Mathematical Science Communication a Study and a Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Science Communication a Study and a Case Study Mathematical Science Communication a Study and a Case Study beim Fachbereich Mathematik und Informatik der Freien Universit¨atBerlin eingereichte Dissertation zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Diplom Mathematikerin (Dipl.-Math.) Anna Maria Hartkopf Berlin 2020 Anna Maria Hartkopf: Mathematical Science Communication Day of the thesis defense: September 23, 2020 Supervisor: Prof. G¨unter Ziegler Referees: Prof. G¨unter Ziegler Prof. Hans Peter Peters For my grandparents: Anni (née. Lankes) and Fritz Hartkopf, and Maria Schreiber (née. Bolten) Acknowledgements My biggest thanks go to my supervisor G¨unter M. Ziegler. He gave me the perfect combination of freedom to explore and support to realize my ideas. Hans Peter Peters patiently answered all my questions about the science of science communication. Thank you both very much. Many thanks are also owed to the Berlin Mathematical School and their mentoring program that led me to Heike Siebert, who supported my academic development in significant ways. I am grateful to the Collaborative Research Centre Discretization in Geometry and Dynamics which funded my position and the realization of the project. I would also like to thank my colleagues at AG Diskrete Geometry at Freie Universit¨atBerlin for their support. Pavle Blagojevi´cwas always a source of encouragement. Jean-Philippe Labb´e taught me coding in SAGE and to always look on the bright side. Moritz Firsching provided the code for the Koebe-Andreev-Thurston realization of the polyhedra. Elke Pose helped organize my funding and encouraged me in situations of doubt. Hannah Sch¨aferSj¨oberg, Sophia Elia and I shared an actual office and a virtual one during the pandemic. Having them by my side helped me through many decisions and obstacles. Without the Polytopia-Team, realizing the project would not have been possible; the team members and some of their many contributions follow. Max Pohlenz lent my scribbled wire- frames a professional design. Martin Skrodzki and Stefan Auerbach programmed the entire website from scratch and did an exceptional job at making it low-maintenance. The TikZ-artist Johanna Steinmeyer provided many pictures of wannabe and real polyhedra. Marie-Charlotte Brandenburg implemented the viewer, the Hamilton-game and the virtual-reality environment. She was on duty when Zeit-Online published an article about the project and approved of 800 polyhedra names within two days. Erin Henning is head of the social media department, and every week I looked forward to her laudation for the polyhedron of the week. She supported 7 the project by translating the website and the school materials and her enthusiastic work for workshops and events. Mara Kortenkamp is the latest addition to the team. Many thanks for the graphics on the descriptive statistics, the sitemap and the timeline. I would like to thank Thomas Vogt from Medienb¨uro der Deutschen Mathematiker Vereini- gung for his help with the press releases and for hosting the website on the server. Pauline Linke helped conceptualizing Polly's Journal and mastered the text processing program to give it an appealing design. Many thanks also go to the teachers and pupils who tested the school material: Stefan Korntreff, Gudrun Tisch and Anik´oRamshorn-Bircsak. Thanks to the kids in the MSG for just being awesome. Joseph Doolittle, Sophia Elia, Erin Henning, Katharina H¨oyng,Nevena Palic, and Paula Schiefer added readability to this thesis by proofreading it. Thank you all! Vielen Dank an Daniel, Moni und Peter. Contents Introduction 13 1 Mathematical Science Communication 17 1.1 Science Communication................................ 17 1.1.1 The Role of Education in Science Communication............. 19 1.1.2 Motivations of Science Communication.................... 20 1.1.3 Objectives for Science Communication.................... 20 1.1.3.1 Public Understanding of Science.................. 21 1.1.3.2 Scientific Literacy.......................... 22 1.1.3.3 Deficit Model............................. 24 1.1.3.4 Public Awareness of Science.................... 25 1.1.3.5 Trust { the New Variable in the Discourse............ 26 1.1.3.6 What about the Trust in Science in Germany?.......... 28 1.1.3.7 Skepticism as an Opportunity.................... 30 1.1.3.8 Untangling Science Journalism and Public Relations....... 30 1.2 Mathematical Science Communication........................ 32 1.2.1 Literature Review............................... 32 1.2.1.1 The Deficit Model { Presumed Dead yet Omnipresent...... 33 1.2.1.2 Formats of Mathematical Science Communication........ 37 1.2.1.3 Gender and Diversity........................ 38 1.2.1.4 Digression: The Image of Mathematics.............. 