Den Senaste Istiden I Skandinavien

Total Page:16

File Type:pdf, Size:1020Kb

Den Senaste Istiden I Skandinavien SKI Teknisk Rapport 93:44 Den senaste istiden i Skandinavien En modellering av Weichselisen P. Holmlund Oktober 1993 SKi STATENS KÄRNKRAFTINSPEKTION SWEDISH NUCIEAR POWER INSPECTORATE SKI TR 93:44 Den senaste istiden i Skandinavien En modellering av Weichselisen Per Holmlund Naturgeografiska Institutionen Stockholms Universitet Oktober 1993 Denna rapport har gjorts på uppdrag av Statens kärnkraftinspektion, SKI. Slutsatser och åsikter som framförs i rapporten är författarnas egna och behöver inte nödvändigtvis sammanfalla med SKIs. DEN SENASTE ISTIDEN I SKANDINAVIEN En modellering av Wekhselisen Per Holmlund Naturgeografiska institutionen vid Stockholms universitet oktober 1993 INNEHALL Sammanfattning 1 Summary 2 1. Inledning 4 2. Tidigare arbeten 6 1. Historik 6 2. Glaciologiska arbeten 8 3. Istidsmodeller 9 3. Klimatutvecklingen under kvartar 13 4. Inlandsisars morfologi 16 1. Massbalans 16 2. Temperaturförhållanden i isar 19 3. Glaciärers omsättningstid 21 4. Responstid 23 5. Dränering av smältvatten i och under isar 24 6. Shelfisar och isbräckor 27 7. Isströmmar 28 5. Basala förhållanden och glacialt präglade landformer 29 6. Modellen 30 7. Resultat av modelleringen 36 1. Deglaciationen och Yngre Dryas 36 2. Ytterlighetstester 38 -temperaturen vid bottnen 38 -behövs en klimatsignal för att ge ett stillestånd vid Yngre Dryaslinjen? 39 -förändringar i isens viskositet 40 3. Modellering av Weichselnedisningen 42 8. Diskussion 44 -glaciationsförloppet 44 -deglaciationsförloppet 45 -övriga synpunkter 46 9. Slutsats 47 10. Acknowledgement 48 11. Referenser 49 Bilagor: 1. Hur is deformeras 2. Temperaturfördelningen i en is 3. The model (by dr. James Fastook) Sammanfattning En tidsberoende modell har utnyttjats för att rekonstruera den senste nedisningens omfattning och basala förhållanden i Skandinavien och främst Sverige. Modellen har kalibrerats mot geologiska data och därefter styrts av temperaturdata från borrkärnor som tagits upp vid Camp Century och Summit på Grönland. Resultaten visar att fjällkedjan var istäckt under drygt 100 000 år. Under nedisningens mellersta fas fluktuerade inlandsisens front kring en linje i närheten av den Mellansvenska israndzonen. Den avslutande maximala utbredningen nåddes ca 20 000 BP. Efter 14 500 BP skedde en snabb reträtt, vilken avbröts av kallperioden Yngre Dryas. Den glacialdynamiska reaktionen på denna händelse är komplex och mycket svår att rekonstruera. En stor inlandsis har en avsevärd fördröjning i sin reaktion på klimatsignaler. Den dynamiska reaktionen på kallperioden borde således ligga förskjuten framåt i tiden. Modelleringsförsöken visade att isen, under större delen av istiden inte hade någon enhetlig basal temperaturfördelning. Återupprepade försök gav vid handen att de områden där isen var frusen vid sitt underlag sammanfaller grovt med områden som idag ligger över 100 m ö h. I lägre partier var isen bottensmältande. I djupa partier av Bottenhavet och Östersjön antogs den basala glidningen vara särskilt hög. Detta antagande gjordes för att simulera en deformation i underliggande sediment, samt kalvning av isberg. Den styrande variabeln i modellen är temperaturen, tolkad från de grönländska iskämorna. Dessa data utgör för närvarande det bästa och mest detaljerade utgångsmaterialet för att upprätta en temperaturkurva som sträcker sig över den senaste istiden. Men de öppnar också frågan hur väl klimatet uppe på den grönländska inlandsisen beskriver klimatet i Sverige. Motivet till arbetets genomförande var att framställa en enkel modell som utöver andra relevanta undersökningar skulle kunna ligga till grund för bedömningar av kommande förslag om plats för ett