UNITED NATIONS SC

UNEP/POPS/POPRC.12/INF/13 Distr.: General 26 July 2016 English only Stockholm Convention on Persistent Organic Pollutants

Persistent Organic Pollutants Review Committee Twelfth meeting Rome, 19–23 September 2016 Item 4 (c) (ii) of the provisional agenda Technical work: consideration of recommendations to the Conference of the Parties: unintentional releases of hexachlorobutadiene

Compilation of information on unintentional releases of hexachlorobutadiene

Note by the Secretariat As referred to in the note by the Secretariat on new information in relation to the listing of hexachlorobutadiene in Annex C to the Stockholm Convention (UNEP/POPS/POPRC.12/6), the annex to the present note contains a compilation of information on unintentional releases of hexachlorobutadiene submitted by the following two parties and two observers: Netherlands; Serbia; United States of America; and International POPs Elimination Network. The present note, including its annex, has not been formally edited.

 UNEP/POPS/POPRC.12/1.

020816 UNEP/POPS/POPRC.12/INF/13 Annex

Compilation of information on unintentional releases of hexachlorobutadiene

Netherlands, 7 January 2016

1. Source screening of priority substances under the WFD Results for (17) hexachlorobutadiene (HCBD) (priority hazardous substance) 2. Annex 1 to the draft document “Exploration of management options for Hexachlorobutadiene (HCBD), 2 May 2007” Responses to the questionnaire on management options for HCBD 3. Industry Review 2006-2007 Well-earned reputation rests on renewed sustainability efforts 4. Report of the NICOLE Workshop NICOLE Projects Reporting Day 13th February 2004, Runcorn, UK 5. Council Directive of 16 June 1988 amending Annex II to Directive 86/280/EEC on limit values and quality objectives for discharges of certain dangerous substances included in List I of the Annex to Directive 76/464/EEC (88/347/EEC) 6. Hexachlorobutadiene, HCBD INERIS -DRC- MECO Version N° 1-mai 05 7. Hexachlobutadien BUA-Stoffbericht 62 (August 1991) herausgegeben vom Beratergremium für umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker

2 Source screening of priority substances under the WFD Results for (17) hexachlorobutadiene (HCBD) (priority hazardous substance)

Version: 4 Date: May 2004 Comments on version 1 received from: A, DE, F, UK, Eurochlor Comments on version 2 received from: UK, Eurochlor Comments on version 3 received from: None

The draft concept paper on the control of emissions, discharges and losses of priority substances (document EAF(5)/6/01, updated version in preparation) outlines the steps to be taken to identify the relevant measures for emission controls for the priority substances. The source screening is the first step in this process, which is based on the information collected via the draft fact sheets produced by Haskoning (available on CIRCA) supplemented by other information and expert judgement, and takes into account the results of the consultation with the Expert Advisory Forum on Priority Substances. General details on the classification system applied can be found in the concept paper and can be summarised as follows: ¾ Category 1: source/pathway may result in or contribute to potential failure of WFD objectives; ¾ Category 2: Not enough quantitative information available to allow classification into category 1 or 3; source/pathway will be reviewed as more data become available; ¾ Category 3: no potential release from source/pathway or source/pathway does not contribute to potential failure of WFD objectives.

Source/pathway Results of classification Category Category Category 1 2 3 Losses to surface waters by diffuse sources S1 Atmospheric deposition on the water surface X S2 Via drainage and deep ground water X S3 Due to agricultural activities (via leaching, erosion, spills, direct X drainage discharges) S4 Due to transport and infrastructure without connection to X collection system/sewers (ships, trains, automobiles and airplanes and their respective infrastructures outside the urban area) S5 Accidental spills X S6 Release from materials and constructions in non-sewered areas X Discharges to surface waters by point sources S7 Discharges in sewage effluents or storm water as a result of run X off from buildings and constructions in paved urban areas including run off from fields connected to the sewer system S8 Discharges in sewage effluents or storm water as a result of X household, consumer use S9 Due to industrial activities X S9.1 Small and medium point source discharges direct or via STP (non-IPPC installations including run off from farmyards) S9 Due to industrial activities S9.2 Large industrial point sources, direct or via STP (IPPC installations) Production of perchloroethylene and by X perchlorination (*) (covered under basic organic chemicals) Production of trichloroethylene and perchloroethylene by any other X process (covered under basic organic chemicals) Mineral oil and gas refineries X Basic organic chemicals X S10 Solid waste management

S 10.1 Landfills X S 10.2 Incineration X S11 Losses from historically contaminated) soils S11.1 Historic pollution of sediments X S.11.2 Historic pollution from contaminated land X Emissions to atmosphere A1 From agriculture and forestry X A2 From traffic and infrastructure X A3 From buildings X A4 From households and other consumer use X A5 From industry IPPC categories X A6 From non IPPC facilities X A7 From waste disposal/treatment areas (land fill and others) X A8 From contaminated land (historical pollution) X (*) EU Limit Values in the Daughter Directive of the Discharge of Dangerous Substances Directive (76/464/EEC) Screening based on: ¾ Haskoning fact sheet HCBD ¾ 76/464 List I Daughter Directive report ¾ Environmental Agency Pollution Inventory (England and Wales) ¾ Information on the inputs of HCBD to waters in Germany ¾ Results of the 2003 EPER inventory Data availability and uncertainties 1. The Haskoning fact sheet presents some information, which shows that HCBD is not anymore produced in the EU and that it occurs as unintentional by-product. Most of the emissions are to surface waters with low levels to air. 2. The UK data show that discharges from the chemical industry and waste incineration are the main sources for surface waters (UK commented on Version 2 that this statements should be revisited but no further comments received) 3. German data show that S9.2 are the main sources of HCBD to surface waters 4. Austrian data show that historical pollution is the main source of HCBD in Austria but at low concentrations 5. No information from the new Member States from May 2004 6. Eurochlor claim that total releases to water are 5 kg/year 7. EPER data show that the releases to water from IPPC facilities are 124 kg/year

Justification for classification S1 has been classified as category 3 based on the Haskoning data and comments from several countries. S9.2 Based on the EPER data two new activities have been added to those listed in the Discharge of Dangerous Substances Directive (76/464/EEC) - mineral oil and gas refineries, and basic organic chemicals, which have been categorised as category 1. The “production of perchloroethylene, trichloroethylene and carbon tetrachloride” is most likely part of “basic organic chemicals” The “production of perchloroethylene, trichloroethylene and carbon tetrachloride” has been classified as category 1 based on data sources 2 and 3. EuroChlor states that these sources should be classified as category 3. However, as even small releases of this PHS can lead to the failure of the objectives of the WFD these sources have been maintained as category 1 S10.1 has been maintained as category 2 because of lack of data. S10.2 and A7 have been classified as category 2 based on UK information, which states that waste incineration is a source of HCBD. However, insufficient data are available to assess whether these sources contribute to a possible failure of the objectives of the WFD. S11.1 and S11.2 have been assigned to category 2 because of lack of data. A5 has been changed to category 3 based on Haskoning data and comments from several countries. EPER does not report any releases to air. A8 has been maintained as category 3 as HCBD is strongly adsorbed on solids and is unlikely removed by volatilisation.

