Appendix 1 Dynamic Polarizability of an Atom

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1 Dynamic Polarizability of an Atom Appendix 1 Dynamic Polarizability of an Atom Definition of Dynamic Polarizability The dynamic (dipole) polarizability aoðÞis an important spectroscopic characteris- tic of atoms and nanoobjects describing the response to external electromagnetic disturbance in the case that the disturbing field strength is much less than the atomic << 2 5 4 : 9 = electric field strength E Ea ¼ me e h ffi 5 14 Á 10 V cm, and the electromag- netic wave length is much more than the atom size. From the mathematical point of view dynamic polarizability in the general case is the tensor of the second order aij connecting the dipole moment d induced in the electron core of a particle and the strength of the external electric field E (at the frequency o): X diðÞ¼o aijðÞo EjðÞo : (A.1) j For spherically symmetrical systems the polarizability aij is reduced to a scalar: aijðÞ¼o aoðÞdij; (A.2) where dij is the Kronnecker symbol equal to one if the indices have the same values and to zero if not. Then the Eq. A.1 takes the simple form: dðÞ¼o aoðÞEðÞo : (A.3) The polarizability of atoms defines the dielectric permittivity of a medium eoðÞ according to the Clausius-Mossotti equation: eoðÞÀ1 4 ¼ p n aoðÞ; (A.4) eoðÞþ2 3 a V. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures 347 and Solids, Springer Series on Atomic, Optical, and Plasma Physics 72, DOI 10.1007/978-3-642-34082-6, # Springer-Verlag Berlin Heidelberg 2013 348 Appendix 1 Dynamic Polarizability of an Atom where na is the concentration of substance atoms. For simplicity it is assumed in Eq. A.4 that a medium consists of atoms of the same kind. It should be noted that the basis for a number of experimental procedures of determination of the dynamic polarizability aoðÞis its connection with the refractive index of a substance (thatpffiffiffiffiffiffiffiffiffiffi for a transparent nonmagnetic medium is determined by the equation nðÞ¼o eoðÞ). Dynamic polarizability defines the shift of the atomic level energy DEn in an external electric field. In the second order of the perturbation theory for the nonresonant external field E and a spherically symmetric electronic state a corresponding correction to energy looks like 1 DEð2Þ ¼À a ðÞo E2: (A.5) n 2 n The formula (A.5) describes the quadratic Stark effect. In the case that the external field frequency coincides with the eigenfrequency of an atom, the energy shift is found to be linear in electric field intensity – the linear Stark effect. The linear Stark effect is realized also in case of an orbitally degenerate atomic state as it takes place for a hydrogen atom and hydrogen-like ions. Static polarizability, that is, polarizability at the zero frequency aoðÞ¼ 0 defines the level shift in a constant electric field and, besides, the interatomic interaction potential at long distances (the Van der Waals interaction potential). Since static polarizability is a positive value (see below), from the Eq. A.5 it follows that the energy of a nondegenerate atomic state decreases in the presence of a constant electric field. The potential of interaction of a neutral atom with a slow charged particle at long distances is also defined by its static polarizability: að0Þ V ðrÞ¼Àe2 ; (A.6) pol 0 2 r4 where e0 is the particle charge. With the use of Eq. A.6 it is possible to obtain the following expression for the cross-section of elastic collision of a charged particle with an atom in case of applicability of the classical approximation for description of motion of an incident particle with the energy E: rffiffiffiffiffiffiffiffiffi að0Þ sel ðEÞ¼2 p e : (A.7) scat 0 2E It should be noted that the Eq. A.7 follows (accurate to the factor equal to 2) from Eq. A.6 if the effective scattering radius rE is determined with the use of the equation E ¼ VpolðÞrE : (A.8) Appendix 1 Dynamic Polarizability of an Atom 349 Thus the knowledge of dynamic polarizability is very important for description of a whole number of elementary processes. Expression for the Dynamic Polarizability of an Atom Let us calculate the dipole moment of an atom d in the monochromatic field EðtÞ¼2RefgEo expðÞÀi o t that by definition is dðtÞ¼2RefgaðÞo Eo expðÞÀi o t : (A.9) The Fourier component of the dipole moment is given by the expression do ¼ aðÞo Eo: (A.10) In the formulas (A.9) and (A.10) Eo is the complex electric field vector in monochromatic radiation being a Fourier component of EðtÞ. The dipole moment of an atom in the absence of external fields is equal to zero in view of spherical symmetry, so the value of an induced dipole moment can serve as a measure of disturbance of an atom by an external action. The linear dependence dðtÞon electric field intensity (A.9) is true in case of smallness of the field strength