slutförvar av högaktivt kärnavfall. Modelleringsarbetet berör därför främst Sverige och de svenska förållandena under den senaste nedisningen, dvs Weichsel. Summary The model presented in this report is used to study the evolution of the Weichselian Ice Sheet. The project was sponsored by the Swedish Nuclear Power Inspectorate (SKI). Special interest was focused on basal conditions during the last glaciation and the aim of the study is to provide information to the SKI for their efforts in forming an opinion of where to build a repository for used nuclear fuel. The model is time-dependent and based on a finite-element method solution of the continuity equation. The climatic records from the Camp Century and the Summit ice cores are used for climatic control and the model is calibrated using geological evidence on the deglaciation of Scandinavia. The model and the physics used in this model is described by Fastook (Bilaga 3), Fastook & Holmlund (1993) and Fastook & Prentice (1993). The calibration and handling of geological data is described by Holmlund & Fastook (1993). Modeling results Weichsel I was a mountain centered glaciation, while Weichsel II had an extent similar to the Younger Dryas stand. Weichsel I is initiated as a few small ice caps in southern Norway about 112 000 BP. Around 110 000 BP an ice sheet forms, covering most of the Scandinavian mountain range. Shortly thereafter the ice sheet retreats and is divided into one northern and one southern ice cap. This configuration lasts for 10 000 years and corresponds to the isotope stage 5c and the Brorup interstadial. At 99 000 BP the two ice caps join and a single, elongated dome is formed. The ice begins to advance in the northeastern part. At 97 000 BP it reaches the Kola peninsula and at 91 000 BP, the Gulf of Bothnia. After a maximum at 90 000 BP a considerable retreat begins, reaching a minimum at 82 000 BP, refered to as istope stage 5a or the Odderade interstadial. The ice sheet is now only covering the mountain area. The next phase of the glaciation begins at 78 000 BP and is characterized by substatial growth. After 1000 years of growth it reaches the Kola peninsula and the Gulf of Bothnia. Åland is ice-covered at 72 000 BP and all of Finland is ice-covered at 65 000 BP. By 61 000 BP the margin reaches a still stand in Lithuania. Large parts of southern Sweden are then ice-covered. The last stage of the Weichselian begins at 37 000 BP with a major advance. About 30 000 BP the ice front reaches northern Germany. The maximum extent occurs about 20 000 BP. The deglaciation begins around 14 500 BP and all ice is gone at 8 000 BP. Conclusions The changes in the extent of the inland ice is controlled by the average temperature and short term anomalies in temperature. The expansion in Weichsel III from the Weichsel II stage was primarily due to frequent short term cold events. There was a small difference in mean temperature between Weichsel II and Weichsel III. We assume that the ice, covering what today is the Baltic Sea and the Gulf of Bothnia, was at the pressure melting point at its base, all through the glaciation. In the Baltic Sea the ice may have been frozen to its bed during the initial stage of the glaciation but became thawed when the ice sheet grew thick enough. Accepting these initial conditions leads to the conclusion that the ice cap probably was drained by a "Baltic Ice Stream1' (Boulton et al., 1985; Holmlund & Fastook, 1993; Lundquist, 1987; Torell, 1873). The fact that the ice stream turned west in the southern part of the Baltic is probably due to more favorable basal conditions and higher melt rates towards the west. When the warmer post glacial climate began the low profile of the Baltic Ice Stream resulted in high ablation rates. It melted