Definition of Dynamic Polarizability The dynamic (dipole) polarizability aoðÞis an important spectroscopic characteris- tic of atoms and nanoobjects describing the response to external electromagnetic disturbance in the case that the disturbing field strength is much less than the atomic << 2 5 4 : 9 = electric field strength E Ea ¼ me e h ffi 5 14 Á 10 V cm, and the electromag- netic wave length is much more than the atom size. From the mathematical point of view dynamic polarizability in the general case is the tensor of the second order aij connecting the dipole moment d induced in the electron core of a particle and the strength of the external electric field E (at the frequency o): X diðÞ¼o aijðÞo EjðÞo : (A.1) j For spherically symmetrical systems the polarizability aij is reduced to a scalar: aijðÞ¼o aoðÞdij; (A.2) where dij is the Kronnecker symbol equal to one if the indices have the same values and to zero if not. Then the Eq. A.1 takes the simple form: dðÞ¼o aoðÞEðÞo : (A.3) The polarizability of atoms defines the dielectric permittivity of a medium eoðÞ according to the Clausius-Mossotti equation: eoðÞÀ1 4 ¼ p n aoðÞ; (A.4) eoðÞþ2 3 a V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 347 and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72, DOI 10.1007/978-3-642-34082-6, # Springer-Verlag Berlin Heidelberg 2013 348 Appendix 1 Dynamic Polarizability of an Atom where na is the concentration of substance atoms.
    [Show full text]
  • Bader's Theory of Atoms in Molecules
    J. Chem. Sci. Vol. 128, No. 10, October 2016, pp. 1527–1536. c Indian Academy of Sciences. Special Issue on CHEMICAL BONDING DOI 10.1007/s12039-016-1172-3 PERSPECTIVE ARTICLE Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding P SHYAM VINOD KUMAR, V RAGHAVENDRA and V SUBRAMANIAN∗ Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600 020, India e-mail: [email protected]; [email protected] MS received 22 July 2016; revised 17 August 2016; accepted 19 August 2016 Abstract. In this perspective article, the basic theory and applications of the “Quantum Theory of Atoms in Molecules” have been presented with examples from different categories of weak and hydrogen bonded molecular systems. Keywords. QTAIM; non-covalent interaction; chemical bonding; H-bonding; electron density 1. Introduction account of the bonding within a molecule or crystal. Specially, the derivative of electron density on BCP It is now possible to define the structure of molecules is zero. Bader’s group has made several seminal con- quantum mechanically with the help of Bader’s Quan- tributions to the development of the QTAIM theory tum Theory of Atoms in Molecules (QTAIM).1,2 This and its applications to unravel chemical bonding.10 13 theory has been widely applied to unravel atom-atom Popelier and coworkers have employed the QTAIM interactions in covalent and non-covalent interactions to address several issues in chemistry.14 16 Particu- in molecules,3 molecular clusters,4 small molecular larly, they have demonstrated the possibility of devel- crystals,5 proteins,6 DNA base pairing and stacking.7 oping structure-activity-relationship to predict various Basic motive of QTAIM is to exploit charge density or physico-chemical properties.17 They have used the the- electron density of molecules ρ(r; X) as a vehicle to ory of Quantum Chemical Topology (QCT), to provide study the nature of bonding in molecular systems.
    [Show full text]
  • FORCE FIELDS for PROTEIN SIMULATIONS by JAY W. PONDER
    FORCE FIELDS FOR PROTEIN SIMULATIONS By JAY W. PONDER* AND DAVIDA. CASEt *Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 51. Louis, Missouri 63110, and tDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 I. Introduction. ...... .... ... .. ... .... .. .. ........ .. .... .... ........ ........ ..... .... 27 II. Protein Force Fields, 1980 to the Present.............................................. 30 A. The Am.ber Force Fields.............................................................. 30 B. The CHARMM Force Fields ..., ......... 35 C. The OPLS Force Fields............................................................... 38 D. Other Protein Force Fields ....... 39 E. Comparisons Am.ong Protein Force Fields ,... 41 III. Beyond Fixed Atomic Point-Charge Electrostatics.................................... 45 A. Limitations of Fixed Atomic Point-Charges ........ 46 B. Flexible Models for Static Charge Distributions.................................. 48 C. Including Environmental Effects via Polarization................................ 50 D. Consistent Treatment of Electrostatics............................................. 52 E. Current Status of Polarizable Force Fields........................................ 57 IV. Modeling the Solvent Environment .... 62 A. Explicit Water Models ....... 62 B. Continuum Solvent Models.......................................................... 64 C. Molecular Dynamics Simulations with the Generalized Born Model........