39 1.2.2 Conceptualizing the Objectives of Mathematical Science Communication 41 1.2.2.1 Mathematical Citizen Science.................... 45 1.3 What's Next for Mathematical Science Communication?.............. 49 2 POLYTOPIA { Adopt a Polyhedron 51 2.1 Motivation, Objectives and Methods......................... 51 2.1.1 Motivation................................... 51 2.1.2 Objectives.................................... 52 2.1.3 Methods..................................... 53 2.1.4 Classification.................................. 54 2.2 Execution of the Project................................ 57 2.2.1 Website..................................... 57 2.2.1.1 Webdesign.............................. 58 2.2.1.2 Implementation........................... 60 2.2.1.3 Content................................ 62 2.2.2 Timeline..................................... 64 2.3 Results of the Project................................. 66 2.3.1 Defining Success................................ 66 2.3.2 User Numbers................................. 66 2.3.3 User Survey................................... 68 2.3.3.1 Demographical Data......................... 69 2.3.3.2 Self-Claimed Interest and Skill................... 70 2.3.3.3 Did you Learn Something New about Math here?........ 73 2.3.3.4 Pathways to the Project....................... 73 2.3.3.5 How would you Rate this Page?.................. 75 2.4 Conclusion....................................... 76 3 Mathematics Education 77 3.1 Bridging Formal and Informal Learning....................... 77 3.2 Didactical Concepts behind the School Materials.................. 80 3.2.1 Project Teaching in the Math Class..................... 80 3.2.2 Inquiry Based Learning............................ 81 3.2.3 Dialogical Learning............................... 84 3.2.4 EIS-Principle.................................. 85 3.3 School Material..................................... 87 3.3.1 Class Set.................................... 87 3.3.2 Finding Research Questions.......................... 88 3.3.3 Polly's Journal................................. 89 3.3.4 Discovery Cards................................ 91 3.3.5 Project Teaching as the Backdrop for all Materials............. 91 3.4 Linking Points to the Curriculum { Competencies and Central Themes...... 93 3.4.1 Primary Education............................... 93 3.4.2 Secondary Education.............................. 95 3.5 Applying Didactical Principles into the Project Design............... 96 4 Mathematics 97 4.1 \Adopting a What?": On the Term Polyhedron ................... 97 4.2 Genealogy of the Term Polyhedron .......................... 98 4.3 Defining the Term Polyhedron ............................. 105 4.3.1 Convex 3-Polytope............................... 105 4.3.2 Vertices, Edges and Faces of Polyhedra................... 107 4.3.3 Combinatorial Equivalence Classes...................... 107 4.3.4 Steinitz' Theorem............................... 108 4.3.5 Koebe-Andreev-Thurston Generalization of Steinitz' Theorem...... 109 4.3.6 Putting it into Practice............................ 110 4.3.6.1 Visualization Files.......................... 111 4.3.6.2 Edge Unfoldings and Crafting Sheets............... 111 4.4 D¨urer'sConjecture................................... 115 4.4.1 D¨urerInvents the Edge Unfolding...................... 115 4.4.2 Shephard's Problem.............................. 116 4.4.3 Gr¨unbaum's Questions............................. 117 4.4.4 Computational Experiments.......................... 119 4.4.4.1 Random Unfoldings { Schevon................... 119 4.4.4.2 Attempts to Characterize the Simple Cut Tree { Fukuda.... 120 4.4.4.3 Systematic Approach { Schlickenrieder.............. 120 4.4.4.4 Finding more Counterexamples { Lucier.............. 121 4.4.5 Theoretical Work................................ 122 4.4.5.1 First Steps { DiBiase........................ 122 4.4.5.2 Combinatorial Result { Ghomi................... 122 4.4.6 Related Problems................................ 123 4.4.6.1 Non-convex Polyhedra........................ 123 4.4.6.2 General Unfolding.......................... 124 4.4.6.3 Pseudo-Edge Unfolding by Ghomi and Barvinok......... 126 4.4.6.4 The Inverted Problem: Is a Polygon a Net of a Polyhedron?.. 126 4.4.6.5 Higher Dimensions.......................... 128 Conclusion 129 Bibliography 133 Appendix 147 Glossary............................................ 150 Data Protection....................................... 161 Survey............................................. 166 School Material........................................ 169 Class Set........................................ 169 Class Set { Front Page................................. 171 Research Questions................................... 172 Class Set { Teachers' Manual............................