off quickly up to the Åland archipelago. The islands Gotland and Öland do not seem to have been major obstacles for the ice flow. Åland, on the other hand, must have been an important obstacle. If not, the ice sheet would have been drained more rapidly, leaving one major dome in Sweden and a minor one in Finland. In addition, the climatic Younger Dryas event did not have great influence on the deglaciation of the interior of the ice sheet, as the interior had already been drained by downdraw effects (Hughes, 1987). As the island of Åland becomes ice free the ice stream from the Gulf of Bothnia is reactivated and the draining of the interior of the remaining ice sheet proceeds quickly. Den senaste Istiden i Skandinavien En modellering av Weichselisen 1. Inledning Målsättningen med detta arbete har varit att framställa en rimlig modell för den senaste istidens förlopp, med särskilt avseende på de basala förhållandena. Resultaten är tänkta att kunna utgöra en del av underlaget till beslut om placeringen av ett framtida slutförvar för högaktivt kärnavfall. Arbetet är därför koncentrerat till de svenska förhållandena. Övriga områden såsom Baltikum, Finland och Norge berörs endast summariskt. En strikt teoretisk modell skulle i det här fallet vara en fysikalisk modell för en inlandsis, vars massbalans styrs av exempelvis lufttemperaturen. En sådan förutsättningslös modell blir mycket komplicerad när den ska anpassas till verkligheten. Kvalitén på data och mängden data rörande vårt forna klimat är inte tillräckligt bra för att ett objektivt resultat ska kunna nås. Data måste värderas och bedömas efter vad vi tror är korrekt. Den andra ytterligheten är den rent empiriska modellen som enbart bygger på insamlade fältdata. Isen rekonstrueras från de spår som inlandsisen lämnade när den formade vårt landskap. En sådan modell är ännu svårare att göra objektiv. Observationer måste värderas gentemot varandra och vi kommer att styras av vad vi tror är riktigt. Dessutom möter detta angreppssätt i regel stort motstånd när förloppen ska förklaras fysikaliskt. En god modell måste vara ett mellanting av dessa ytterligheter, med ett väl avvägt förhållande mellan empiri och teori. Antaganden och generaliseringar måste göras och dessa måste vägas in vid en bedömning av resultaten. Modelleringsarbetena har i huvudsak genomförts vid universitetet i Maine, USA, där min kollega dr James Fastook tjänstgör vid Department for Computer Science. Vi fastställde först fysikaliska parametrar i den all mana flytlagen för is. Sedan upprättade vi ett troligt klimatscenario för deglaciationsfasen av Weichsel, varpå modelleringsarbetet kunde påbörjas.
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • The Curtis L. Ivey Science Center DEDICATED SEPTEMBER 17, 2004
    NON-PROFIT Office of Advancement ORGANIZATION ALUMNI MAGAZINE COLBY-SAWYER Colby-Sawyer College U.S. POSTAGE 541 Main Street PAID New London, NH 03257 LEWISTON, ME PERMIT 82 C LBY-SAWYER CHANGE SERVICE REQUESTED ALUMNI MAGAZINE I NSIDE: FALL/WINTER 2004 The Curtis L. Ivey Science Center DEDICATED SEPTEMBER 17, 2004 F ALL/WINTER 2004 Annual Report Issue EDITOR BOARD OF TRUSTEES David R. Morcom Anne Winton Black ’73, ’75 CLASS NOTES EDITORS Chair Tracey Austin Ye ar of Gaye LaCasce Philip H. Jordan Jr. Vice-Chair CONTRIBUTING WRITERS Tracey Austin Robin L. Mead ’72 the Arts Jeremiah Chila ’04 Executive Secretary Cathy DeShano Ye ar of Nicole Eaton ’06 William S. Berger Donald A. Hasseltine Pamela Stanley Bright ’61 Adam S. Kamras Alice W. Brown Gaye LaCasce Lo-Yi Chan his month marks the launch of the Year of the Arts, a David R. Morcom Timothy C. Coughlin P’00 Tmultifaceted initiative that will bring arts faculty members to meet Kimberly Swick Slover Peter D. Danforth P’83, ’84, GP’02 the Arts