United Nations Sc

Total Page:16

File Type:pdf, Size:1020Kb

United Nations Sc UNITED NATIONS SC UNEP/POPS/POPRC.12/INF/13 Distr.: General 26 July 2016 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Twelfth meeting Rome, 19–23 September 2016 Item 4 (c) (ii) of the provisional agenda Technical work: consideration of recommendations to the Conference of the Parties: unintentional releases of hexachlorobutadiene Compilation of information on unintentional releases of hexachlorobutadiene Note by the Secretariat As referred to in the note by the Secretariat on new information in relation to the listing of hexachlorobutadiene in Annex C to the Stockholm Convention (UNEP/POPS/POPRC.12/6), the annex to the present note contains a compilation of information on unintentional releases of hexachlorobutadiene submitted by the following two parties and two observers: Netherlands; Serbia; United States of America; and International POPs Elimination Network. The present note, including its annex, has not been formally edited. UNEP/POPS/POPRC.12/1. 020816 UNEP/POPS/POPRC.12/INF/13 Annex Compilation of information on unintentional releases of hexachlorobutadiene Netherlands, 7 January 2016 1. Source screening of priority substances under the WFD Results for (17) hexachlorobutadiene (HCBD) (priority hazardous substance) 2. Annex 1 to the draft document “Exploration of management options for Hexachlorobutadiene (HCBD), 2 May 2007” Responses to the questionnaire on management options for HCBD 3. Chlorine Industry Review 2006-2007 Well-earned reputation rests on renewed sustainability efforts 4. Report of the NICOLE Workshop NICOLE Projects Reporting Day 13th February 2004, Runcorn, UK 5. Council Directive of 16 June 1988 amending Annex II to Directive 86/280/EEC on limit values and quality objectives for discharges of certain dangerous substances included in List I of the Annex to Directive 76/464/EEC (88/347/EEC) 6. Hexachlorobutadiene, HCBD INERIS -DRC- MECO Version N° 1-mai 05 7. Hexachlobutadien BUA-Stoffbericht 62 (August 1991) herausgegeben vom Beratergremium für umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker 2 Source screening of priority substances under the WFD Results for (17) hexachlorobutadiene (HCBD) (priority hazardous substance) Version: 4 Date: May 2004 Comments on version 1 received from: A, DE, F, UK, Eurochlor Comments on version 2 received from: UK, Eurochlor Comments on version 3 received from: None The draft concept paper on the control of emissions, discharges and losses of priority substances (document EAF(5)/6/01, updated version in preparation) outlines the steps to be taken to identify the relevant measures for emission controls for the priority substances. The source screening is the first step in this process, which is based on the information collected via the draft fact sheets produced by Haskoning (available on CIRCA) supplemented by other information and expert judgement, and takes into account the results of the consultation with the Expert Advisory Forum on Priority Substances. General details on the classification system applied can be found in the concept paper and can be summarised as follows: ¾ Category 1: source/pathway may result in or contribute to potential failure of WFD objectives; ¾ Category 2: Not enough quantitative information available to allow classification into category 1 or 3; source/pathway will be reviewed as more data become available; ¾ Category 3: no potential release from source/pathway or source/pathway does not contribute to potential failure of WFD objectives. Source/pathway Results of classification Category Category Category 1 2 3 Losses to surface waters by diffuse sources S1 Atmospheric deposition on the water surface X S2 Via drainage and deep ground water X S3 Due to agricultural activities (via leaching, erosion, spills, direct X drainage discharges) S4 Due to transport and infrastructure without connection to X collection system/sewers (ships, trains, automobiles and airplanes and their respective infrastructures outside the urban area) S5 Accidental spills X S6 Release from materials and constructions in non-sewered areas X Discharges to surface waters by point sources S7 Discharges in sewage effluents or storm water as a result of run X off from buildings and constructions in paved urban areas including run off from fields connected to the sewer system S8 Discharges in sewage effluents or storm water as a result of X household, consumer use S9 Due to industrial activities X S9.1 Small and medium point source discharges direct or via STP (non-IPPC installations including run off from farmyards) S9 