Recommended publications
  • Ununfoldable Polyhedra with Convex Faces
    Ununfoldable Polyhedra with Convex Faces Marshall Bern¤ Erik D. Demainey David Eppsteinz Eric Kuox Andrea Mantler{ Jack Snoeyink{ k Abstract Unfolding a convex polyhedron into a simple planar polygon is a well-studied prob- lem. In this paper, we study the limits of unfoldability by studying nonconvex poly- hedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that \open" polyhedra with triangular faces may not be unfoldable no matter how they are cut. 1 Introduction A classic open question in geometry [5, 12, 20, 24] is whether every convex polyhedron can be cut along its edges and flattened into the plane without any overlap. Such a collection of cuts is called an edge cutting of the polyhedron, and the resulting simple polygon is called an edge unfolding or net. While the ¯rst explicit description of this problem is by Shephard in 1975 [24], it has been implicit since at least the time of Albrecht Durer,Ä circa 1500 [11]. It is widely conjectured that every convex polyhedron has an edge unfolding. Some recent support for this conjecture is that every triangulated convex polyhedron has a vertex unfolding, in which the cuts are along edges but the unfolding only needs to be connected at vertices [10]. On the other hand, experimental results suggest that a random edge cutting of ¤Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA, email: [email protected].
    [Show full text]
  • SIGNED TREE ASSOCIAHEDRA Vincent PILAUD (CNRS & LIX)
    SIGNED TREE ASSOCIAHEDRA Vincent PILAUD (CNRS & LIX) 1 2 3 4 4 2 1 3 POLYTOPES FROM COMBINATORICS POLYTOPES & COMBINATORICS polytope = convex hull of a finite set of Rd = bounded intersection of finitely many half-spaces face = intersection with a supporting hyperplane face lattice = all the faces with their inclusion relations Given a set of points, determine the face lattice of its convex hull. Given a lattice, is there a polytope which realizes it? PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g \ ≥ 321 = H \ H (J) ?6=J([n+1] 312 231 x1=x3 213 132 x1=x2 123 x2=x3 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4321 \ = \ H≥(J) 2211 4312 H 3421 6=J [n+1] 3412 ? ( 4213 k-faces of Perm(n) 2212 ≡ ordered partitions of [n + 1] 2431 1211 into n + 1 − k parts 2413 ≡ surjections from [n + 1] 2341 3214 to [n + 1 − k] 1221 1432 2314 1423 1212 3124 1342 1222 1112 1324 2134 1243 1234 PERMUTAHEDRON Permutohedron Perm(n) = conv f(σ(1); : : : ; σ(n + 1)) j σ 2 Σn+1g 4321 \ = \ H≥(J) 2211 4312 H 3421 6=J [n+1] 3412 ? ( 4213 k-faces of Perm(n) 2212 ≡ ordered partitions of [n + 1] 2431 1211 into n + 1 − k parts 2413 ≡ surjections from [n + 1] 2341 3214 to [n + 1 − k] 1221 1432 2314 1423 1212 3124 connections to • inversion sets 1342 1222 1112 • weak order 1324 • reduced expressions 2134 1243 • braid moves 1234 • cosets of the symmetric group ASSOCIAHEDRA ASSOCIAHEDRON Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion vertices $ triangulations vertices $ binary trees edges $ flips edges $ rotations faces $ dissections faces $ Schr¨oder trees VARIOUS ASSOCIAHEDRA Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion (Pictures by Ceballos-Santos-Ziegler) Lee ('89), Gel'fand-Kapranov-Zelevinski ('94), Billera-Filliman-Sturmfels ('90), .