Leslie Wright Dow ’57 with groups of alumni and friends around the country. We will host VICE PRESIDENT FOR ADVANCEMENT Stephen W. Ensign gatherings in art museums and galleries in a variety of cities, and Donald A. Hasseltine Eleanor Morrison Goldthwait ’51 are looking forward to engaging hundreds of alumni and friends in Suzanne Simons Hammond ’66 conversations about art, which will be led by our faculty experts. DIRECTOR OF DEVELOPMENT Patricia Driggs Kelsey We also look forward to sharing information about Colby-Sawyer’s Beth Cahill Joyce Juskalian Kolligian ’55 robust arts curriculum.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • Glacial and Gully Erosion on Mars: a Terrestrial Perspective Susan Conway, Frances Butcher, Tjalling De Haas, Axel A.J
    Glacial and gully erosion on Mars: A terrestrial perspective Susan Conway, Frances Butcher, Tjalling de Haas, Axel A.J. Deijns, Peter Grindrod, Joel Davis To cite this version: Susan Conway, Frances Butcher, Tjalling de Haas, Axel A.J. Deijns, Peter Grindrod, et al.. Glacial and gully erosion on Mars: A terrestrial perspective. Geomorphology, Elsevier, 2018, 318, pp.26-57. 10.1016/j.geomorph.2018.05.019. hal-02269410 HAL Id: hal-02269410 https://hal.archives-ouvertes.fr/hal-02269410 Submitted on 22 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Revised manuscript with no changes marked Click here to view linked References 1 Glacial and gully erosion on Mars: A terrestrial perspective 2 Susan J. Conway1* 3 Frances E. G. Butcher2 4 Tjalling de Haas3,4 5 Axel J. Deijns4 6 Peter M. Grindrod5 7 Joel M. Davis5 8 1. CNRS, UMR 6112 Laboratoire de Planétologie et Géodynamique, Université de Nantes, France 9 2. School of Physical Sciences, Open University, Milton Keynes, MK7 6AA, UK 10 3. Department of Geography, Durham University, South Road, Durham DH1 3LE, UK 11 4. Faculty of Geoscience, Universiteit Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands 12 5.
    [Show full text]
  • Cráteres E Impactos
    Cráteres e Impactos Historia del conocimiento sobre cráteres e impactos Energía y presión de los impactos Mecánica de Cráteres Estructura y tipos de cráteres Leyes de Craterización Meteoritos e impactitas Criterios para la Identificación de Cráteres Consecuencias ambientales de los impactos Conteo de cráteres El evento de Carancas: ejemplo de Geología Planetaria Practicas: Google Earth - cráteres Conteo de cráteres y ajuste de curvas de edad Virtual Lab: Visualización de secciones finas de meteoritos Cut & Paste Impact Cratering Seminar – H. Jay Melosh Geology and Geophysics of the Solar System – Shane Byrne Impact Cratering – Virginia Pasek Explorer's Guide to Impact Craters! http://www.psi.edu/explorecraters/ Terrestrial Impact Structures: Observation and Modeling - Gordon Osinski Environmental Effects of Impact Events - Elisabetta Pierazzo Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures – Bevan French – Smithsonian Institution Effects of Material Properties on Cratering - Kevin Housen - The Boeing Co. Sedimentary rocks in Finnish impact structures -pre-impact or post- impact? - J.Kohonen and M. Vaarma - Geological Survey of Finland History about impact craters The study of impact craters has a well-defined beginning: 1610 Galileo’s small telescope and limited field of view did not permit him to view the entire moon at once, so his global maps were distorted Nevertheless, he recognized a pervasive landform that he termed “spots” He described them as circular, rimmed depressions But declined to speculate on their origin Robert Hooke had a better telescope in 1665 Hooke make good drawings of Hipparchus and speculated on the origin of the lunar “pits”. Hooke considered impact, but dismissed it because he could not imagine a source for the impactors.