Due to industrial activities S9.2 Large industrial point sources, direct or via STP (IPPC installations) Production of perchloroethylene and carbon tetrachloride by X perchlorination (*) (covered under basic organic chemicals) Production of trichloroethylene and perchloroethylene by any other X process (covered under basic organic chemicals) Mineral oil and gas refineries X Basic organic chemicals X S10 Solid waste management S 10.1 Landfills X S 10.2 Incineration X S11 Losses from historically contaminated) soils S11.1 Historic pollution of sediments X S.11.2 Historic pollution from contaminated land X Emissions to atmosphere A1 From agriculture and forestry X A2 From traffic and infrastructure X A3 From buildings X A4 From households and other consumer use X A5 From industry IPPC categories X A6 From non IPPC facilities X A7 From waste disposal/treatment areas (land fill and others) X A8 From contaminated land (historical pollution) X (*) EU Limit Values in the Daughter Directive of the Discharge of Dangerous Substances Directive (76/464/EEC) Screening based on: ¾ Haskoning fact sheet HCBD ¾ 76/464 List I Daughter Directive report ¾ Environmental Agency Pollution Inventory (England and Wales) ¾ Information on the inputs of HCBD to waters in Germany ¾ Results of the 2003 EPER inventory Data availability and uncertainties 1. The Haskoning fact sheet presents some information, which shows that HCBD is not anymore produced in the EU and that it occurs as unintentional by-product. Most of the emissions are to surface waters with low levels to air. 2. The UK data show that discharges from the chemical industry and waste incineration are the main sources for surface waters (UK commented on Version 2 that this statements should be revisited but no further comments received) 3. German data show that S9.2 are the main sources of HCBD to surface waters 4. Austrian data show that historical pollution is the main source of HCBD in Austria but at low concentrations 5. No information from the new Member States from May 2004 6. Eurochlor claim that total releases to water are 5 kg/year 7. EPER data show that the releases to water from IPPC facilities are 124 kg/year Justification for classification S1 has been classified as category 3 based on the Haskoning data and comments from several countries. S9.2 Based on the EPER data two new activities have been added to those listed in the Discharge of Dangerous Substances Directive (76/464/EEC) - mineral oil and gas refineries, and basic organic chemicals, which have been categorised as category 1. The “production of perchloroethylene, trichloroethylene and carbon tetrachloride” is most likely part of “basic organic chemicals” The “production of perchloroethylene, trichloroethylene and carbon tetrachloride” has been classified as category 1 based on data sources 2 and 3. EuroChlor states that these sources should be classified as category 3. However, as even small releases of this PHS can lead to the failure of the objectives of the WFD these sources have been maintained as category 1 S10.1 has been maintained as category 2 because of lack of data. S10.2 and A7 have been classified as category 2 based on UK information, which states that waste incineration is a source of HCBD. However, insufficient data are available to assess whether these sources contribute to a possible failure of the objectives of the WFD. S11.1 and S11.2 have been assigned to category 2 because of lack of data. A5 has been changed to category 3 based on Haskoning data and comments from several countries. EPER does not report any releases to air. A8 has been maintained as category 3 as HCBD is strongly adsorbed on solids and is unlikely removed by volatilisation. Annex 1 to the draft document "Exploration of management options for Hexachlorobutadiene (HCBD), 2 May 2007 Responses to the questionnaire on management options for HCBD HCBD Production Consumption Alternatives Releases Emission control Additional notes Belgium stopped, year unknown as byproduct in production of chlorinated no info no info no info hydrocarbons (NACE 24) no intentions to end or restrict Canada never produced stopped, year unknown no info Products or mixtures containing HCBD as a no info Prohibition of Certain Toxic Substances The production of HCBD is According to the Assessment Report, contaminant (year of release 2003): Regulations, 2005 prohibited under the Prohibition of HCBD was formerly imported into Canada Chlorinated solvents: 45 g/year (http://canadagazette.gc.ca/partII/2005/2005030 Certain Toxic Substances for use as a solvent, but it is no longer Ferric/Ferrous chloride: 10 g/year 9/html/sor41-e.html) Regulations, 2005 which came imported. By-Products magnesium industry: 7 g/year Assessment Report - Hexachlorobutadiene into force in May 2005. This was The use of HCBD is prohibited under the (Environment Canada, 2002) done as a preventative measure Prohibition of Certain Toxic Substances