    [Show full text]
  • Coupled Electricity and Magnetism: Multiferroics and Beyond
    Coupled electricity and magnetism: multiferroics and beyond Daniel Khomskii Cologne University, Germany JMMM 306, 1 (2006) Physics (Trends) 2, 20 (2009) Degrees of freedom charge Charge ordering Ferroelectricity Qαβ ρ(r) (monopole) P or D (dipole) (quadrupole) Spin Orbital ordering Magnetic ordering Lattice Maxwell's equations Magnetoelectric effect In Cr2O3 inversion is broken --- it is linear magnetoelectric In Fe2O3 – inversion is not broken, it is not ME (but it has weak ferromagnetism) Magnetoelectric coefficient αij can have both symmetric and antisymmetric parts Pi = αij Hi ; Symmetric: Then along main axes P║H , M║E For antisymmetric tensor αij one can introduce a dual vector T is the toroidal moment (both P and T-odd). Then P ┴ H, M ┴ E, P = [T x H], M = - [T x E] For localized spins For example, toroidal moment exists in magnetic vortex Coupling of electric polarization to magnetism Time reversal symmetry P → +P t → −t M → −M Inversion symmetry E ∝ αHE P → −P r → −r M → +M MULTIFERROICS Materials combining ferroelectricity, (ferro)magnetism and (ferro)elasticity If successful – a lot of possible applications (e.g. electrically controlling magnetic memory, etc) Field active in 60-th – 70-th, mostly in the Soviet Union Revival of the interest starting from ~2000 • Perovskites: either – or; why? • The ways out: Type-I multiferroics: Independent FE and magnetic subsystems 1) “Mixed” systems 2) Lone pairs 3) “Geometric” FE 4) FE due to charge ordering Type-II multiferroics:FE due to magnetic ordering 1) Magnetic spirals (spin-orbit interaction) 2) Exchange striction mechanism 3) Electronic mechanism Two general sets of problems: Phenomenological treatment of coupling of M and P; symmetry requirements, etc.
    [Show full text]
  • Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules
    Int. J. Mol. Sci. 2004, 5, 224-238 International Journal of Molecular Sciences ISSN 1422-0067 © 2004 by MDPI www.mdpi.org/ijms/ Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules Alan Hinchliffe 1,*, Beatrice Nikolaidi 1 and Humberto J. Soscún Machado 2 1 The University of Manchester, School of Chemistry (North Campus), Sackville Street, Manchester M60 1QD, UK. 2 Departamento de Química, Fac. Exp. de Ciencias, La Universidad del Zulia, Grano de Oro Módulo No. 2, Maracaibo, Venezuela. * Corresponding author; E-mail: [email protected] Received: 3 June 2004; in revised form: 15 August 2004 / Accepted: 16 August 2004 / Published: 30 September 2004 Abstract: We report high quality B3LYP Ab Initio studies of the electric dipole polarizability of three related series of molecules: para-XC6H4Y, XC6H4CH=CHC6H4Y and XC6H4N=NC6H4Y, where X and Y represent H together with the six various activating through deactivating groups NH2, OH, OCH3, CHO, CN and NO2. Molecules for which X is activating and Y deactivating all show an enhancement to the mean polarizability compared to the unsubstituted molecule, in accord with the order given above. A number of representative Ab Initio calculations at different levels of theory are discussed for azoarene; all subsequent Ab Initio polarizability calculations were done at the B3LYP/6-311G(2d,1p)//B3LYP/6-311++G(2d,1p) level of theory. We also consider semi-empirical polarizability and molecular volume calculations at the AM1 level of theory together with QSAR-quality empirical polarizability calculations using Miller’s scheme. Least-squares correlations between the various sets of results show that these less costly procedures are reliable predictors of <α> for the first series of molecules, but less reliable for the larger molecules.
    [Show full text]
  • A Dyadic Green's Function Study
    applied sciences Article Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green’s Function Study B. Amorim 1,† ID , P. A. D. Gonçalves 2,3 ID , M. I. Vasilevskiy 4 ID and N. M. R. Peres 4,*,† ID 1 Department of Physics and CeFEMA, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, PT-1049-001 Lisboa, Portugal; [email protected] 2 Department of Photonics Engineering and Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; [email protected] 3 Center for Nano Optics, University of Southern Denmark, DK-5230 Odense, Denmark 4 Department and Centre of Physics, and QuantaLab, University of Minho, Campus of Gualtar, PT-4710-374 Braga, Portugal; mikhail@fisica.uminho.pt * Correspondence: peres@fisica.uminho.pt; Tel.: +351-253-604-334 † These authors contributed equally to this work. Received: 15 October 2017; Accepted: 9 November 2017; Published: 11 November 2017 Abstract: We discuss the renormalization of the polarizability of a nanoparticle in the presence of either: (1) a continuous graphene sheet; or (2) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon polaritons in graphene produces a large enhancement of the real and imaginary parts of the renormalized polarizability. We show that the imaginary part can be changed by a factor of up to 100 relative to its value in the absence of graphene. We also show that the resonance in the case of the grating is narrower than in the continuous sheet. In the case of the grating it is shown that the resonance can be tuned by changing the grating geometric parameters.