    [Show full text]
  • The Argyre Region As a Prime Target for in Situ Astrobiological Exploration of Mars
    ASTROBIOLOGY Volume 16, Number 2, 2016 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1396 The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars Alberto G. Faire´n,1,2 James M. Dohm,3 J. Alexis P. Rodrı´guez,4 Esther R. Uceda,5 Jeffrey Kargel,6 Richard Soare,7 H. James Cleaves,8,9 Dorothy Oehler,10 Dirk Schulze-Makuch,11,12 Elhoucine Essefi,13 Maria E. Banks,4,14 Goro Komatsu,15 Wolfgang Fink,16,17 Stuart Robbins,18 Jianguo Yan,19 Hideaki Miyamoto,3 Shigenori Maruyama,8 and Victor R. Baker6 Abstract At the time before *3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at *3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced
    [Show full text]
  • Impact-Produced Seismic Shaking and Regolith Growth on Asteroids 433 Eros, 2867 Šteins, and 25143 Itokawa James E
    Icarus 347 (2020) 113811 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Impact-produced seismic shaking and regolith growth on asteroids 433 Eros, 2867 Šteins, and 25143 Itokawa James E. Richardson a,<, Jordan K. Steckloff b, David A. Minton c a Planetary Science Institute, 536 River Avenue, South Bend, IN, 46601, USA b Planetary Science Institute, 2234 E. North Territorial Road, Whitmore Lake, MI, 48189, USA c Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA ARTICLEINFO ABSTRACT Keywords: Of the several near-Earth and Main Belt asteroids visited by spacecraft to date, three display a paucity of Asteroids small craters and an enhanced number of smoothed and degraded craters: 433 Eros, which has a deficit of Surfaces craters ¿ 100 m in diameter; 2867 Šteins, which has a deficit of craters ¿ 500 m in diameter; and 25143 Asteroid eros Itokawa, which has a deficit of craters ¿ 100 m in diameter. The purpose of this work was to investigate Asteroid Itokawa and model topographic modification and crater erasure due to impact-induced seismic shaking, as well as Impact processes Regoliths impact-driven regolith production and loss, on these asteroid surfaces. To perform this study, we utilized the numerical, three-dimensional, Cratered Terrain Evolution Model (CTEM) initially presented in J. E. Richardson, Icarus 204 (2009), which received a small-body (SB) specific update for this work. SBCTEM simulations of the surface of 433 Eros correctly reproduce its observed cratering record (for craters up to ∼ 3 km in diameter) at a minimum Main Belt exposure age of 225 , 75 Myr using a `very weak rock' target strength of 0.5–5.0 MPa, and producing a mean regolith depth of 80 , 20 m, which agrees with published estimates of an actual regolith layer ``tens of meters'' in depth.