Annex 1 to the draft document "Exploration of management options for Hexachlorobutadiene (HCBD), 2 May 2007

Responses to the questionnaire on management options for HCBD

HCBD Production Consumption Alternatives Releases Emission control Additional notes Belgium stopped, year unknown as byproduct in production of chlorinated no info no info no info (NACE 24) no intentions to end or restrict Canada never produced stopped, year unknown no info Products or mixtures containing HCBD as a no info Prohibition of Certain Toxic Substances The production of HCBD is According to the Assessment Report, contaminant (year of release 2003): Regulations, 2005 prohibited under the Prohibition of HCBD was formerly imported into Canada Chlorinated : 45 g/year (http://canadagazette.gc.ca/partII/2005/2005030 Certain Toxic Substances for use as a , but it is no longer Ferric/Ferrous chloride: 10 g/year 9/html/sor41-e.html) Regulations, 2005 which came imported. By-Products magnesium industry: 7 g/year Assessment Report - Hexachlorobutadiene into force in May 2005. This was The use of HCBD is prohibited under the (Environment Canada, 2002) done as a preventative measure Prohibition of Certain Toxic Substances (http://www.ec.gc.ca/substances/ese/eng/psap/f since HCBD has never been Regulations, 2005 which came into force in inal/HCBD.cfm) produced in Canada. May 2005. Cyprus never produced unknown, potential use in imported no info no info no info products containing HCBD Denmark never produced never used no info no info no info Included in EU-Directive 2000/60/EC, Waterframe Germany no info no info no info no info no info France stopped, at least since 2001 stopped, year unknown no info Atofina, 0,015 t/y to water in 2001 stripping Hexachlorobutadiene is mentionned as According to Eurochlor risk assessment for hazardous substance in the list of prority the marine environment - substances in the field of water policy (directive hexachlorobutadiène. Eurochlor, 2000/60/CE) OSPARCOM Region North Sea Italy never produced ? ? ? ? The Netherlands no data available no data available ? no info no info HCBD is one of the priority hazardous substances of the EU Water Framework Directive (Dir. 2000/60/EC) and is listed in the draft Directive for priority substances within the WFD which defines water quality standards for European surface waters. It is the intention to phase out Releases of priority hazardous substances by 2020. Tsjech Republic stopped, year unknown unclear no info no info no info UK stopped in 1993 stopped in 1993 no info no info incineration (AEAT/ENV/R/1361 Issue 1) (HCBD production as a by-product in Chemical production) USA unclear unclear no info 0,137 t/y in 2004 national emission standards, 1990 Clean Air National emision standards that require the use HCBD is listed on the TSCA HCBD listed on the TSCA Inventory with no For 2004, a total of 742 lb. (0.337 metric Act 112B of best available control technologies have been Inventory with no production and production and import information reported tons) was reported for on-and off-site developed for sources categories emitting import information reported for the for the 2002 reporting year. disposal or other releases. (TRI, 2004; HCBD, including rubbber tire production, 2002 reporting year. Production additional data is available at chlorine production, and miscellaneous organic and import volumes of 509,000 www.epa.gov/triexplorer). chemical processes. 1990 Clean Air Act 112B. pounds (231 metric tons), all imported, was last reported for the 1990 reporting year. Additional information is available at http://www.epa.gov/opptintr/iur/to ols/data/2002-vol.htm Switzerland never produced never used no info no info no info HCBD Production Consumption Alternatives Releases Emission control Additonal notes WCC stopped in Europe in late 70's stopped in Europe in late 70's no info There is no current use since many years The production and use of HCBD have been stopped The historical use of HCBD for 'seed dressing' never produced in US or Canada in Central Europe and North America. many years ago and have resulted in drastically and 'fungicide' is not known to us. This seems to reduced emissions. Levels in remote places (without Also, to clarify the member An emission as unintentional by-product in Many data on historic use exists. The local sources of HCBD) are either below the detection be confused with former uses of HCB companies of WCC have never manufacture of chemicals is not a use. Science Dossier and publications cited level or, when measurable, are detected at low levels. (hexachlorobenzene). Also the use in aluminium intenitonally produced HCBD. Current releases of HCBD as by-product of therein present the historical picture of The very limited current releases of HCBD are minimal production or graphite rods seems to be the manufacture of some chlorinated production, uses and releases. However, due to process and product changes and various erroneous. Also, to clarify the member control measures. This is demonstrated by the fact http://www.eurochlor.org/upload/d hydrocarbons is covered by strict emission because production and use were stopped that HCBD is rarely measured anymore in remote companies of WCC have never intentionally ocuments/document66.pdf, controls, such as IPPC-BAT/BEP in Europe many years ago a further detailed inventory environments and that trends - if measured - are produced HCBD. As noted in the WCC’s literature cited therein and and are very low, e.g. emissions to air and of those uses is not considered useful. This strongly decreasing (e.g. 99% reduction in original comments on the draft Track B review, atmospheric HCBD concentrations in Europe). As a additional sources submitted to water are well below 100 kg/y since several is further supported by the facts that HCBD consequence various assessments have the header provides an incomplete and UNECE years in the whole of EU-25). Accurate data is rarely measured anymore in the demonstarted that it is unlikely that HCBD poses potentially misleading assessment of potential of releases in EU can be found at environment, that trends - if measured - are significant adverse effects to human health and/or the sources of HCBD. A more complete source http://www.eurochlor.org/COCEM. strongly decreasing (over 90% reduction) environment through long range (atmospheric) characterization is critical for any evaluation of transport. In many cases current control measures Information on US releases can be and that several assessments suggest that and application of BAT/BEP to address other potential risk management options. obtained from the US TRI - although The it is very unlikely that HCBD poses byproducts is likely to also reduce byproduct TRI data should be used with caution since environmental and/or human health risks emissions of HCBD. Therefore, additional measures only certain types of facilities are required through long-rage (atmospheric) transport. focused on byproduct emissions are unlikely to provide any detectable environmental benefit and as a to report. This is not an exhaustive list. Class&Balschmiter (1987) have estimated result would not be cost-effective. Guidelines for best There could still be commercial production a global annual emission rate of 3200t/y. available techniques and best environmental practices and use of HCBD in some Additional infortmation is available from the for minimizing uinintentional or byproduct POPs has countries/regions and this should be Canada, U.S. and Europe on releases of been developed under the Stockholm POPs Convention. Additional infortmation is available from determined in order to inform the evaluation HCBD and existing regulations. For the Canada, U.S. and Europe on releases of HCBD of management options. example, and existing regulations. For example, http://www.ec.gc.ca/toxics/DOCS/hcbd/EN/ http://www.ec.gc.ca/toxics/DOCS/hcbd/EN/HCBD_stra tegy.cfm?#f5 and HCBD_strategy.cfm?#f5 and http://www.atsdr.cdc.gov/toxprofiles/tp42.html . http://www.atsdr.cdc.gov/toxprofiles/tp42.ht ml. Chlorine Industry Review 2006-2007 Well-earned reputation rests on renewed sustainability efforts Contents