    [Show full text]
  • Classification of Polyhedral Shapes from Individual Anisotropically
    Bag et al. BMC Bioinformatics (2016) 17:234 DOI 10.1186/s12859-016-1107-5 METHODOLOGY ARTICLE Open Access Classification of polyhedral shapes from individual anisotropically resolved cryo- electron tomography reconstructions Sukantadev Bag1, Michael B Prentice2, Mingzhi Liang3, Martin J Warren3 and Kingshuk Roy Choudhury4* Abstract Background: Cryo-electron tomography (cryo-ET) enables 3D imaging of macromolecular structures. Reconstructed cryo-ET images have a “missing wedge” of data loss due to limitations in rotation of the mounting stage. Most current approaches for structure determination improve cryo-ET resolution either by some form of sub-tomogram averaging or template matching, respectively precluding detection of shapes that vary across objects or are a priori unknown. Various macromolecular structures possess polyhedral structure. We propose a classification method for polyhedral shapes from incomplete individual cryo-ET reconstructions, based on topological features of an extracted polyhedral graph (PG). Results: We outline a pipeline for extracting PG from 3-D cryo-ET reconstructions. For classification, we construct a reference library of regular polyhedra. Using geometric simulation, we construct a non-parametric estimate of the distribution of possible incomplete PGs. In studies with simulated data, a Bayes classifier constructed using these distributions has an average test set misclassification error of < 5 % with upto 30 % of the object missing, suggesting accurate polyhedral shape classification is possible from individual incomplete cryo-ET reconstructions. We also demonstrate how the method can be made robust to mis-specification of the PG using an SVM based classifier. The methodology is applied to cryo-ET reconstructions of 30 micro-compartments isolated from E.
    [Show full text]
  • On a Remark of Loday About the Associahedron and Algebraic K-Theory
    An. S¸t. Univ. Ovidius Constant¸a Vol. 16(1), 2008, 5–18 On a remark of Loday about the Associahedron and Algebraic K-Theory Gefry Barad Abstract In his 2006 Cyclic Homology Course from Poland, J.L. Loday stated that the edges of the associahedron of any dimension can be labelled by elements of the Steinberg Group such that any 2-dimensional face represents a relation in the Steinberg Group. We prove his statement. We define a new group R(n) relevant in the study of the rotation distance between rooted planar binary trees . 1 Introduction 1.1 Combinatorics: binary rooted trees and the associahedron Our primary objects of study are planar rooted binary trees. By definition, they are connected graphs without cycles, with n trivalent vertices and n+2 univalent vertices, one of them being marked as the root. 1 2n There are n+1 n binary trees with n internal vertices. Key Words: Rooted binary trees; Associahedron; Algebraic K-Theory, Combinatorics. Mathematics Subject Classification: 05-99; 19Cxx; 19M05; 05C05 Received: October, 2007 Accepted: January, 2008 5 6 Gefry Barad Figure 1. The associahedron Kn is an (n − 1)-dimensional convex polytope whose vertices are labelled by rooted planar binary trees with n internal vertices. Two labelled vertices are connected by an edge if and only if the corresponding trees are connected by an elementary move called rotation. Two trees are connected by a rotation if they are identical, except the zones from the figure below, where one edge is moved into another position; we erase an internal edge and one internal vertex and we glue it again in a different location, to get a rooted binary tree.