Recommended publications
  • PUBLIC HEALTH STATEMENT Hexachlorobutadiene CAS#: 87-68-3
    PUBLIC HEALTH STATEMENT Hexachlorobutadiene CAS#: 87-68-3 Division of Toxicology May 1994 This Public Health Statement is the summary be exposed to a substance only when you come in chapter from the Toxicological Profile for contact with it. You may be exposed by breathing, Hexachlorobutadiene. It is one in a series of Public eating, or drinking substances containing the Health Statements about hazardous substances and substance or by skin contact with it. their health effects. A shorter version, the ToxFAQsTM is also available. This information is If you are exposed to a substance such as important because this substance may harm you. hexachlorobutadiene, many factors will determine The effects of exposure to any hazardous substance whether harmful health effects will occur and what depend on the dose, the duration, how you are the type and severity of those health effects will be. exposed, personal traits and habits, and whether These factors include the dose (how much), the other chemicals are present. For more information, duration (how long), the route or pathway by which call the ATSDR Information Center at 1-888-422- you are exposed (breathing, eating, drinking, or skin 8737. contact), the other chemicals to which you are _____________________________________ exposed, and your individual characteristics such as age, gender, nutritional status, family traits, life- This Statement was prepared to give you style, and state of health. information about hexachlorobutadiene and to emphasize the human health effects that may result 1.1 WHAT IS HEXACHLOROBUTADIENE? from exposure to it. The Environmental Protection Agency (EPA) has identified 1,350 hazardous waste Hexachlorobutadiene, also known as HCBD, sites as the most serious in the nation.
    [Show full text]
  • Hexachlorobutadiene in Drinking-Water
    WHO/SDE/WSH/03.04/101 English only Hexachlorobutadiene in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2004 Requests for permission to reproduce or translate WHO publications - whether for sale of for non- commercial distribution - should be addressed to Publications (Fax: +41 22 791 4806; e-mail: [email protected]. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damage incurred as a results of its use. Preface One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose ... regulations, and to make recommendations with respect to international health matters ....” The first WHO document dealing specifically with public drinking-water quality was published in 1958 as International Standards for Drinking-water.
    [Show full text]
  • UNITED NATIONS Stockholm Convention on Persistent Organic
    UNITED NATIONS SC UNEP/POPS/POPRC.12/INF/12 Distr.: General 25 July 2016 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Twelfth meeting Rome, 1923 September 2016 Item 4 (c) (ii) of the provisional agenda* Technical work: consideration of recommendations to the Conference of the Parties: unintentional releases of hexachlorobutadiene Draft evaluation of new information in relation to listing of hexachlorobutadiene in Annex C to the Stockholm Convention Note by the Secretariat As referred to in the note by the Secretariat on new information in relation to the listing of hexachlorobutadiene in Annex C to the Stockholm Convention (UNEP/POPS/POPRC.12/6), the annex to the present note sets out the draft evaluation of new information in relation to listing of hexachlorobutadiene in Annex C to the Stockholm Convention. The present note, including its annex, has not been formally edited. * UNEP/POPS/POPRC.12/1. 250716 UNEP/POPS/POPRC.12/INF/12 Annex Draft evaluation of new information in relation to the listing of hexachlorobutadiene in Annex C of the Stockholm Convention June 2016 2 UNEP/POPS/POPRC.12/INF/12 Table of Contents Executive summary .................................................................................................................................... 4 1. Introduction ..................................................................................................................................... 6 1.1 Overview ............................................................................................................................