Introduction 1 Not too many surprises – good or bad Sustainability 2 No time now for complacency Legislative developments 11 Goal: Balanced and workable legislation Information & education 15 Transparency: A key element in reputation management Science 16 Effective advocacy depends on sound science Industry overview 18 Robust demand for caustic soda Chlorine production plants 22 Euro Chlor 24 Membership 26 Full members 27

Cover: Electricity is essential to make chlorine. It cannot be substituted and represents up to 60% of the variable cost of production. Huge electrical transformers enable economic long-distance transmission of power for energy-intensive industries. Other photos kindly provided by Akzo Nobel, Ercros and Solvay. Introduction

Not too many surprises – good or bad

The past year has been relatively uneventful for the European chlor-alkali industry. We didn’t have too many surprises, good or bad. Mercury as a human health and environ- mental issue continued to be with us. However, I expect an end soon to the wrangling between the European institutions over banning exports and storing surplus metal as part of the EU mercury strategy.

Euro Chlor mem- Priority Hazardous Substances (PHS) list today with full pass-through of costs. bers continue to of the Environmental Quality Standards While electricity prices have fallen to convert mercury (EQS) Directive. We await the outcome of some extent in recent months – due electrolysis cells major representations to EU authorities to mainly to a mild winter and correspond - to alternative reverse this, although other aspects of this ing lack of demand on fuel suppliers – technology at a directive are broadly acceptable. the need for lasting competitive pricing satisfactory rate. stability remains. In 2007, membrane capacity will exceed What of progress towards meeting mercury capacity for the first time. the chlor-alkali sector’s pressing need Step forward for access to electricity – one of our A key step forward for our industry – and European producers still have 9,600 major raw materials – at a fair and a tribute to Euro Chlor’s advocacy efforts tonnes of mercury used as a catalyst to predictable price? – is the fact that the authorities now are make chlorine and caustic soda in starting to acknowledge that the industry 43 electrolysis plants in 14 countries. Strong advocacy efforts will continue as cannot afford to have global competitive- These account for 43% of regional EU energy policy proposals to combat ness compromised by high electricity capacity. However, our industry has climate change develop, aimed at prices. It is now becoming understood voluntarily agreed to phase out the resolving issues in this malfunctioning among regulators that the chlor-alkali remaining such plants by 2020. market and challenging the pass- sector is a particular cause for concern through to customers of the values of because electricity costs represent more CO permits – all of which were issued Improvements, but... 2 than 20% of sales value. free. Efforts by DG Competition to Results of a half-way review of our 2010 unbundle producers and distri bution Sustainability Programme were broadly We should now expect real action from system operators to correct the market as expected. There were continued regulators. look unlikely to provide a solution. improvements in indicators for energy consumption, hydrogen usage and lost The review by DG Environment of the time injuries for employees, but a Emissions Trading Scheme is likely to disappointing increase in the number make for uncomfortable reading. This is of manufacturing accidents involving because there is a perception that partial contractors. We have to work harder to auctioning of permits is favoured by meet expectations. Member States post 2012, with the Alistair J Steel carbon market set to be considerably It was a surprise, however, to have two € Executive Director higher (above 20 per MT CO2) than chlorinated solvents included in the 31 July 2007 1 1 Sustainability

No time now for complacency

“European chlor-alkali producers can be proud of the substantial progress that has been made under the industry’s Sustainability Programme, but with six years gone and the 2010 deadline approaching, we need to beware of complacency.” Alistair J Steel, who took over as Executive Director of Euro Chlor mid-2006, added: “Our industry’s well-earned reputation rests on how well we respond to the challenge of stepping up our environmental, health and safety perform- ance during the next three years.”

Unified strategic approach The original 14 indicators come under ECONOMIC CONTRIBUTION All of the Western European chlorine the following main areas: economic Energy use manufacturing members of Euro Chlor aspects of production, environmental Target: By 2010, reduce industry-wide agreed in 2001 an industry-wide protection, safety and social progress. energy consumption by 5.0% in terms strategy that focused on six voluntary Each year, producers are required to of kWh/tonne of chlorine produced commitments. These were first report their progress to Euro Chlor, compared with the 2001 base year. developed to ensure a united industry which combines feedback to report approach and commitment to address to the association’s Management Update: Following a slight increase key sustainability concerns: Committee prior to annual publication in average energy consumption from of the industry’s performance. 3,491 kWh/t of chlorine produced • Include environmental, social and in 2004 to 3,499 kWh/t in 2005, the economic factors in all strategic In this section, we report on industry got back on track in 2006 and business decisions; performance indicators and progress reached the target four years ahead of • Optimise energy efficiency in chlorine towards goals in 2006. Whilst the schedule. Average energy consump tion production; programme continues to be a powerful last year was 3,440 kWh/t. • Reduce water usage through recycling; force for change, progress slowed last • Continuously reduce polluting year for the first time. Improvements Comment: Euro Chlor’s Management emissions to water, air and land; were made on three indicators – Lost Committee will now consider whether • Use more hydrogen generated by the Time Injuries (LTI) for company or not to reassess the goal in the light industry as a raw material or fuel; employees, energy consumption and of progress. • Give high priority to safe transportation hydrogen consumption. But all others of chlorine. remained basically unchanged with the Background: Since electricity is an exception of the LTI rate for contractors, indispensable raw material of the In parallel, data was collected for 2001-02 which worsened. chlorine production process, the basic and with this information, 14 perfor mance consumption – corresponding to the indicators and improvement goals were electrochemical reaction – cannot be agreed among producers and announced significantly reduced. Energy savings by Euro Chlor in January 2003. Then the arise primarily through using more following year, a 15th indicator was added efficient technologies and reducing that required members to gain EMAS ancillary energy use. and/or ISO 14001 Environmental Accreditation for their plants. 2 / Chlorine Industry Review 2006-2007 2 The energy indicator is weight-averaged Comment: With further efforts, the 2010 by membrane (39%), diaphragm (15%) across all producers and based on steam goal should be achievable. and other (3%). and electricity. Energy is used for electrolysis (transformers, rectifiers and cells) and Background: High-quality hydrogen is Economic development motor power (pumps, compres sors, co-produced with chlorine and caustic Target: Euro Chlor will report monthly, centrifuges, etc.). Steam is used mainly soda during electrolysis of brine. This quarterly or annually data on European for caustic soda evaporation and for can be used as a raw material or fuel. production of chlorine and caustic soda. minor utility purposes. This will include utilisation rates, caustic Manufacturing technology stocks, capacity and technology by Hydrogen use Target: The percentage of chlorine plants and applications. Target: Increase recycling and re-use of produced by mercury cells, diaphragm hydrogen gas from 80% (2001) to 95% cells, membrane cells and other Update: In 2006, Euro Chlor published on by 2010. technologies will be reported each year. its website and distributed to the media figures for monthly chlorine production Update: In 2006, 89.1% of hydrogen was Update: In 2006, the mercury process and caustic soda stocks. utilised compared with 88.1% in 2005. accounted for 43% of capacity followed