    [Show full text]
  • Associahedron
    Associahedron Jean-Louis Loday CNRS, Strasbourg April 23rd, 2005 Clay Mathematics Institute 2005 Colloquium Series Polytopes 7T 4 × 7TTTT 4 ×× 77 TT 44 × 7 simplex 4 ×× 77 44 × 7 ··· 4 ×× 77 ×× 7 o o ooo ooo cube o o ··· oo ooo oo?? ooo ?? ? ?? ? ?? OOO OO ooooOOO oooooo OO? ?? oOO ooo OOO o OOO oo?? permutohedron OOooo ? ··· OO o ? O O OOO ooo ?? OOO o OOO ?? oo OO ?ooo n = 2 3 ··· Permutohedron := convex hull of (n+1)! points n+1 (σ(1), . , σ(n + 1)) ∈ R Parenthesizing X= topological space with product (a, b) 7→ ab Not associative but associative up to homo- topy (ab)c • ) • a(bc) With four elements: ((ab)c)d H jjj HH jjjj HH jjjj HH tjj HH (a(bc))d HH HH HH HH H$ vv (ab)(cd) vv vv vv vv (( ) ) TTT vv a bc d TTTT vv TTT vv TTTz*vv a(b(cd)) We suppose that there is a homotopy between the two composite paths, and so on. Jim Stasheff Staheff’s result (1963): There exists a cellular complex such that – vertices in bijection with the parenthesizings – edges in bijection with the homotopies – 2-cells in bijection with homotopies of com- posite homotopies – etc, and which is homeomorphic to a ball. Problem: construct explicitely the Stasheff com- plex in any dimension. oo?? ooo ?? ?? ?? • OOO OO n = 0 1 2 3 Planar binary trees (see R. Stanley’s notes p. 189) Planar binary trees with n + 1 leaves, that is n internal vertices: n o ? ?? ? ?? ?? ?? Y0 = { | } ,Y1 = ,Y2 = ? , ? , ( ) ? ? ? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? ?? ? Y3 = ? , ? , ? , ? , ? . Bijection between planar binary trees and paren- thesizings: x0 x1 x2 x3 x4 RRR ll ll RRR ll RRlRll lll RRlll RRR lll lll lRRR lll RRR lll RRlll (((x0x1)x2)(x3x4)) The notion of grafting s t 3 33 t ∨ s = 3 Associahedron n To t ∈ Yn we associate M(t) ∈ R : n M(t) := (a1b1, ··· , aibi, ··· , anbn) ∈ R ai = # leaves on the left side of the ith vertex bi = # leaves on the right side of the ith vertex Examples: ? ? ?? ?? ?? ?? M( ) = (1),M ? = (1, 2),M ? = (2, 1), ? ? ? ?? ?? ?? ?? M ? = (1, 2, 3),M ? = (1, 4, 1).
    [Show full text]
  • A Survey of Folding and Unfolding in Computational Geometry
    Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Survey of Folding and Unfolding in Computational Geometry ERIK D. DEMAINE AND JOSEPH O’ROURKE Abstract. We survey results in a recent branch of computational geome- try: folding and unfolding of linkages, paper, and polyhedra. Contents 1. Introduction 168 2. Linkages 168 2.1. Definitions and fundamental questions 168 2.2. Fundamental questions in 2D 171 2.3. Fundamental questions in 3D 175 2.4. Fundamental questions in 4D and higher dimensions 181 2.5. Protein folding 181 3. Paper 183 3.1. Categorization 184 3.2. Origami design 185 3.3. Origami foldability 189 3.4. Flattening polyhedra 191 4. Polyhedra 193 4.1. Unfolding polyhedra 193 4.2. Folding polygons into convex polyhedra 196 4.3. Folding nets into nonconvex polyhedra 199 4.4. Continuously folding polyhedra 200 5. Conclusion and Higher Dimensions 201 Acknowledgements 202 References 202 Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by NSF Distinguished Teaching Scholars award DUE-0123154. 167 168 ERIKD.DEMAINEANDJOSEPHO’ROURKE 1. Introduction Folding and unfolding problems have been implicit since Albrecht D¨urer [1525], but have not been studied extensively in the mathematical literature until re- cently. Over the past few years, there has been a surge of interest in these problems in discrete and computational geometry. This paper gives a brief sur- vey of most of the work in this area. Related, shorter surveys are [Connelly and Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000]. We are currently preparing a monograph on the topic [Demaine and O’Rourke ≥ 2005].