    [Show full text]
  • Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene
    Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 www.epa.gov/safewater/ EPA 822-R-03-002 February 2003 Printed on Recycled Paper FOREWORD The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the Environmental Protection Agency (EPA) to establish a list of contaminants to aid the agency in regulatory priority setting for the drinking water program. In addition, SDWA requires EPA to make regulatory determinations for no fewer than five contaminants by August 2001. The criteria used to determine whether or not to regulate a chemical on the CCL are the following: The contaminant may have an adverse effect on the health of persons. The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern. In the sole judgment of the administrator, regulation of such contaminant presents a meaningful opportunity for health risk reduction for persons served by public water systems. The Agency’s findings for the three criteria are used in making a determination to regulate a contaminant. The Agency may determine that there is no need for regulation when a contaminant fails to meet one of the criteria. This document provides the health effects basis for the regulatory determination for hexachlorobutadiene. In arriving at the regulatory determination, data on toxicokinetics, human exposure, acute and chronic toxicity to animals and humans, epidemiology, and mechanisms of toxicity were evaluated.
    [Show full text]
  • Exposure and Use Assessment for Five PBT Chemicals
    EPA Document # EPA-740-R1-8002 June 2018 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Exposure and Use Assessment of Five Persistent, Bioaccumulative and Toxic Chemicals Peer Review Draft June 2018 Contents TABLES ................................................................................................................................................................... 7 FIGURES ................................................................................................................................................................. 7 1. EXECUTIVE SUMMARY ................................................................................................................................ 15 2. BACKGROUND ............................................................................................................................................. 15 3. APPROACH .................................................................................................................................................. 17 4. DECABROMODIPHENYL ETHER (DECABDE) .................................................................................................. 21 4.1. Chemistry and Physical-Chemical Properties ................................................................................ 21 4.2. Uses ................................................................................................................................................ 21 4.3. Characterization of Expected Environmental Partitioning
    [Show full text]
  • Hexachlorobutadiene
    UNITED NATIONS SC UNEP/POPS/POPRC.8/3 Distr.: General 11 July 2012 Original: English Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Eighth meeting Geneva, 15–19 October 2012 Item 4 (b) of the provisional agenda* Consideration of draft risk profiles: hexachlorobutadiene Draft risk profile: hexachlorobutadiene Note by the Secretariat 1. At its seventh meeting, the Persistent Organic Pollutants Review Committee adopted decision POPRC-7/3 on hexachlorobutadiene.1 By paragraph 2 of that decision, the Committee decided to establish an ad hoc working group to review further the proposal to list hexachlorobutadiene in Annexes A, B, and/or C to the Stockholm Convention on Persistent Organic Pollutants2 and to develop a draft risk profile in accordance with Annex E to the Convention. 2. A workplan for the preparation of draft risk profiles was adopted by the Committee at the same meeting.3 3. In accordance with decision POPRC-7/3 and the workplan, the ad hoc working group prepared the draft risk profile set out in the annex to the present note; it has not been formally edited by the Secretariat. Comments and responses relating to the draft risk profile are set out in document UNEP/POPS/POPRC.8/INF/5. Possible action by the Committee 4. The Committee may wish: (a) To adopt, with any amendments that it deems appropriate, the draft risk profile set out in the annex to the present note; (b) To decide, in accordance with paragraph 7 of Article 8 of the Convention and on the basis of the risk profile,
    [Show full text]
  • Hexachlorobutadiene – Sources, Environmental Fate and Risk Characterisation
    SCIENCE DOSSIER Hexachlorobutadiene – Sources, environmental fate and risk characterisation Professor André Lecloux October 2004 October 2004 This publication is the fifth in a series of Science Dossiers providing the scientific community with reliable information on selected issues. If you require more copies, please send an email indicating name and mailing address to [email protected]. The document is also available as a PDF file on www.eurochlor.org Science Dossiers published in this series: 1. Trichloroacetic acid in the environment (March 2002) 2. Chloroform in the environment: Occurrence, sources, sinks and effects (May 2002) 3. Dioxins and furans in the environment (January 2003) 4. How chlorine in molecules affects biological activity (November 2003) 5. Hexachlorobutadiene – sources, environmental fate and risk characterisation (October 2004) Copyright & Reproduction The copyright in this publication belongs to Euro Chlor. No part of this publication may be stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or otherwise, without the permission of Euro Chlor. Notwithstanding these limitations, an extract may be freely quoted by authors in other publications subject to the source being acknowledged with inclusion of a suitable credit line or reference to the original publication. Table of Contents Foreword ............................................................................................................................................