Energy consumption Hydrogen utilisation 3,700 100 Goal: 90 Goal: 5% reduction by 2010 95% used by 2010 80 3,600 70 60 3,500 50 40

Hydrogen used (%) 30

KWh/tonne of chlorine 3,400 20 10 3,300 0

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Actual Target Actual Target 3 3 Sustainability

The Industry Review included a map of Update: There was a reduction in Background: A lost time injury (LTI) is Europe showing location of all plants employee figures for 2006, with an LTI one resulting in at least one day off work. and a table indicating the location, rate per million working hours of 8.32 It is reported as the number of LTI per ownership, technology and capacity for employees (compared with 9.09 in million working hours. of each plant (see p.23 for 2006). 2005). For contractors, the rate rose to an LTI rate per million working hours of Process incidents and losses SAFETY & SOCIAL 10.50 (compared with 7.72 in 2005). Target: A 75% reduction in process PROGRESS incidents from 67 (2001) to 15. Lost-time injuries Comment: The rate for contractors Target: To reduce lost-time injuries to showed a disappointing increase and Update: There were 16 incidents in 1.3 (LTI) per million working hours for all there is a marked need for additional 2006 and the same number in 2005. workers whether company employees or effort by a number of companies. For each year, this was less than half contractors working on production sites. the annual average for 2001-2004.

Comment: The 2010 target is still considered achievable.

Lost-time injuries (per million working hours) Process incidents and losses 18 80 Company employees Goal: >75% reduction by 2010 16 Goal: 85% reduction by 2010 70 14 Contractors 60 12 Goal: 90% reduction by 2010 50 10 40 8 30 6 20 4 Number of lost-time injuries Number of process incidents 2 10 0 0

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Company employees Contractors Target Actual Target 4 / Chlorine Industry Review 2006-2007 4 Plant safety targets still achievable

Background: Incidents are classified as Transportation Chlorine transported (excluding events involving a fire or an explosion or Target: 1. Zero transport incidents pipelines) represented 6% of 2006 the release of chlorine, hydrochloric acid, involving bulk movement of chlorine production vs. 7% the previous year. sulphuric acid, sodium hypochlorite by 2010; 2. The tonnage of chlorine The average distance chlorine was (bleach) and caustic soda, which cause transported as a percent of the total transported by rail was 480 km and a fatality, serious injury or property chlorine produced will be reported by road, 200 km. damage exceeding €100,000. Losses annually as well as mode of transport. include any chemical spills to air, water Background: A chlorine transport or land, which impact human health Update: 1. Following zero accidents incident is one which either involves or the environment, property or result in 2004, three were reported in 2005 death or injury, a spill of more than in evacuation. and one in 2006; 2. Last year, producers 5 kg, substantial property damage, in Europe transported 618,000 tonnes public disruption of more than one of chlorine (2005: 761,000 tonnes), hour or intervention of emergency PVC industry doubles with 73% shipped by rail and the rest services or media coverage. recycling in 2006 by road. The European PVC industry recycled 83,000 tonnes of this chorine-based plastic in 2006, more than double Transportation of chlorine the 2005 figure and almost six times 1,500 the 2004 figure, according to the lat- Goal: zero incidents by 2010 est Vinyl 2010 Progress Report. Vinyl 2010 is a coalition of PVC industry groups: the European Council of Vinyl 1,000 Manufacturers (ECVM), European Plastics Converters (EuPC), European Stabiliser Producers Association (kilotonnes) (ESPA) and European Council for 500

Plasticisers and Intermediates (ECPI). Chlorine transported Vinyl 2010 says that progress towards targets set in 2000 show that this particular approach to self-regulation 0 is working. 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total Rail Road 5 5 Sustainability

The amount of chlorine transported Background: Responsible Care is the Responsible Care was conceived in in Europe by rail and road has halved chemical industry’s global voluntary Canada and launched in 1985 to during the past decade. Chlorine initiative by which companies, through address public concerns about chemical movement has been decoupled from national associations, work together to manufacture, distribution and use. production through supplier/customer continuously improve their health, safety The number of national chemical relocations and more use of local pipe - and environmental performance and to industry associations embracing the lines. Rail transport dominates; road communicate with stakeholders about Responsible Care ethic has grown from transport for bulk supply is used only their products and processes. six to 52 countries since 1992. in the United Kingdom and, to a limited extent, in Spain. Sustainability: Sustainable development is, of course, a global concern approached differently by different Responsible Care nations. In general terms, such initia- Addressing sustainability issues is Target: The 2010 goal is for all chlorine- tives by the industry focus on the not only important for Euro Chlor, producing members of Euro Chlor to following: but also to other national or regional become participants. chlor-alkali business organisations • Providing essential products; around the world. Update: The number of chlor-alkali • Developing scientific unders tanding; • Promoting sound chemicals producing members of Euro Chlor In 2007, the World Chlorine Council management; has fluctuated since the programme published Sustainability Commitments • Promoting resource conservation; began as a result of restructuring and and Actions. This publication reviews • Improving safety performance; compa nies merging or withdrawing sustainability developments within • Implementing Responsible Care. from the sector. At 31 December 2006, the industry worldwide since a first review was published in 2002. 35 out of 39 full members had joined WCC represents producers account- national Responsible Care initiatives. ing for more than 80% of worldwide The new publication describes how chlor-alkali production. It links 18 the global chlor-alkali industry con- chlorine and chlorinated products tributes to sustainable development, industry associations in Europe, Asia, both by providing essential prod- North and South America. Sustainability ucts and by continuously working to Commitments and Actions, can be down- improve its social, economic and loaded from www.worldchlorine.org. environmental performance. It also addresses key future challenges.