E from the standpoint of fulfilment of the inequations E<<Ea. Thus for low enough field strengths the response of an atom to electromagnetic disturbance can be characterized by its polarizability aðÞo . For description of the electromagnetic response of an atom – a quantum system – within the framework of classical physics, it is convenient to use the spectroscopic conformity principle. It can be formulated as follows: an atom in interaction with an electromagnetic field behaves as a set of classical oscillators (transition oscillators) with eigenfrequencies equal to the frequencies of transitions between atomic energy levels. This means that each transition between the atomic states jij and jin is assigned an oscillator with the eigenfrequency ojn and the damping constant djn< <ojn . The contribution of the transition oscillators to the response of an atom to electromagnetic action is proportional to a dimensionless quantity called oscillator strength – fjn , the more is the oscillator strength, the stronger is a corresponding transition. Transitions with the oscillator strength equal to zero are called forbidden transitions. According to the spectroscopic conformity principle, the change of an atomic state is made up of the change of motion of transition oscillators. The inequation E<<Ea means the smallness of perturbation of an atomic electron state as a result of action of the electromagnetic field. Thus it is possible to consider the deviations of the transition oscillators from the equilibrium position under the action of the field EðtÞ small, so for a nth oscillator the equation of motion in the harmonic approximation is true: 350 Appendix 1 Dynamic Polarizability of an Atom e €r þ d r_ þ o2 r ¼ f EðtÞ; (A.11) n n0 n n0 n m n0 where rn is the radius vector corresponding to the deviation of the transition oscillator from the equilibrium position; dn0, on0, fn0 are the damping constant, eigenfrequency and the oscillator strength. For simplicity we consider a one-electron atom in the ground state, the dipole moment of which is equal to d ¼ e r . (In case of a multielectron atom the dipole moment is equal to the sum of dipole moments of atomic electrons.) In view of the conformity principle the induced dipole moment of an atom is made upP of inducedP dipole moments of the oscillators of transitions to the nth state dn: d ¼ dn ¼ e rn. Going in this equation to Fourier components, n n we have X do ¼ e rno; (A.12) n where rno is the Fourier transform of the radius vector of the transition oscillator deviation from the equilibrium position. The expression for this value follows from the equation of motion (A.11): e fn0 r o ¼ Eo: (A.13) n o2 o2 o m n0 À À i dn0 Substituting the formula (A.13) in the Eq. A.12 and using the definition of polarizability (A.10), we find for it the following expression: e2 X f aðÞ¼o n0 : (A.14) o2 o2 o m n n0 À À i dn0 Hence it follows that the dynamic polarizability of an atom represents, generally speaking, a complex value with a dimensionality of volume. The imaginary part of polarizability is proportional to the damping constants of the transition oscillators. The sum on the right of the Eq. A.14 includes both summation over the discrete energy spectrum and integration with respect to the continuous energy spectrum. The imaginary part of polarizability is responsible for absorption of radiation, and the real part defines the refraction of an electromagnetic wave in a medium. The expression (A.14) describes not only a one-electron atom, but also a multielectron atom. The multielectron nature of an atom is taken into account by the fact that in definition of the oscillator strength the dipole moment of an atom is equal to the sum of dipole moments of its electrons. From the Eq. A.14 several important limiting cases can be obtained. For example, if the frequency of the external field is equal to zero, the formula (A.14) gives the expression for the static polarizability of an atom: Appendix 1 Dynamic Polarizability of an Atom 351 e2 X f a aðÞ¼o ¼ 0 n0 : (A.15) 0 o2 m n n0 Hence it is seen that static polarizability is a real and positive value. It has a large numerical value if in the atomic spectrum there are transitions with high oscillator strength and low eigenfrequency as it is, for example, for alkaline-earth atoms. In the opposite high-frequency limit, when h o>>IP ( IP is the ionization potential of atom) and the eigenfrequencies in the denominators of Eq. A.14 can be neglected, from the formula (A.14) in view of the golden rule of sums, according to which the sum of oscillator strengths is equal to the number of electrons in an atom Na, we obtain e2 N a ðÞ¼Ào a : (A.16) 1 m o2 Hence it is seen that the high-frequency polarizability of an atom is a real and negative value that decreases quadratically with growing frequency of the external field.