    [Show full text]
  • Maine Remedial Action Guidelines (Rags) for Contaminated Sites
    Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites (RAGs) Effective Date: May 1, 2021 Approved by: ___________________________ Date: April 27, 2021 David Burns, Director Bureau of Remediation & Waste Management Executive Summary MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites Contents 1 Disclaimer ...................................................................................................................... 1 2 Introduction and Purpose ............................................................................................... 1 2.1 Purpose ......................................................................................................................................... 1 2.2 Consistency with Superfund Risk Assessment .............................................................................. 1 2.3 When to Use RAGs and When to Develop a Site-Specific Risk Assessment ................................. 1 3 Applicability ................................................................................................................... 2 3.1 Applicable Programs & DEP Approval Process ............................................................................. 2 3.1.1 Uncontrolled Hazardous Substance Sites ............................................................................. 2 3.1.2 Voluntary Response Action Program
    [Show full text]
  • Screening Programme 2017 AMAP Assessment Compounds
    ENVIRONMENTAL MONITORING M-1080|2018 Screening Programme 2017 AMAP Assessment compounds COLOPHON Executive institution ISBN-no. / ISSN-no. ISBN: 978-82-425-2940-4 NILU – Norwegian Institute for Air Research ISSN: 2464-3327 Project manager for the contractor Contact person in the Norwegian Environment Agency Martin Schlabach Bård Nordbø M-no Year Pages Contract number 1080|2018 2018 90 17078037 Publisher The project is funded by NILU – Norwegian Institute for Air Research NILU report 21/2018 Norwegian Environment Agency NILU Project no. O-117085 Author(s) Martin Schlabach (NILU), Bert van Bavel (NIVA), Jose Antonio Baz Lomba (NIVA), Anders Borgen (NILU), Geir Wing Gabrielsen (NPI), Arntraut Götsch (NILU), Anne-Karine Halse (NILU), Linda Hanssen (NILU), Ingjerd Sunde Krogseth (NILU), Vladimir Nikiforov (NILU), Torgeir Nygård (NINA), Pernilla Bohlin Nizzetto (NILU), Malcolm Reid (NIVA), Pawel Rostkowski (NILU), Saer Samanipour (NIVA) Title – Norwegian and English Screening Program 2017 – AMAP Assessment Stoffer Screening Programme 2017 – AMAP Assessment Compounds Summary – sammendrag This report summarizes the findings of a screening study on the occurrence of emerging substances selected by AMAP and other related substances measured earlier. The study includes selected solvents, siloxanes, flame retardants, UV compounds, pesticides, bisphenols and other PBT compounds in effluent, ambient air, biota, and marine plastic. Denne rapporten oppsummerer resultatene av en screeningundersøkelse om forekomst av stoffer utvalgt av AMAP samt en rekke
    [Show full text]
  • Hexachlorobutadiene
    Euro Chlor Risk Assessment for the Marine Environment OSPARCOM Region - North Sea Hexachlorobutadiene March 2002 Hexachlorobutadiene 03/2002 EURO CHLOR RISK ASSESSMENT FOR THE MARINE ENVIRONMENT HEXACHLOROBUTADIENE (HCBD) OSPARCOM Region – North Sea EXECUTIVE SUMMARY Euro Chlor has voluntarily agreed to carry out risk assessments of 25 chemicals related to the chlorine industry. The risk assessments were targeted on the marine environment, specifically for the North Sea. The assessments are carried out according to the methodology laid down in the EU Risk Assessment Regulation (1488/94) and the Guidance Documents of the EU Existing Substances Regulation (793/93). The exercise consists of the collection and evaluation of data on effects on aquatic organisms and environmental fate. Basically, the adverse effect data are derived from laboratory toxicity tests and the exposure data from monitoring programs. Finally, the risk is indicated by comparing the "predicted environmental concentrations" (PEC) as indices of exposure