    [Show full text]
  • University of California Santa Cruz
    UNIVERSITY OF CALIFORNIA SANTA CRUZ ONLINE LEARNING OF COMBINATORIAL OBJECTS A thesis submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE by Holakou Rahmanian September 2018 The Dissertation of Holakou Rahmanian is approved: Professor Manfred K. Warmuth, Chair Professor S.V.N. Vishwanathan Professor David P. Helmbold Lori Kletzer Vice Provost and Dean of Graduate Studies Copyright © by Holakou Rahmanian 2018 Contents List of Figures vi List of Tables vii Abstract viii Dedication ix Acknowledgmentsx 1 Introduction1 1.1 The Basics of Online Learning.......................2 1.2 Learning Combinatorial Objects......................4 1.2.1 Challenges in Learning Combinatorial Objects..........6 1.3 Background..................................8 1.3.1 Expanded Hedge (EH)........................8 1.3.2 Follow The Perturbed Leader (FPL)................9 1.3.3 Component Hedge (CH).......................9 1.4 Overview of Chapters............................ 11 1.4.1 Overview of Chapter2: Online Learning with Extended Formu- lations................................. 11 1.4.2 Overview of Chapter3: Online Dynamic Programming...... 12 1.4.3 Overview of Chapter4: Online Non-Additive Path Learning... 13 2 Online Learning with Extended Formulations 14 2.1 Background.................................. 20 2.2 The Method.................................. 22 2.2.1 XF-Hedge Algorithm......................... 23 2.2.2 Regret Bounds............................ 26 2.3 XF-Hedge Examples Using Reflection Relations.............. 29 2.4 Fast Prediction with Reflection Relations................. 36 2.5 Projection with Reflection Relations.................... 39 iii 2.5.1 Projection onto Each Constraint in XF-Hedge........... 41 2.5.2 Additional Loss with Approximate Projection in XF-Hedge... 42 2.5.3 Running Time............................ 47 2.6 Conclusion and Future Work.......................
    [Show full text]
  • GEOMETRIC FOLDING ALGORITHMS I
    P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E.
    [Show full text]
  • Fqxi 4Dave Last1-3-9-Kor Ende
    ! Revising Space Time Geometry: A Proposal for a New Romance in Many Dimensions Renate Quehenberger* Quantum Cinema - a digital Vision (PEEK) Department of Mediatheory at the University of Applied Arts, Vienna August 25, 2012 Abstract The ontological positioning of our existence, deeply connected with the hierarchy problem concerning the dimensions of space and time, is one of the major problems for our understanding of the “ultimate” nature of reality. The resulting problem is that mathematical concepts that need so-called “extra-dimensions” have been widely disregarded owing to a lack of physical interpretation. This article reviews conventions, imaginations and assumptions about the non-imaginative by starting at the origins of the of 4D and 5D space-time concepts and proposing a new geometrical approach via a hyper- Euclidian path for a mentally accessible vision of continuous AND discrete complex space configuration in dimensions up to higher order. e-mail address: [email protected] 1 RCZ Quehenberger “Time and Space... It is not nature which imposes them upon us, it is we who impose them upon nature because we find them convenient.” [Henri Poincaré, 1905] Introduction The general physicists’ assertion is that we are living in a three-dimensional world with one time- dimension and cosmic space is curved in the fourth dimension is based on a relativistic world view that has gained general acceptance. In fact this is a post-Copernicanian world view which does not pay attention to the consequences of Max Planck’s revolution and the development in quantum physics of the past 100 years.