Recommended publications
  • Coupled Electricity and Magnetism: Multiferroics and Beyond
    Coupled electricity and magnetism: multiferroics and beyond Daniel Khomskii Cologne University, Germany JMMM 306, 1 (2006) Physics (Trends) 2, 20 (2009) Degrees of freedom charge Charge ordering Ferroelectricity Qαβ ρ(r) (monopole) P or D (dipole) (quadrupole) Spin Orbital ordering Magnetic ordering Lattice Maxwell's equations Magnetoelectric effect In Cr2O3 inversion is broken --- it is linear magnetoelectric In Fe2O3 – inversion is not broken, it is not ME (but it has weak ferromagnetism) Magnetoelectric coefficient αij can have both symmetric and antisymmetric parts Pi = αij Hi ; Symmetric: Then along main axes P║H , M║E For antisymmetric tensor αij one can introduce a dual vector T is the toroidal moment (both P and T-odd). Then P ┴ H, M ┴ E, P = [T x H], M = - [T x E] For localized spins For example, toroidal moment exists in magnetic vortex Coupling of electric polarization to magnetism Time reversal symmetry P → +P t → −t M → −M Inversion symmetry E ∝ αHE P → −P r → −r M → +M MULTIFERROICS Materials combining ferroelectricity, (ferro)magnetism and (ferro)elasticity If successful – a lot of possible applications (e.g. electrically controlling magnetic memory, etc) Field active in 60-th – 70-th, mostly in the Soviet Union Revival of the interest starting from ~2000 • Perovskites: either – or; why? • The ways out: Type-I multiferroics: Independent FE and magnetic subsystems 1) “Mixed” systems 2) Lone pairs 3) “Geometric” FE 4) FE due to charge ordering Type-II multiferroics:FE due to magnetic ordering 1) Magnetic spirals (spin-orbit interaction) 2) Exchange striction mechanism 3) Electronic mechanism Two general sets of problems: Phenomenological treatment of coupling of M and P; symmetry requirements, etc.
    [Show full text]
  • Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules
    Int. J. Mol. Sci. 2004, 5, 224-238 International Journal of Molecular Sciences ISSN 1422-0067 © 2004 by MDPI www.mdpi.org/ijms/ Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules Alan Hinchliffe 1,*, Beatrice Nikolaidi 1 and Humberto J. Soscún Machado 2 1 The University of Manchester, School of Chemistry (North Campus), Sackville Street, Manchester M60 1QD, UK. 2 Departamento de Química, Fac. Exp. de Ciencias, La Universidad del Zulia, Grano de Oro Módulo No. 2, Maracaibo, Venezuela. * Corresponding author; E-mail: [email protected] Received: 3 June 2004; in revised form: 15 August 2004 / Accepted: 16 August 2004 / Published: 30 September 2004 Abstract: We report high quality B3LYP Ab Initio studies of the electric dipole polarizability of three related series of molecules: para-XC6H4Y, XC6H4CH=CHC6H4Y and XC6H4N=NC6H4Y, where X and Y represent H together with the six various activating through deactivating groups NH2, OH, OCH3, CHO, CN and NO2. Molecules for which X is activating and Y deactivating all show an enhancement to the mean polarizability compared to the unsubstituted molecule, in accord with the order given above. A number of representative Ab Initio calculations at different levels of theory are discussed for azoarene; all subsequent Ab Initio polarizability calculations were done at the B3LYP/6-311G(2d,1p)//B3LYP/6-311++G(2d,1p) level of theory. We also consider semi-empirical polarizability and molecular volume calculations at the AM1 level of theory together with QSAR-quality empirical polarizability calculations using Miller’s scheme. Least-squares correlations between the various sets of results show that these less costly procedures are reliable predictors of <α> for the first series of molecules, but less reliable for the larger molecules.