6 / Chlorine Industry Review 2006-2007 6 Air emissions target achieved; water goal is within reach

ENVIRONMENTAL Background: The COCs were selected In 2005, pentachlorobenzene was added PROTECTION from various international regulatory to the list of the substances to be COC emissions priority lists for emissions reductions monitored, in line with the requirements Target: Emissions of 22 chlorinated and comprise the following substances: of the EU Water Framework Directive. organic compounds (COCs) to be 1,1,1-trichloroethane; 1,1,2-trichloro - reduced by 75% to water and by 50% ethane; 1,2-dichlorobenzene; To provide a longer-term perspective of to air against the 2001 base year. 1,2-dichloro ethane; 1,4-dichlorobenzene; the sector’s commitment to reducing 2-chlorophenol; 3-chlorophe nol; emissions, the data shown spans the Update: At end 2006, COC emissions 4-chlorophenol; carbon tetrachloride; period 1985-2006. from manufacturing plants had been chlorine; chlorobenzene; chloroform; reduced by 69.8% to water compared dichloromethane; dioxins & furans (as with 67% at end 2005 and 50.8% to TEQ); hexachlorobenzene; hexachloro - air compared with 35% a year earlier. ; hexachlorocyclohexane; pentachlorophenol; ; Comment: Euro Chlor will now consider trichlorobenzene; trichloroethylene and whether or not to reassess the goal in vinyl chloride. the light of progress.

Plant emissions to air Plant emissions to water 60 10 9 50 8 7 40 6 30 5 4 20

1,000 tonnes/year 1,000 tonnes/year 3 2 10 2010 Target 2010 Target1 2010 2010 Target Target 0 0

1985 1990 1995 2000 2006 1985 1990 1995 2000 2006 7 7 Sustainability

Mercury emissions Update: Overall European emissions in Product knowledge Target: Although all other programme 2006 amounted to 1.055g Hg/tonne Target: There is no specific goal for 2010. deadlines are for 2010, the industry chlorine capacity compared with 1.046g This is because the chlor-alkali sector decided to maintain an earlier 1998 Hg/t in 2005. The average mercury decided to maintain an earlier (1999) commitment to achieve an emission emissions for Western European commitment to provide by 2004 full target of 1g/t/chlorine capacity on a countries remained at the level of 1 g/t eco-toxicological and environmental national basis by end 2007. capacity, but also with a slight increase data on 29 chlorinated substances under compared with the previous year. the International Council of Chemical The industry elected to keep the earlier Associations/OECD initiative on high date, since from October 2007 all EU Comment: The overall level of emissions production volume (HPV) chemicals. chlor-alkali plants whether mercury, rose slightly last year primarily due to membrane or diaphragm require an higher levels of emissions in a few Update: The original ICCA/OECD global operating permit under the Integrated plants, including one that underwent chemical industry deadline of initial Pollution Prevention and Control extensive maintenance work. The blip assessment reports for about 1,000 HPV (IPPC) Directive. is considered temporary. chemicals by 2004 proved far tougher than anticipated and was extended to 2009. In 2006, Euro Chlor completed European mercury emissions four assessments bringing the total 3 submitted to 25.

2,5 The summary information on all completed assessments is available 2 publicly via the Chlorine Online website 1,5 at www.eurochlor.org.

1 Environmental accreditation Target: All full members to gain EMAS 0,5 g mercury/t chlorine capacity and/or ISO 14001 Environmental Accreditation for their plants by 2010. 0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Air Water Products 8 / Chlorine Industry Review 2006-2007 8 Reducing the industry’s Caffaro, an Italian member of Euro environmental footprint Chlor, started operating in 2006 at Brescia what is believed to be the Recent technological developments world's first commercial, large-scale are having a major effect on reducing hydrogen fuel cells installation at a the chlor-alkali sector’s environmental sodium chlorate facility. The 120 kW footprint, in particular by increasing system produces estimated electricity energy efficiency. Examples of recent savings of up to 20% and not only initiatives by Euro Chlor member reduces the company’s operational companies include: costs, but simultaneously cuts green- house gas emissions. The chlor-alkali Akzo Nobel Base Chemicals started electrolysis process presents many up two different pilot fuel cell similarities to that used to make sodi- systems to produce electricity from um chlorate, which is mainly used to Update: During 2006, one company hydrogen in Bitterfeld, Germany, and produce chlorine dioxide for bleach- gained ISO 14001 accreditation and Delfzijl, The Netherlands, during ing paper pulp. three companies upgraded to the more early 2007. The company could comprehensive EMAS accreditation. produce 5-10 megawatts of green At its Stade complex in Germany, electricity from the current excess Dow produces chlorine for use in hydrogen, which is co-produced at Background propylene oxide production and other Bitterfeld. In Delfzijl, the one-year EMAS (The Eco-Management and processes. These processes use 30 project will initially step up the pilot Audit Scheme) is the EU voluntary million m3 of water taken from the unit’s power from 50 kW to more instrument which acknowledges Elbe and five million tonnes of salt per than a megawatt, at which point it organisations that improve their year. Dow has achieved a world first becomes commercially attractive. environmental performance on a with development and implementa- continuous basis. EMAS registered tion of a closed loop process for brine, Bayer MaterialScience is due to com- organisations are legally compliant, chlorine and propylene oxide produc- plete construction in 2008 of the run an environmental management tion. The project resulted in conserva- world’s largest hydrochloric acid recy- system and report on their tion of 7 million m3/year of river water cling plant at its Shanghai facility, and 600,000 tonnes/year of salt, as environmental performance through where the company plans to build well as a 23% reduction of annual salt publication of an independently world-scale isocyanate production discharge and of total organic carbon verified environmental statement. plants. It will be the first time that the discharge to the river Elbe. company uses the innovative oxygen ISO 14001 is an international quality depolarised cathode (ODC) techno- High-performance incinerators at assurance standard to evaluate an logy to produce chlorine in a world- many Solvay sites make use of the organisation's environmental scale facility. energy content from most of the management systems and encourage unwanted chlorinated and fluorinated Bayer’s first ODC hydrochloric acid continuous improvement. It helps organic by-products. Organic wastes electrolysis unit, with much smaller organisations minimise negative with high energy content are proces- capacity, started up in Brunsbüttel, environmental impacts (to air, water or sed using increasingly sophisticated Germany, in 2003. The experience land), comply with applicable laws, methods, with a growing part played gained there paved the way for the regulations, and other environmentally- by recycling and incineration to make new plant in China. The ODC process oriented requirements, and use of the energy content. consumes about 30% less electricity continually improve. than the diaphragm process used by Bayer for many years.