with the "predicted no effect concentrations” (PNEC) as indices of effect. This PEC/PNEC ratio is considered as the risk quotient (RQ) for the marine environment. If RQ < 1 it is presumed that the likelihood of an adverse effect is very low. An RQ > 1 is a cause for concern, necessitating a further refinement of the risk assessment and eventually for reducing the risks. In the case of hexachlorobutadiene (HCBD) which has a low water solubility (i.e. about 3.2 mg/l) and a relatively high log octanol/water partition coefficient (i.e. about 4.9) it was necessary, in addition to the aquatic phase, to consider the risks associated with the potential of HCBD to bioconcentrate in marine organisms, to partition to sediments and to produce toxicity in sediment dwelling organisms, and to produce toxicity in predators up the food chain, e.g.
    [Show full text]
  • Supplemental Information for Exposure Use Assessment Pbts
    EPA Document # EPA-740-R1-8003 June 2018 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Supplemental Information for the Exposure and Use Assessment of Five Persistent, Bioaccumulative and Toxic Chemicals Peer Review Draft June 2018 Contents Appendix A. Supplemental Document for Decabromodiphenyl ethers (DecaBDE) ...................................................... 7 A.1 Literature Search Strategy ........................................................................................................................... 7 A.1.1. Database (Peer-reviewed) Search Strategies ...................................................................................... 8 A.1.2. Gray Literature Search Strategies ........................................................................................................ 9 A.1.3. Supplemental Search Strategy .......................................................................................................... 15 Backward Search ........................................................................................................................................... 15 Google Scholar Search ................................................................................................................................... 15 A.1.4. Literature Search Results ................................................................................................................... 15 A.2 Literature Screening Strategy ....................................................................................................................
    [Show full text]
  • Summary of New Initiatives That May Affect Waste Management Programs
    Futures Analysis of Chemicals affecting Waste Management Programs Summary of New Initiatives that may affect waste management programs Prepared for U.S. EPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship by Tiffany Portoghese Compiled May - August 2003 NOTICE This document was prepared by a National Network of Environmental Management Studies grantee under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The U.S. EPA makes no warranties, expressed or implied, including without limitation, warranty for completeness, accuracy, or usefulness of the information, warranties as to the merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the U.S. EPA. i FOREWORD Environmental concern and interest is growing for future analysis of potential environmental problems. EPA’s Technology Innovation Office (TIO) provided a grant through the National Network for Environmental Management Studies (NNEMS) to prepare a technology assessment report on a futures analysis of chemicals within the offices of the EPA and their potential effect on waste management programs. This report was prepared by a third year law student and a second year graduate student from Syracuse University in New York during the summer of 2003. It has been reproduced to help provide federal agencies, states, consulting engineering firms, private industries, and technology developers with information. About the National Network for Environmental Management Studies (NNEMS) NNEMS is a comprehensive fellowship program managed by the Environmental Education Division of EPA.
    [Show full text]