    [Show full text]
  • A Dyadic Green's Function Study
    applied sciences Article Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green’s Function Study B. Amorim 1,† ID , P. A. D. Gonçalves 2,3 ID , M. I. Vasilevskiy 4 ID and N. M. R. Peres 4,*,† ID 1 Department of Physics and CeFEMA, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, PT-1049-001 Lisboa, Portugal; [email protected] 2 Department of Photonics Engineering and Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; [email protected] 3 Center for Nano Optics, University of Southern Denmark, DK-5230 Odense, Denmark 4 Department and Centre of Physics, and QuantaLab, University of Minho, Campus of Gualtar, PT-4710-374 Braga, Portugal; mikhail@fisica.uminho.pt * Correspondence: peres@fisica.uminho.pt; Tel.: +351-253-604-334 † These authors contributed equally to this work. Received: 15 October 2017; Accepted: 9 November 2017; Published: 11 November 2017 Abstract: We discuss the renormalization of the polarizability of a nanoparticle in the presence of either: (1) a continuous graphene sheet; or (2) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon polaritons in graphene produces a large enhancement of the real and imaginary parts of the renormalized polarizability. We show that the imaginary part can be changed by a factor of up to 100 relative to its value in the absence of graphene. We also show that the resonance in the case of the grating is narrower than in the continuous sheet. In the case of the grating it is shown that the resonance can be tuned by changing the grating geometric parameters.
    [Show full text]
  • Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom
    Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom Franziska Hagelsteina, Rory Miskimenb, Vladimir Pascalutsaa a Institut für Kernphysik and PRISMA Excellence Cluster, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany bDepartment of Physics, University of Massachusetts, Amherst, 01003 MA, USA Abstract We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polariz- abilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the “proton-radius puzzle”. We conclude with summary plots of the recent results and prospects for the near-future work. Keywords: Proton, Neutron, Dispersion, Compton scattering, Structure functions, Muonic hydrogen, Chiral EFT, Lattice QCD Contents 1 Introduction 3 1.1 Notations and Conventions......................................3 2 Basic Concepts and Ab Initio Calculations6 2.1 Naïve Picture..............................................6 2.2 Defining Hamiltonian..........................................7 2.3 Lattice QCD...............................................7 2.4 Chiral EFT................................................9 3 Polarizabilities in Compton Scattering 12 3.1 Compton Processes..........................................
    [Show full text]
  • Classical Electromagnetism
    Classical Electromagnetism Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Maxwell’s Equations 7 1.1 Introduction . .................................. 7 1.2 Maxwell’sEquations................................ 7 1.3 ScalarandVectorPotentials............................. 8 1.4 DiracDeltaFunction................................ 9 1.5 Three-DimensionalDiracDeltaFunction...................... 9 1.6 Solution of Inhomogeneous Wave Equation . .................... 10 1.7 RetardedPotentials................................. 16 1.8 RetardedFields................................... 17 1.9 ElectromagneticEnergyConservation....................... 19 1.10 ElectromagneticMomentumConservation..................... 20 1.11 Exercises....................................... 22 2 Electrostatic Fields 25 2.1 Introduction . .................................. 25 2.2 Laplace’s Equation . ........................... 25 2.3 Poisson’sEquation.................................. 26 2.4 Coulomb’sLaw................................... 27 2.5 ElectricScalarPotential............................... 28 2.6 ElectrostaticEnergy................................. 29 2.7 ElectricDipoles................................... 33 2.8 ChargeSheetsandDipoleSheets.......................... 34 2.9 Green’sTheorem.................................. 37 2.10 Boundary Value Problems . ........................... 40 2.11 DirichletGreen’sFunctionforSphericalSurface.................. 43 2.12 Exercises....................................... 46 3 Potential Theory
    [Show full text]
  • Measuring the Spin-Polarizabilities of the Proton T HI S at Hiγs
    Measuring the Spin-Polarizabilities of the Proton at HIγS Rory Miskimen University of Massachusetts, Amherst • Nucleon polarizabilities: What are they, and what’s still to be accomplished • Spin-polarizabilities of the proton • The experiment in preparation at HIGS Proton electric and maggpnetic polarizabilities from real Compton scattering† α = (12.0 ± 0.6)x10−4 fm3 −4 3 β = (1.9 m 0.6)x10 fm Some observations… i. the numbers are small: the proton is very “stiff” ii. the magnetic polarizability is around 20% of the electric polarizability Cancellation of positive paramagnetism by negggative diamagnetism † M. Schumacher, Prog. Part. and Nucl. Phys. 55, 567 (2005). The spin-polarizabilities of the nucleon •At O(ω3) four new nucleon structure terms that involve nucleon spin-flip operators enter the RCS expansion. (3),spin 1 ⎛ r r r& r r r& ⎞ H = − 4π⎜γ σ ⋅ E × E + γ σ ⋅ B × B − 2γ E σ H + 2γ H σ E ⎟ eff 2 ⎝ E1E1 M1M1 M1E2 ij j j E1M2 ij j j ⎠ • The classical Faraday effect is a spin polarizability effect • Spin-polarizabilities cause the nucleon spin to ppggrecess in rotating electric and magnetic fields Spin polarizatibilities in Virtual Compton Scattering Contribution of spin polarizabilities in the VCS response functions Experiments The GDH experiments at Mainz and ELSA used the Gell-Mann, Goldberger, and Thirring sum rule to evaluate the forward S.-P. γ0 γ0 = −γE1E1 − γE1M2 − γM1M1 − γM1E2 ∞ 1 σ1 2 − σ3 2 γ0 = dω 4π2 ∫ ω3 mπ −4 4 γ0 = (−1.01 ± 0.08 ± 0.10) × 10 fm Backward spin polarizability from dispersive analysis of backward angle Compton scattering γ π = −γE1E1 − γE1M2 + γM1M1 + γM1E2 −4 4 γ π = (−38.7 ± 1.8) ×10 fm Experiment versus Theory Experiment121,2 SSE3 Fixed-t DR4 γ0 -1.01 ±0.08 ±0.10 .62 ± -0.25 -0.7 γπ 8.0 ± 1.8 8.86 ± 0.25 9.3 1.