9 9 Sustainability

Chlorine and caustic soda – key chemical building blocks Adhesives Ceramics Fibre-glass Lubricants Advanced composites Computers Flame-proofing Paints Air bags Cosmetics Footballs Paper Antibiotics Credit cards Fungicides Perfumes Antifreeze Detergents Gaskets Pharmaceuticals Bleach Disinfectants Golf bags Plastics Blood bags Drilling fluids Greenhouses Refrigerants Brake fluids Drinking water Hairdryers Roller blades Bullet-resistant glass Dry cleaning Herbicides Roofing Bumpers Dyestuffs Inks Safety belts Car seats Electronics Insulation Vitamins Carpets Explosives Intravenous drips Window frames ... CDs and DVDs Fertilisers Lighting ... and much more.

The products of the chlor-alkali industry rarely go directly to consumers. However, an enormous range of products and 2,000,000 jobs in Europe depend directly or indirectly on chlorine chemistry.

Risk management Comment: To drive long-term indus- 3. Value chain engagement try and product sustainability, indus- Objective: By mid-2007, ECSA mem- With the implementation of REACH try needs to identify challenges for bers commit to complying with the chemicals legislation, the European each application where emissions European Single Assessment Document Chlorinated Solvent Association can occur; demonstrate continuous (ESAD) or a similar distributor (ECSA) has updated risk manage- improvement; resolve energy and assessment scheme. By end-2008, they ment strategies for producers to raw material issues. will develop education programmes ensure long-term sustainable use in partnership with trade associations and optimal end-of-life management 2. Stakeholder engagement representing end-users and recyclers. for chlorinated solvents. Objective: By end 2009, ECSA com- mits to developing active dialogue Comment: The first of these two ECSA members have approved a pro- with priority stakeholders, and to objectives was completed on time. gramme that sets out short and long- addressing concerns. The buy-in and active involvement of term sustainability objectives and distributors and representative defines key performance indicators: Comment: Open dialogue and listen- organisations of downstream users ing to societal concerns will be key if will be essential to success. There 1. Sustainability actions the sector is to obtain operational are more than 100 distributors and Objective: By 2009, ECSA commits to feedback and recognition for many thousands of end-users of the analysing and prioritising emissive the initiative. three main chlorinated solvents – applications, and defining sustain- trichloroethylene, methylene chlo- ability improvement actions. ride and perchloroethylene.

10 / Chlorine Industry Review 2006-2007 10 Legislative developments

Goal: Balanced and workable legislation

The most important and critical role of Euro Chlor is to provide advocacy leadership on efforts to positively influence proposed laws to protect environment, health and competitiveness. EU and international authorities share a common interest in achieving efficient, balanced and workable legislation. Additionally, industry must constantly strive to minimise potential threats – such as shortcomings in EU energy policy – to the industry’s competitiveness on global markets.

Energy costs critical A study by an independent energy The Directive on Environmental The chlor-alkali sector is probably the expert into the effects of electricity Quality Standards (EQS) and most energy intensive industry in the pricing on the competitiveness of Pollution Control, which sets limits world – even more so than cement, the chlor-alkali sector has been for concentrations of substances in glass or iron and steel. In fact, electricity commissioned by Euro Chlor in surface water, was adopted by the EU costs exceed 20% of sales value for order to improve understanding Commission in July 2006 and is European chlor-alkali producers, of the issue. This will be published generally supported by Euro Chlor. whose products underpin more than fourth quarter 2007. €300,000 million of annual European The original draft quality standards took chemical industry turnover. Water policy into account Euro Chlor work on marine risk assessments and defined workable In the EU’s drive for cleaner rivers, maximum levels, or threshold values, Euro Chlor continued to collaborate lakes and coastal beaches, Euro Chlor in biota for mercury and the unwanted with Cefic and an alliance of seven continues collaborating with Cefic and by-products, hexachlorobenzene (HCB) energy-intensive industries to draw other business associations such as and hexachlorobutadiene (HCBD). attention to increased costs caused ECPA (the European Crop Protection by a malfunc tioning internal energy Association) on providing input to the market, and the potential impact of development of a new directive to Unrealistic current and future EU energy policies establish water quality standards for Some exemptions also recognised to combat climate change. priority water pollutants, including Euro Chlor’s position that a total mercury and 11 chlorinated chemicals. cessation of emissions of HCB and Euro Chlor continues to call on EU HCBD was unrealistic and cannot be authorities to publicly recognise the This legislation aims to have a major achieved. A study commissioned by critical economic importance of the impact on water quality over the next Euro Chlor from BiPRO GmbH of sector to the European chemical industry decade and it is vital for the chlor-alkali Munich three years ago predicted that and the latter’s role in the economy. industry that environmental standards full cessation could lead to plant The European Commission has been and emission limits set for priority closures, and the loss of more than approached and urged when developing chlorinated compounds are realistically 100,000 jobs and €12,000 million policies to take into account the sector’s determined and based on sound in business. heavy reliance on electricity as a raw science. Euro Chlor is very concerned material and the need to maintain a about emissions criteria require - competitive position on global markets. ments for a number of substances.

11 11 Legislative developments

Parliament proposed There were also some positive Progress on storage 200 amendments developments. For example, the Euro Chlor continued to contribute Parliament rejected lower EQS values for Since the Commission draft EQS actively to discussions with the EU HCB and HCBD and the “close-to-zero” Directive was published, the European institutions to find a sustainable and emissions concept proposed by the Parliament and Council have been satisfactory solution to the storage of Commission has remained unchanged. conducting reviews of the proposal. mercury following the planned 2011 Euro Chlor has been monitoring implementation of a ban on In June, the Council of Environment progress and advocating positions exports of this toxic liquid metal Ministers supported a compromise on mercury and the 11 chlorinated to other parts of the world. text, which is close to the Commission’s chemicals. These are among original proposal. A second reading 33 priority substances, of which some The proposed ban is part of the EU’s will now be necessary early 2008 to are identified as priority hazardous mercury strategy designed to reduce reconcile differences between substances (PHS). For these, releases supply, demand, emissions and the Council and Parliament. and losses to the environment should exposure, whilst encouraging a global cease by 2025. phase-out of new mercury and Serious effort measures to prevent surpluses The Parliament has proposed more Euro Chlor was invited to join an getting back onto the market. than 200 amendments to the regulation, EU expert group set up early 2007 including addition of more chemicals to to improve the scientific basis for Euro Chlor recognises the importance the priority list and upgrading of some evaluating EQS and develop a of reducing levels of mercury in the substances to PHS. methodology to derive such standards environment and producers are for sediment and biota. This is a implementing a voluntary phase- The principal issue for the chlorinated serious attempt to ensure sound out of chlor-alkali mercury cells solvents producers is the Parliament’s science is the foundation of such by 2020 at a cost of more than reclassification of carbon tetrachloride, standards and is supported by €3,000 million. perchloroethylene and trichloroethylene, industry, since it should lead to even though these do not meet the PHS publication of technical guidance During 2005-06, seven mercury-based classification criteria. Euro Chlor will by mid-2008. chlor-alkali plants were either closed or continue to oppose this since we are replaced with non-mercury technology. convinced there are no objective reasons for such a reclassification.

