Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families Kenneth C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ck1δ Over-Expressing Mice Display ADHD-Like Behaviors, Frontostriatal Neuronal Abnormalities and Altered Expressions of ADHD-Candidate Genes
Molecular Psychiatry (2020) 25:3322–3336 https://doi.org/10.1038/s41380-018-0233-z ARTICLE CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes 1 1 1 2 1 1 1 Mingming Zhou ● Jodi Gresack ● Jia Cheng ● Kunihiro Uryu ● Lars Brichta ● Paul Greengard ● Marc Flajolet Received: 8 November 2017 / Revised: 4 July 2018 / Accepted: 18 July 2018 / Published online: 19 October 2018 © Springer Nature Limited 2018 Abstract The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D- amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine- induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as 1234567890();,: 1234567890();,: well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits. -
Post-Translational Modifications and Their Applications in Eye Research (Review)
MOLECULAR MEDICINE REPORTS 15: 3923-3935, 2017 Post-translational modifications and their applications in eye research (Review) BING-JIE CHEN1-3, THOMAS CHUEN LAM3, LONG-QIAN LIU1,2 and CHI-HO TO3 1Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041; 2Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207; 3Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China Received January 9, 2016; Accepted February 22, 2017 DOI: 10.3892/mmr.2017.6529 Abstract. Gene expression is the process by which genetic 3. Introduction of PTMs information is used for the synthesis of a functional gene 4. PTMs in eye research product, and ultimately regulates cell function. The increase 5. Conclusion of biological complexity from genome to proteome is vast, and the post‑translational modification (PTM) of proteins contribute to this complexity. The study of protein expression 1. Introduction and PTMs has attracted attention in the post-genomic era. Due to the limited capability of conventional biochemical Over the last two decades, genomics has been regarded as techniques in the past, large-scale PTM studies were tech- the most popular and productive research field in biological nically challenging. The introduction of effective protein science. However, the intermediate mRNA transcript may separation methods, specific PTM purification strategies rapidly degrade (1) or undergo alternative splicing (2), which and advanced mass spectrometers has enabled the global leads to a number of variable outcomes that renders the study profiling of PTMs and the identification of a targeted PTM of biological systems more challenging. -
Virtual 2-D Map of the Fungal Proteome
www.nature.com/scientificreports OPEN Virtual 2‑D map of the fungal proteome Tapan Kumar Mohanta1,6*, Awdhesh Kumar Mishra2,6, Adil Khan1, Abeer Hashem3,4, Elsayed Fathi Abd‑Allah5 & Ahmed Al‑Harrasi1* The molecular weight and isoelectric point (pI) of the proteins plays important role in the cell. Depending upon the shape, size, and charge, protein provides its functional role in diferent parts of the cell. Therefore, understanding to the knowledge of their molecular weight and charges is (pI) is very important. Therefore, we conducted a proteome‑wide analysis of protein sequences of 689 fungal species (7.15 million protein sequences) and construct a virtual 2‑D map of the fungal proteome. The analysis of the constructed map revealed the presence of a bimodal distribution of fungal proteomes. The molecular mass of individual fungal proteins ranged from 0.202 to 2546.166 kDa and the predicted isoelectric point (pI) ranged from 1.85 to 13.759 while average molecular weight of fungal proteome was 50.98 kDa. A non‑ribosomal peptide synthase (RFU80400.1) found in Trichoderma arundinaceum was identifed as the largest protein in the fungal kingdom. The collective fungal proteome is dominated by the presence of acidic rather than basic pI proteins and Leu is the most abundant amino acid while Cys is the least abundant amino acid. Aspergillus ustus encodes the highest percentage (76.62%) of acidic pI proteins while Nosema ceranae was found to encode the highest percentage (66.15%) of basic pI proteins. Selenocysteine and pyrrolysine amino acids were not found in any of the analysed fungal proteomes. -
OSBPL9 (NM 148907) Human Tagged ORF Clone Lentiviral Particle Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221526L4V OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_148907 ORF Size: 1878 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221526). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148907.1 RefSeq Size: 2694 bp RefSeq ORF: 1881 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 70.1 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle – RC221526L4V Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors. -
Role of CCT Chaperonin in the Disassembly of Mitotic Checkpoint Complexes
Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes Sharon Kaisaria, Danielle Sitry-Shevaha, Shirly Miniowitz-Shemtova, Adar Teichnera, and Avram Hershkoa,1 aUnit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel Contributed by Avram Hershko, December 14, 2016 (sent for review November 23, 2016; reviewed by Michele Pagano and Alexander Varshavsky) The mitotic checkpoint system prevents premature separation of thebindingoftheATPasetoMCC(13,14).TheenergyofATP sister chromatids in mitosis and thus ensures the fidelity of hydrolysis is apparently used in this process to promote a confor- chromosome segregation. When this checkpoint is active, a mitotic mational change of Mad2 back from C-Mad2 to O-Mad2, leading checkpoint complex (MCC), composed of the checkpoint proteins to loss of its affinity for Cdc20 in MCC and thus to Mad2 release. Mad2, BubR1, Bub3, and Cdc20, is assembled. MCC inhibits the By the action of TRIP13 and p31comet, MCC is converted to a ubiquitin ligase anaphase promoting complex/cyclosome (APC/C), remnant, called BC-1, in which Cdc20 is still associated with whose action is necessary for anaphase initiation. When the check- BubR1 (15). Cdc20 is released from BubR1 in MCC by a dif- point signal is turned off, MCC is disassembled, a process required ferent process involving the phosphorylation of Cdc20 by Cdk1 for exit from checkpoint-arrested state. Different moieties of MCC (16). We noticed, however, that a considerable part of the release are disassembled by different ATP-requiring processes. Previous of Cdc20 from MCC was due to a phosphorylation-independent, work showed that Mad2 is released from MCC by the joint action comet but ATP-dependent process (16). -
OSBPL9 (NM 148906) Human Tagged ORF Clone – RC221011L3
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221011L3 OSBPL9 (NM_148906) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: OSBPL9 (NM_148906) Human Tagged ORF Clone Tag: Myc-DDK Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221011). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_148906 ORF Size: 1713 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148906) Human Tagged ORF Clone – RC221011L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148906.1, NP_683704.1 RefSeq Size: 2840 bp RefSeq ORF: 2160 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 63.7 kDa Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors. -
An Ensemble of Cryo-EM Structures of Tric Reveal Its Conformational Landscape and Subunit Specificity
An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity Mingliang Jina, Wenyu Hana, Caixuan Liua, Yunxiang Zanga, Jiawei Lia, Fangfang Wanga,b, Yanxing Wanga,b, and Yao Conga,b,1 aNational Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and bShanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201210, China Edited by Wolfgang Baumeister, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved August 14, 2019 (received for review March 9, 2019) TRiC/CCT assists the folding of ∼10% of cytosolic proteins through neighboring subunit, forming a “hand-in-hand” intra-ring interac- an ATP-driven conformational cycle and is essential in maintaining tion structural signature, which plays an essential role in intra-ring protein homeostasis. Here, we determined an ensemble of cryo- allosteric network (20). electron microscopy (cryo-EM) structures of yeast TRiC at various Extensive efforts have been made to study the structures of nucleotide concentrations, with 4 open-state maps resolved at archaeal group II chaperonins (21–23), as well as the eukaryotic near-atomic resolutions, and a closed-state map at atomic resolu- group II chaperonin TRiC, by crystallography (24, 25) and cryo- tion, revealing an extra layer of an unforeseen N-terminal alloste- electron microscopy (cryo-EM) (4, 5, 19, 26–28). Recently, we ric network. We found that, during TRiC ring closure, the CCT7 resolved 2 cryo-EM structures of Saccharomyces cerevisiae TRiC subunit moves first, responding to nucleotide binding; CCT4 is in a newly identified nucleotide partially preloaded state (NPP- the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our ex- TRiC) and in the ATP-bound state (TRiC-AMP-PNP) (29). -
Efficiency of Cleavage at the Polyadenylation Site MOSHE SADOFSKY and JAMES C
MOLECULAR AND CELLULAR BIOLOGY, Aug. 1984, p. 1460-1468 Vol. 4. No. 8 0270-7306/84/081460-09$02.00/0 Copyright ©D 1984, American Society for Microbiology Sequences on the 3' Side of Hexanucleotide AAUAAA Affect Efficiency of Cleavage at the Polyadenylation Site MOSHE SADOFSKY AND JAMES C. ALWINE* Department of Microbiology, School of Medicine/G2, UnivSersity of Pennsylvania, Phtiladelphia, Pennsylvania /9104 Received 3 April 1984/Accepted 8 May 1984 The hexanucleotide AAUAAA has been demonstrated to be part of the signal for cleavage and polyadenyla- tion at appropriate sites on eucaryotic mRNA precursors. Since this sequence is not unique to polyadenylation sites, it cannot be the entire signal for the cleavage event. We have extended the definition of the polyadenylation cleavage