    [Show full text]
  • Electromagnetic Response of Living Matter
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS Electromagnetic response of living matter TOBIAS AMBJORNSSON¨ Department of Applied Physics CHALMERS UNIVERSITY OF TECHNOLOGY GOTEBORG¨ UNIVERSITY G¨oteborg, Sweden 2003 Electromagnetic response of living matter TOBIAS AMBJORNSSON¨ ISBN 91-628-5697-9 c Tobias Ambj¨ornsson, 2003 Chalmers University of Technology G¨oteborg University SE-412 96 G¨oteborg, Sweden Telephone +46–(0)31–7721000 Cover designed by Veronica Svensson Chalmersbibliotekets reproservice G¨oteborg, Sweden 2003 Electromagnetic response of living matter TOBIAS AMBJORNSSON¨ Department of Applied Physics Chalmers University of Technology G¨oteborg University ABSTRACT This thesis deals with theoretical physics problems related to the interactions be- tween living matter and electromagnetic fields. The five research papers included provide an understanding of the physical mechanisms underlying such interactions. The introductory part of the thesis is an attempt to connect as well as provide a background for the papers. Below follows a summary of the results obtained in the research papers. In paper I we use a time-dependent quantum mechanical perturbation scheme in order to derive a self-consistent equation for the induced dipole moments in a molecular aggregate (such as a cell membrane or the photosynthetic unit), including dipole interaction between molecules. Our model is shown to be superior to standard exciton theory which has been widely used in the study of photosynthesis. In paper II we study the process of DNA translocation, driven by a static electric field, through a nano-pore in a membrane by solving the appropriate Smoluchowski equation. In particular we investigate the flux (the number of DNA passages per unit time through the pore) as a function of applied voltage.
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]
  • Polarizabilities of Complex Individual Dielectric Or Plasmonic Nanostructures
    Polarizabilities of complex individual dielectric or plasmonic nanostructures Adelin Patoux, Clément Majorel, Peter Wiecha, Aurelien Cuche, Otto Muskens, Christian Girard, Arnaud Arbouet To cite this version: Adelin Patoux, Clément Majorel, Peter Wiecha, Aurelien Cuche, Otto Muskens, et al.. Polarizabilities of complex individual dielectric or plasmonic nanostructures. Physical Review B, American Physical Society, 2020, 101 (23), 10.1103/PhysRevB.101.235418. hal-02991773 HAL Id: hal-02991773 https://hal.archives-ouvertes.fr/hal-02991773 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW B 101, 235418 (2020) Polarizabilities of complex individual dielectric or plasmonic nanostructures Adelin Patoux ,1,2,3 Clément Majorel,1 Peter R. Wiecha ,1,4,* Aurélien Cuche,1 Otto L. Muskens ,4 Christian Girard,1 and Arnaud Arbouet1,† 1CEMES, Université de Toulouse, CNRS, Toulouse, France 2LAAS, Université de Toulouse, CNRS, Toulouse, France 3AIRBUS DEFENCE AND SPACE SAS, Toulouse, France 4Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom (Received 9 December 2019; accepted 25 March 2020; published 8 June 2020) When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors.