    [Show full text]
  • 1 an Introduction to the Quantum Theory of Atoms in Molecules
    1 1 An Introduction to the Quantum Theory of Atoms in Molecules Che´rif F. Matta and Russell J. Boyd 1.1 Introduction The observation that some properties attributed to atoms and functional groups are transferable from one molecule to another has played a key role in the devel- opment of chemistry. This observation provides a basis for group additivity schemes and is exemplified by the constancy of group contributions to thermody- namic and spectroscopic properties. But what is the electronic basis of this empir- ical transferability? The quantum theory of atoms in molecules (QTAIM) [1], de- veloped by Professor Richard F. W. Bader and his coworkers, relies on quantum observables such as the electron density rðrÞ and energy densities to answer such a question. Other important (related) questions addressed by QTAIM include: What is an atom in a molecule or a crystal? How can an atom or a group of atoms be transferable sometimes in very different external potentials? Can one define bonding in molecules unambiguously especially in borderline cases? This chapter contains a summary of some of the main concepts of QTAIM. A more comprehensive and mathematically elegant treatment can be found in Bader’s book [1]. (Often in this chapter, the word ‘‘molecule’’ includes extended systems such as polymers, weakly bonded molecular complexes, and molecular and ionic crystals, in addition to its more traditional meaning of a single, finite, isolated chemically bonded group of atoms. It will be clear from the context when this term is used in its traditional or in its larger sense.) 1.2 The Topology of the Electron Density The topology of the electron density is dominated by the attractive forces of the nuclei imparting it with its principal topological feature – a substantial local max- The Quantum Theory of Atoms in Molecules.
    [Show full text]
  • Electronic Reprint Critical Examination of the Radial Functions in the Hansen
    electronic reprint Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Critical examination of the radial functions in the Hansen–Coppens multipole model through topological analysis of primary and refined theoretical densities Anatoliy Volkov and Philip Coppens Copyright © International Union of Crystallography Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr. Acta Cryst. (2001). A57, 395–405 Volkov and Coppens ¯ Hansen–Coppens multipole model research papers Acta Crystallographica Section A Foundations of Critical examination of the radial functions in Crystallography the Hansen±Coppens multipole model through ISSN 0108-7673 topological analysis of primary and refined theoretical densities Received 22 December 2000 Accepted 6 February 2001 Anatoliy Volkov and Philip Coppens* Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA. Correspondence e-mail: [email protected] A double-zeta (DZ) multipolar model has been applied to theoretical structure factors of four organic molecular crystals as a test of the ability of the multipole model to faithfully retrieve a theoretical charge density. The DZ model leads to signi®cant improvement in the agreement with the theoretical charge density along the covalent bonds and its topological parameters, and eliminates some of the bias introduced by the limited ¯exibility of the radial functions when a theoretical density is projected into the conventional multipole formalism. The DZ model may be too detailed for analysis of experimental data sets of the # 2001 International Union of Crystallography accuracy and resolution typically achieved at present, but provides guidance for Printed in Great Britain ± all rights reserved the type of algorithms to be adapted in future studies.
    [Show full text]
  • Some Notes On: What Is an Atom in a Molecule
    Topological and AIM analyses beyond the Born-Oppenheimer paradigm: New opportunities Mohammad Goli and Shant Shahbazian* Faculty of Chemistry, Shahid Beheshti University, G. C. , Evin, Tehran, Iran, 19839, P.O. Box 19395-4716. Tel/Fax: 98-21-22431661 E-mail: (Shant Shahbazian) [email protected] * Corresponding author 1 Abstract The multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis is done on methane, ethylene, acetylene and benzene as selected basic hydrocarbons. This is the first report on applying the MC-QTAIM analysis on polyatomic species. In order to perform the MC-QTAIM analysis, at first step the nuclear-electronic orbital method at Hartree-Fock level (NEO-HF) is used as a non-Born-Oppenheimer (nBO) ab initio computational procedure assuming both electrons and protons as quantum waves while carbon nuclei as point charges in these systems. The ab initio calculations proceed substituting all the protons of each species first with deuterons and then tritons. At the next step, the derived nBO wavefunctions are used for the "atoms in molecules" (AIM) analysis. The results of topological analysis and integration of atomic properties demonstrate that the MC-QTAIM is capable of deciphering the underlying AIM structure of all the considered species. Also, the results of the analysis for each isotopic composition are distinct and the fingerprint of the mass difference of hydrogen isotopes is clearly seen in both topological and AIM analyses. This isotopic distinction is quite unique in the MC-QTAIM and not recovered by the orthodox QTAIM that treats nuclei as clamped particles. The results of the analysis also demonstrate that each quantum nucleus that forms an atomic basin resides within its own basin.