signal by examining the cleavage event at the site of polyadenylation for the simian virus 40 late mRNAs. Using viable mutants, we have determined that deletion of sequences between 3 and 60 nucleotides on the 3' side of the AAUAAA decreases the efficiency of utilization of the normal polyadenylation site. These data strongly indicate a second major element of the polyadenylation signal. The phenotype of these deletion mutants is an enrichment of viral late transcripts longer than the normally polyadenylated RNA in infected cells. These extended transcripts appear to have an increased half-life due to the less efficient cleavage at the normal polyadenylation site. The enriched levels of extended transcripts in cells infected with the deletion mutants allowed us to examine regions of the late transcript which normally are difficult to study. The extended transcripts have several discrete 3' ends which we have analyzed in relation to polyadenylation and other RNA processing events. -
Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth
ORIGINAL www.jpeds.com • THE JOURNAL OF PEDIATRICS ARTICLES Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth Joan Kaufman, PhD1,2,3, Janitza L. Montalvo-Ortiz, PhD3, Hannah Holbrook,BA4, Kerry O'Loughlin,BA4, Catherine Orr, PhD4, Catherine Kearney,MA1, Bao-Zhu Yang, PhD3, Tao Wang, PhD5,6, Hongyu Zhao, PhD5, Robert Althoff, MD, PhD4, Hugh Garavan, PhD4, Joel Gelernter,MD3,7, and James Hudziak,MD4 Objective To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. Study design Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investi- gation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort ana- lyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). Results After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional mea- sures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10−7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the dis- covery data set replicated in the second cohort. -
Global Identification of MLL2-Targeted Loci Reveals Mll2ts Role in Diverse Signaling Pathways
Global identification of MLL2-targeted loci reveals MLL2’s role in diverse signaling pathways Changcun Guoa,b,c,1, Chun-Chi Changa,b,c,1, Matthew Worthama,b,c, Lee H. Chena,b,c, Dawn N. Kernagisc, Xiaoxia Qind, Young-Wook Choe,2, Jen-Tsan Chid, Gerald A. Granta,b,f, Roger E. McLendona,b,c, Hai Yana,b,c, Kai Gee, Nickolas Papadopoulosg, Darell D. Bignera,b,c, and Yiping Hea,b,c,3 aThe Preston Robert Tisch Brain Tumor Center at Duke, bPediatric Brain Tumor Foundation Institute, cDepartment of Pathology, dInstitute for Genome Sciences and Policy, and fDepartment of Surgery, Duke University, Durham, NC 27710; eLaboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and gLudwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231 Edited* by Bert Vogelstein, Johns Hopkins University, Baltimore, MD, and approved September 14, 2012 (received for review June 1, 2012) Myeloid/lymphoid or mixed-lineage leukemia (MLL)-family genes SWI/SNF, the MLL2 or MLL3 (hereafter referred to as MLL2/ encode histone lysine methyltransferases that play important 3) complex has been found to play essential roles as a coactivator roles in epigenetic regulation of gene transcription. MLL genes for transcriptional activation by nuclear hormone receptors (11). are frequently mutated in human cancers. Unlike MLL1, MLL2 (also Consistent with this notion, previous studies have shown that known as ALR/MLL4) and its homolog MLL3 are not well-under- MLL2/3 complexes regulate Hox gene transcription in an es- stood. -
Foraging Shifts and Visual Pre Adaptation in Ecologically Diverse Bats
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340654059 Foraging shifts and visual preadaptation in ecologically diverse bats Article in Molecular Ecology · April 2020 DOI: 10.1111/mec.15445 CITATIONS READS 0 153 9 authors, including: Kalina T. J. Davies Laurel R Yohe Queen Mary, University of London Yale University 40 PUBLICATIONS 254 CITATIONS 24 PUBLICATIONS 93 CITATIONS SEE PROFILE SEE PROFILE Edgardo M. Rengifo Elizabeth R Dumont University of São Paulo University of California, Merced 13 PUBLICATIONS 28 CITATIONS 115 PUBLICATIONS 3,143 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecology of the Greater horseshoe bat View project BAT 1K View project All content following this page was uploaded by Liliana M. Davalos on 14 May 2020. The user has requested enhancement of the downloaded file. Received: 17 October 2019 | Revised: 28 February 2020 | Accepted: 31 March 2020 DOI: 10.1111/mec.15445 ORIGINAL ARTICLE Foraging shifts and visual pre adaptation in ecologically diverse bats Kalina T. J. Davies1 | Laurel R. Yohe2,3 | Jesus Almonte4 | Miluska K. R. Sánchez5 | Edgardo M. Rengifo6,7 | Elizabeth R. Dumont8 | Karen E. Sears9 | Liliana M. Dávalos2,10 | Stephen J. Rossiter1 1School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 2Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA 3Department of Geology & Geophysics, Yale University,