    [Show full text]
  • Neutral and Charged Scalar Mesons, Pseudoscalar Mesons, and Diquarks in Magnetic Fields
    PHYSICAL REVIEW D 97, 076008 (2018) Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields Hao Liu,1,2,3 Xinyang Wang,1 Lang Yu,4 and Mei Huang1,2,5 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 2School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100039, China 3Jinyuan Senior High School, Shanghai 200333, China 4Center of Theoretical Physics and College of Physics, Jilin University, Changchun 130012, People’s Republic of China 5Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China (Received 16 January 2018; published 17 April 2018) We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu–Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1=Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD × QED in the vacuum.
    [Show full text]
  • ECT* Workshop on the Proton Radius Puzzle
    ECT* Workshop on the Proton Radius Puzzle Book of Abstracts October 29 - November 2, 2012 Trento, Italy October 8, 2012 A. Afanasev R.J. Hill J. Arrington M. Kohl J.C. Bernauer I.T. Lorenz A. Beyer J.A. McGovern E. Borie G.A. Miller M.C. Birse K. Pachucki P. Brax G. Paz J.D. Carroll R. Pohl C.E. Carlson M. Pospelov M.O. Distler B.A. Raue M.I. Eides S.S. Schlesser K.S.E. Eikema I. Sick A. Gasparian R. Gilman K.J. Slifer M. Gorchtein D. Solovyev K. Griffioen V. Sulkosky N.D. Guise A. Vacchi E.A. Hessels I. Yavin A. Afanasev Radiative corrections and two-photon effects for lepton-nucleon scat- tering J. Arrington Extracting the proton radius from low Q2 electron/muon scattering J.C. Bernauer The Mainz high-precision proton form factor measurement I. Overview and results A. Beyer Atomic Hydrogen 2S-nP Transitions and the Proton Size E. Borie Muon-proton Scattering M.C. Birse Issues with determining the proton radius from elastic electron scat- tering P. Brax Atomic Precision Tests and Light Scalar Couplings C.E. Carlson New Physics and the Proton Radius Problem J.D. Carroll Non-perturbative QED spectrum of Muonic Hydrogen M.O. Distler The Mainz high-precision proton form factor measurement II. Basic principles and spin-offs M.I. Eides Weak Interaction Contributions in Light Muonic Atoms K.S.E. Eikema XUV frequency comb spectroscopy of helium and helium+ ions A. Gasparian A Novel High Precision Measurement of the Proton Charge Radius via ep Scattering Method R.
    [Show full text]
  • Measuring the Neutral Pion Polarizability Proposal Submitted to PAC 48 Draft to Gluex Collaboration
    Measuring the Neutral Pion Polarizability Proposal Submitted to PAC 48 Draft to GlueX Collaboration M.M. Ito∗1, D. Lawrence1, E.S. Smithy1, B. Zihlmann∗1, R. Miskimen∗3, I. Larin∗3, A. Austregesilo5, D. Hornidge6, and P. Martel7 1Thomas Jefferson National Accelerator Facility, Newport News, VA 3University of Massachusetts, Amherst, MA 5Carnegie Mellon University, Pittsburgh, PA 6Mount Allison University, Sackville, New Brunswick, Canada 7Institute for Nuclear Physics, Johannes Gutenberg University, Mainz, Germany March 6, 2020 Theoretical Support J. Goity, Thomas Jefferson National Accelerator Facility, Newport News, Virginia and Hampton University, Hampton, Virginia A. Aleksejevs, Memorial University of Newfoundland, Corner Brook, Canada S. Barkanova, Memorial University of Newfoundland, Corner Brook, Canada S. Gevorkyan, Joint Institute for Nuclear Research, Dubna, Russia L. Dai, Hunan University, Changsha, Hunan, China ∗Spokesperson yContact and Spokesperson, email: [email protected] Abstract This proposal presents our plan to make a precision measurement of the cross section for γγ π0π0 via the Primakoff effect using the GlueX detector in Hall D. ! The aim is to significantly improve the data in the low π0π0 invariant mass domain, which is essential for understanding the low-energy regime of Compton scattering on the π0. In particular, the aim is to obtain a first ever experimental determination of the neutral pion polarizability απ βπ, which is one of the important predictions of chiral − perturbation theory and a key test of chiral dynamics on the π0. Our goal is to measure σ(γγ π0π0) to a precision of about 6%, which would determine the combination of ! απ0 βπ0 to a precision of 50%.
    [Show full text]