12 / Chlorine Industry Review 2006-2007 12 Industry supports EU Commission plan for permanent mercury storage

However, European producers still have In June, the EU Council of Environment ECSA is opposing a recommendation 9,600 tonnes of liquid metallic mercury Ministers reached political agreement by DG Enterprise to restrict use of used by 43 electrolysis plants in 14 on the export ban and storage after methylene chloride (dichloromethane) countries. These units account for 43% agreeing that mercury could be in paint strippers solely for industrial of European chlorine capacity. disposed of permanently underground, applications. The proposed ban on subject to meeting yet-to-be use in consumer strippers followed Euro Chlor fully supports the proposed determined technical criteria. However, publication in May 2007 of an export ban and storage solution due to the differing positions taken impact assessment report adopted by the Commission in October by the EU institutions, a second prepared for the Commission. 2006, since it is consistent with reading will be necessary early 2008. industry’s preferred solution of Euro Chlor’s advocacy role is equally permanent underground storage of Euro Chlor will continue to advocate essential at the international level, mercury from decommissioned chlor- the sector’s position on permanent particularly representing the industry’s alkali plants in former salt mines. storage since there is no commercially interests with the UN Environment viable process to transform the mercury Programme (UNEP). Mid-2007, Euro Chlor was in the final into a less problematic compound. stages of obtaining membership In February, the federation’s endorsement of a voluntary agreement Solvents restriction Environment & Regulatory Affairs for this approach to storage. Details of Director, Dr Arseen Seys, represented A loophole in the Solvent Emissions implementation will clearly depend on the global industry under the umbrella Directive that excluded metal-cleaning the final wording of the regulation of the World Chlorine Council (WCC) end users of less than a tonne per that is ultimately adopted by at the 24th UNEP Governing Council year of trichloroethylene from Council and Parliament. meeting (Nairobi), when ministers compliance has been closed. This agreed not to impose global, legally- follows acceptance of a voluntary The European Parliament’s first reading binding restrictions on mercury. agreement proposed by industry at a in May – after review by its Environment December 2006 EU Risk Reduction Committee – focused on bringing Instead, UNEP decided to strengthen Strategy meeting. After 2010, TRI forward the export ban from 1 July 2011, its mercury partnership programme. will only be supplied for metal- stopping mercury imports and Euro Chlor, through its participation in cleaning if users have requiring temporary storage either WCC, supports this initiative, which totally-enclosed equipment. above or underground. includes promoting the reduction or elimination of global mercury releases

13 13 Legislative developments

through the adoption of best The meeting also adopted Guidelines for The mechanism for adding substances management practices or conversion the Environmental Management of as defined in the Stockholm Convention to non-mercury cell technology. POPs Wastes developed under the Basel is supported by industry, but the process Delegates from the EU, India, Russia, Convention. These set specific for reviewing candidates has included and North and South America concentration levels for determining efforts by some countries to dilute and acknowledged the responsible and what constitutes POPs wastes (“low re-interpret criteria. This has important collaborative attitude of the chlor-alkali POPs content”), required levels of implications since chemicals could be industry in providing annual data destruction for waste containing POPs, classified and banned as POPs on summarising regional industry use, and sound destruction technologies. unjustified grounds. Industry will consumption and emissions of mercury. The low level content of POPs in waste continue to support a science First data for 2006 has been submitted by has been fixed at 15 microgrammes and risk-based approach and WCC to UNEP and was presented at its toxic equivalents (TEQ) of dioxin/furans maintains that some chemicals Governing Council meeting in February. per kg of waste, in line with EU limits. do not merit being listed as POPs. WCC actively supported this position. POPs guidelines Specifically, hazardous waste incineration Proposed decisions for 10 candidate is recognised as a preferred destruction chemicals under the Stockholm In a positive move, guidelines on Best technology for POPs wastes. Convention will likely be considered by the Available Technology (BAT) and Best POPs Review Committee in November, Environmental Practice (BEP) to reduce with formal adoption of any decision in unintentional emissions of persistent Candidate POPs May 2009. There currently seems to be no organic pollutants (POPs) from industrial Euro Chlor and WCC are involved in the clear policy guidance on listing of new processes were adopted at the UNEP process of evaluating substances as new chemicals, with a “product by product” Stockholm Convention meeting in May. POPs under the global Stockholm approach being taken. These global guidelines – which relate Convention and the regional UN mainly to the unwanted chemical by- Economic Commission for Europe Evaluation by UNECE of seven new products, dioxins, furans and hexachloro- (UNECE) Long-Range Transboundary Air substances – including hexachloro- benzene – do not impose restrictions on Pollution (LRTAP) Protocol. Several butadiene, pentachlorobenzene and products or processes provided that BAT additional chlorinated substances have short-chain chlorinated paraffins (SCCPs) and BEP are applied when chlorine is been proposed for evaluation, and could – is more advanced. A decision on involved. Euro Chlor has been actively potentially be the first additions of new management options for these involved through WCC and supported candidate POPs to both treaties. substances could be taken by the their adoption. Executive Body in December 2007.

14 / Chlorine Industry Review 2006-2007 14 Information & education

Transparency: A key element in reputation management

Provision of timely and reliable information – particularly on health, safety and environ- mental issues related to chlorine chemistry – always underpins effective reputation management. Consequently, a policy of open and transparent communications with stakeholders at European and international levels is a key element in the strategy of Euro Chlor to achieve balanced and workable legislation.