    [Show full text]
  • Four Hundred Years of Hits and Misses in Scientific Impact Crater Research
    NIR Workshop, Gardnos − Gol, June 9th 2009 Four Hundred Years of Hits and Misses in Scientific Impact Crater Research Teemu Öhman Division of Geology, Department of Geosciences and Division of Astronomy, Department of Physical Sciences University of Oulu Finland Galileo Galilei Galileo Galilei (1564−1642) • First observer of lunar craters, late November 1609, Padua, Italy • Surface previously supposed smooth can be divided to dark lowlands (“large spots”) and bright highlands, which are covered with pits that have uplifted rims • A clear description of a central uplift Galilaei, D=15.5 km (LO) Johannes Kepler (1571−1630) • Supposed, like e.g. Plutarch in 1st century A.D., that the lunar lowlands are filled with water • Coined the terms “mare” and “terra” • Believed meteor(ite)s to have a cosmic origin(?) Kepler, D=32 km (LO) Robert Hooke (1635−1703) • Crater observer: Hipparchus, D=150 km Halley Micrographia, 1665 Lunar Orbiter Robert Hooke • First crater experimentalist: 1. Dropping bullets to a mixture of tobacco pipe clay and water: Æcraters “not unlike these of the Moon; but considering the state and condition of the Moon, there seems not any probability to imagine, that it should proceed from any cause analogus to this; for it would be difficult to imagine whence those bodies should come; and next, how the substance of the Moon should be so soft;” Robert Hooke 2. A pot of boiling alabaster: • When the boiling ceased, the surface was covered with craters • Compared these to terrestrial volcanoes Æ “…these pits in the Moon seem to
    [Show full text]
  • Concentric Crater Fill on Mars
    Proceedings of the 19th Lunar and Planetary Science Conference, pp. 397-407 Copyright 1989, Lunar and Planetary Institute, Houston 397 Concentric Crater Fill on Mars: An Aeolian Alternative to Ice-rich Mass Wasting 1989LPSC...19..397Z J. R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560 S. M. Clifford and S. H. Williams Lunar and Planetary Institute 3303 NASA Road One, Houston, TX 77058-4399 Concentric crater fill, a distinctive martian landfonn represented by a concentric pattern of surface undulations confined within a crater rim, has been intetpreted as an example of ice-enhanced regolith creep at midlatitudes ( e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of ±30°, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45°N, 271°W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. We propose that an aeolian intetpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.
    [Show full text]
  • The Argyre Region As a Prime Target for in Situ Astrobiological Exploration of Mars
    ASTROBIOLOGY Volume 16, Number 2, 2016 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1396 The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars Alberto G. Faire´n,1,2 James M. Dohm,3 J. Alexis P. Rodrı´guez,4 Esther R. Uceda,5 Jeffrey Kargel,6 Richard Soare,7 H. James Cleaves,8,9 Dorothy Oehler,10 Dirk Schulze-Makuch,11,12 Elhoucine Essefi,13 Maria E. Banks,4,14 Goro Komatsu,15 Wolfgang Fink,16,17 Stuart Robbins,18 Jianguo Yan,19 Hideaki Miyamoto,3 Shigenori Maruyama,8 and Victor R. Baker6 Abstract At the time before *3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at *3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced
    [Show full text]
  • Atmospheric Science with Insight
    Space Sci Rev (2018) 214:109 https://doi.org/10.1007/s11214-018-0543-0 Atmospheric Science with InSight Aymeric Spiga1,2 · Don Banfield3 · Nicholas A. Teanby4 · François Forget1 · Antoine Lucas5 · Balthasar Kenda5 · Jose Antonio Rodriguez Manfredi6 · Rudolf Widmer-Schnidrig7 · Naomi Murdoch8 · Mark T. Lemmon9 · Raphaël F. Garcia8 · Léo Martire8 · Özgür Karatekin10 · Sébastien Le Maistre10 · Bart Van Hove10 · Véronique Dehant10 · Philippe Lognonné5,2 · Nils Mueller11,12 · Ralph Lorenz13 · David Mimoun8 · Sébastien Rodriguez5,2 · Éric Beucler14 · Ingrid Daubar11 · Matthew P. Golombek11 · Tanguy Bertrand15 · Yasuhiro Nishikawa5 · Ehouarn Millour1 · Lucie Rolland16 · Quentin Brissaud17 · Taichi Kawamura 5 · Antoine Mocquet14 · Roland Martin18 · John Clinton19 · Éléonore Stutzmann5 · Tilman Spohn12 · Suzanne Smrekar11 · William B. Banerdt11 Received: 21 August 2018 / Accepted: 4 September 2018 © Springer Nature B.V. 2018 Abstract In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical pack- The InSight Mission to Mars II Edited by William B. Banerdt and Christopher T. Russell B A. Spiga [email protected] 1 Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique, École Polytechnique, École Normale Supérieure, Paris, France 2 Institut Universitaire de France, Paris, France 3 Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY,
    [Show full text]