    [Show full text]
  • 1.3 Structures of Covalent Compounds 13
    01_BRCLoudon_pgs5-1.qxd 12/8/08 11:48 AM Page 13 1.3 STRUCTURES OF COVALENT COMPOUNDS 13 1.9 Draw an appropriate bond dipole for the carbon–magnesium bond of dimethylmagnesium. Ex- plain your reasoning. H3C Mg CH3 dimethylmagnesium 1.3 STRUCTURES OF COVALENT COMPOUNDS We know the structure of a molecule containing covalent bonds when we know its atomic con- nectivity and its molecular geometry. Atomic connectivity is the specification of how atoms in a molecule are connected. For example, we specify the atomic connectivity within the water molecule when we say that two hydrogens are bonded to an oxygen. Molecular geometry is the specification of how far apart the atoms are and how they are situated in space. Chemists learned about atomic connectivity before they learned about molecular geom- etry. The concept of covalent compounds as three-dimensional objects emerged in the latter part of the nineteenth century on the basis of indirect chemical and physical evidence. Until the early part of the twentieth century, however, no one knew whether these concepts had any physical reality, because scientists had no techniques for viewing molecules at the atomic level. By the second decade of the twentieth century, investigators could ask two questions: (1) Do organic molecules have specific geometries and, if so, what are they? (2) How can molecular geometry be predicted? A. Methods for Determining Molecular Geometry Among the greatest developments of chemical physics in the early twentieth century were the discoveries of ways to deduce the structures of molecules. Such techniques include various types of spectroscopy and mass spectrometry, which we’ll consider in Chapters 12–15.
    [Show full text]
  • DFT and QTAIM Study of the Tetra-Tert ... -.:. Michael Pittelkow
    Journal of Molecular Structure 1026 (2012) 127–132 Contents lists available at SciVerse ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc DFT and QTAIM study of the tetra-tert-butyltetraoxa[8]circulene regioisomers structure ⇑ Gleb V. Baryshnikov a, Boris F. Minaev a, , Valentina A. Minaeva a,b, Alina T. Baryshnikova a, Michael Pittelkow c a Bohdan Khmelnytsky National University, 18031 Cherkasy, Ukraine b Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden c Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark highlights " Tetra-tert-butyltetraoxa[8]circulene regioisomers were studied by DFT method. " Electronic density distribution was calculated by the QTAIM method. " The presence of stabilizing non-valence bonds is detected by X-ray experiment. " The HÁÁÁH contacts are dynamically unstable due to high ellipticity. " The energy of the HÁÁÁH and CHÁÁÁO contacts was estimated by the Espinosa equation. article info abstract Article history: The recently synthesized tetra-tert-butyltetraoxa[8]circulene regioisomers characterized by unusual Received 6 March 2012 solution-state aggregation behavior are calculated at the density functional theory (DFT) level with the Received in revised form 24 May 2012 quantum theory of atoms in molecules (QTAIMs) approach to the electron density distribution analysis. Accepted 24 May 2012 The presence of stabilizing intramolecular hydrogen bonds and hydrogen–hydrogen interactions in the Available online 31 May 2012 studied molecules is predicted and the energies of these interactions are estimated with QTAIM. Occur- rence of the CHÁÁÁO bonds is detected by the single-crystal X-ray analysis for two regioisomers, obtained Keywords: in high purity.
    [Show full text]
  • Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom
    Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom Franziska Hagelsteina, Rory Miskimenb, Vladimir Pascalutsaa a Institut für Kernphysik and PRISMA Excellence Cluster, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany bDepartment of Physics, University of Massachusetts, Amherst, 01003 MA, USA Abstract We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polariz- abilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the “proton-radius puzzle”. We conclude with summary plots of the recent results and prospects for the near-future work. Keywords: Proton, Neutron, Dispersion, Compton scattering, Structure functions, Muonic hydrogen, Chiral EFT, Lattice QCD Contents 1 Introduction 3 1.1 Notations and Conventions......................................3 2 Basic Concepts and Ab Initio Calculations6 2.1 Naïve Picture..............................................6 2.2 Defining Hamiltonian..........................................7 2.3 Lattice QCD...............................................7 2.4 Chiral EFT................................................9 3 Polarizabilities in Compton Scattering 12 3.1 Compton Processes..........................................
    [Show full text]