    [Show full text]
  • The Practical (And Artistic) Utility of Hyperspace
    The Practical (and Artistic) Utility of Hyperspace I have felt and given evidence of the practical utility of handling space of four dimensions as if it were conceivable space. -James Joseph Sylvester, 30 December 1869 The best way to show how four-dimensional geometry has enriched my artwork is to show how my artwork has enriched four-dimensional geometry. Of course, I had teachers. Hypercubes Tessellated In the summer of 1979, when I was 35, I traveled to Brown University to meet Tom Banchoff, chair of the mathematics department, and to see his computer representation of a hypercube rotating in four- dimensional space. Banchoff was generous with his time, and with time on his million-dollar VAX computer. Subsequent visits, hand-written letters, which I have cherished and kept, proofs of my conjectures, invitations to conferences, and authentication of my computer programs and of the mathematical content of my work - all this followed. Do you know the plane if you only know a square? Wouldn’t it be better to contemplate a whole page of squares fitted together, a tessellation of squares? Likewise, do you know space if you only know a cube? Soon after I visited Banchoff for the first time and learned to replicate his program for the rotating hypercube (at Pratt Institute with Herb Tesser and his million-dollar VAX), I programed 9 Tessellated Hypercubes, linked here - tonyrobbin.net/quasi/TessHyperCubes.mp4, and see drawing at the end of this file. One hypercube above, one below, to the left, to the right, in front of and in back of, and also one fore and one aft in the fourth dimension were place around a central hypercube.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 978-0-521-85757-4 - Geometric Folding Algorithms: Linkages, Origami, Polyhedra Erik D. Demaine and Joseph O’Rourke Index More information Index 1-skeleton, 311, 339 bar, 9 3-Satisfiability, 217, 221 base, see origami, base, 2 α-cone canonical configuration, 151, 152 Bauhaus, 294 α-producible chain, 150, 151 Bellows theorem, 279, 348 δ-perturbation, 115 bending λ order function, 176, 177, 186 machine, xi, 13, 306 antisymmetry condition, 177, 186 pipe, 13, 14 consistency condition, 178, 186 sheet metal, 306 noncrossing condition, 179, 186 beta sheet, 158 time continuity, 174, 183, 187 Bezdek, Daniel, 331 transitivity condition, 178, 186 blooming, continuous, 333, 435 bond angle, 14, 131, 148, 151 Abe’s angle trisection, 286, 287 bond length, 148 accordion, 85, 193, 200, 261 active path, 244, 245, 247–249 cable, 53–55 acyclicity, 108 CAD, see cylindrical algebraic decomposition, 19 additor (Kempe), 32, 34, 35 cage, 21, 92, 93 Alexandrov, Aleksandr D., 348 canonical form, 74, 86, 87, 141, 151 Alexandrov’s theorem, 339, 348, 349, 352, 354, Cauchy’s arm lemma, 72, 133, 143, 145, 342, 343, 368, 381, 393, 419 377 existence, 351 Cauchy’s rigidity theorem, 43, 143, 213, 279, 339, uniqueness, 350 341, 342, 345, 348–350, 354, 403 algebraic motion, 107, 111 Cauchy—Steinitz lemma, 72, 342 algebraic set, 39, 44 chain algebraic variety, 27 4D, 92, 93, 437 alpha helix, 151, 157, 158 abstract, 65, 149, 153, 158 Amato, Nancy, 157 convex, 143, 145 amino acid, 158 cutting, xi, 91, 123 amino acid residue, 14, 148, 151 equilateral, see
    [Show full text]
  • Contributions to the History of Number Theory in the 20Th Century Author
    Peter Roquette, Oberwolfach, March 2006 Peter Roquette Contributions to the History of Number Theory in the 20th Century Author: Peter Roquette Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Im Neuenheimer Feld 288 69120 Heidelberg Germany E-mail: [email protected] 2010 Mathematics Subject Classification (primary; secondary): 01-02, 03-03, 11-03, 12-03 , 16-03, 20-03; 01A60, 01A70, 01A75, 11E04, 11E88, 11R18 11R37, 11U10 ISBN 978-3-03719-113-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2013 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the author’s TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 To my friend Günther Frei who introduced me to and kindled my interest in the history of number theory Preface This volume contains my articles on the history of number theory except those which are already included in my “Collected Papers”.
    [Show full text]