Willing to listen and dossiers available on CDs in addition satellite sites under the Chlorine Online respond to being downloadable with all other umbrella. The delayed German publications from the Euro Chlor language site should be launched by The European chlor-alkali sector’s website, Chlorine Online. December 2007, along with a new UK approach is coupled with a willingness to English site. This will succeed the listen and when necessary take voluntary The Focus on Chlorine Science series chlorine website of the UK Chemical measures to address concerns. was also expanded with a new publication Industries Association’s former For example, the 2010 sustainability on life cycle analysis. Euro Chlor science Chlorine Working Group. programme adopted by the industry in managers participated in a major 2001 (see mid-term report, pages 2-10) international congress and gave The UK-focused site will bring the is firmly rooted in the recycling and presentations on environmental risks number of mini sites under the Chlorine emissions reduction initiatives developed and persistent organic pollutants to Online umbrella to three [the other, a by Euro Chlor 12 years ago. PhD students at universities in Madrid, Spanish site, was created in Spain, and Ghent, Belgium. collaboration with the Asociación Because chlorine is such a major building Nacional de Electroquímica block of the broader chemical industry, (ANE) in 2005]. it is inevitable that the chemical will be Record attendance associa ted with emerging and future A record 2,100 scientists from issues. Accordingly, the provision of sound government, academia and industry scientific information continues to be an participa ted in the Society of Online information source essential element of Euro Chlor work. Environmental Toxicology & Chemistry (SETAC) annual congress in May Almost 360 chlorine information In 2006-07, the business association (Porto, Portugal) at which Euro Chlor requests from 65 countries were expanded its library of science had a stand featuring chlorine science. received by Euro Chlor via the feder- publications. Comprehensive science ation’s Internet website Chlorine dossiers entitled Biodegradability of Chlorine Online is our main information Online during 2006. The Top 5 coun- tries comprised UK (68), Germany chlorinated aromatic compounds and resource on the Internet and efforts (32), USA (25), France (25) and China Pentachlorobenzene – sources, continued to promote visibility with (20), which joined the ranking for the environmental fate and risk characterisation search engines and improve site first time. Requests primarily con- were published. accessibility and content. cerned health, safety and environ- mental aspects of chlorine produc- Starting with pentachlorobenzene, We continued work also with national tion and use. Euro Chlor is making all future science associations to develop local language

15 15 Science

Effective advocacy depends on sound science

Euro Chlor continues to use its scientific expertise to advocate sound, science-based regulatory decision-making. Key science-related activities in 2006-07 included setting up REACH consortia; compiling EU registration dossiers for chlorine-based biocides; investigating possible links between chlorinated swimming pools and childhood asthma; and updating recommendations on minimising workplace exposure to mercury.

Consortia gear up for Euro Chlor and member company Nonetheless, preparation of the dossiers REACH scientists invested significant time and will still cost industry more than €800,000 effort in meeting the July 2007 deadline with additional registra tion data expected Supported by member company for registration of chlorine, sodium to cost a further €200,000 in 2008. experts, Euro Chlor embarked in 2006 hypochlorite and calcium hypochlorite on a major initiative to form consortia under the Biocidal Products Directive. for the registration of 17 business- Chlorine and asthma This aims to harmonise the European critical chlorine-related compounds There have been persistent reports – market for biocidal products and their under the new (June 2007) EU often overly dramatised by the media – active substances whilst providing Regulation on Registration, in recent years of a possible link a high level of protection for human Evaluation and Authorisation between chlorinated indoor pools and health and the environment. of Chemicals (REACH). childhood asthma. However, the body of sound scientific evidence to support Existing risk assessment dossiers were Under this legislation, about 30,000 the hypothesis has been lacking. updated to match the required format, substances will have to be registered by Euro Chlor organised a meeting late and data was collected on the efficacy the European chemical industry. REACH 2006 in Brussels of scientists and of available chlorine, and on exposure aims to protect human health and the medical specialists who discussed during the various applications environment, maintain chemical and reviewed the scientific literature, covered by the directive. industry competitiveness and prevent concluding that further investigations fragmenta tion of the EU internal market. were warranted. Costs minimised Euro Chlor expects to have most Costs were minimised by preparing the A decision was taken to invite consortia operating by end 2007. three biocides dossiers in parallel. international experts in epidemiology, Data availability, leading registrants, Additionally, abstracts from the chlorine swimming pool environments and and cost-sharing procedures remain dossier were provided on a fee basis to respiratory ailments/asthma to debate to be finalised. Fortunately, Euro Chlor a few non-member companies seeking the issue. The objective is to develop a and the European Chlorinated Solvent to register active chlorine because they consensus on current knowledge and Association (ECSA), which is part of sell small-scale electrolysis units to which studies should be conducted to Euro Chlor, have extensive experience produce the chemical on site in provide definitive evidence of any in data generation and dossier hospitals and swimming pools for negative health effects resulting from preparation under previous EU disinfection applications. exposure to chloramines. These are and international regulations. formed in the pool air by the reaction of free chlorine with organic substances such as sweat and urine. 16 / Chlorine Industry Review 2006-2007 16 The experts’ meeting was scheduled to Occupational Electromagnetic Fields take place at Leuven University, Belgium, (EMF) Directive published in 2004 for Children’s health and in August 2007 (after this Review had national implementation within four chemicals been printed). years. The directive is applicable to all Children are particularly vulnerable employers in the EU. It is primarily to environmental exposures. Becau - Limiting exposure designed to protect workers against se of the ubiquitous nature of established impacts, such as thermal chlorine, Euro Chlor scientists Euro Chlor recommendations on best and electrical effects on the body. endeavour whenever possible to practices to limit mercury exposure in contribute to informed debate the workplace were reviewed and CENELEC (the European Committee for about our responsibility to min- updated. These provide member imise or reduce environmental and Electrotechnical Standardisation) was companies operating mercury-based health effects. mandated by the European Commission electrolysis plants with up-to-date to prepare exposure limit standards. practical guidelines for hygiene, Through Cefic, for example, we Euro Chlor assisted on behalf of the exposure measurement and reporting. provided information about our chlor-alkali sector by preparing a industry’s product stewardship efforts methodology to calculate exposure The recommendations, which take the for a publication (available as pdf values around transformers and form of a Code of Practice, now include under publications at www.cefic.org) rectifiers in electrolysis cell rooms. the new maximum occupational distributed to participants at the Only a small number of trained mid-term review (June 2007) in exposure recommendation of operators work in these areas. Vienna of the WHO Children 30 micro grammes/g creatinine Environment and Health Action by the EU Scientific Committee for The Scientific Committee on Health Plan for Europe. Occupational Exposure Limits & Environmental Risks (SCHER) (SCOEL). They were also revised endorsed in 2006 the conclusions of Cefic presented industry’s views on to comply with industry’s self- the EU risk assessment on caustic soda. chemicals, environment and chil- assessment audit scheme. This This stated that most of the production dren’s health as part of a long-term aims to optimise working practices, steps and applications did not pose a strategy to earn recognition as a val- lower worker exposure and ued stakeholder in the run up to the risk to human health and there were no improve audit results. 2009 WHO Ministerial Conference risks for the environment. However, a on this issue. need was identified for risk manage - Euro Chlor was also involved in ment measures on a few aspects of preparations to implement the EU production and use.

17 17 Industry overview

Robust demand for caustic soda

For the third successive year, European chlorine production continued strong and steady in 2006, accompanied by robust demand for this chemical's co-product, caustic soda. Market demand last year for chlorinated solvents stabilised after a prolonged period of decline. On the manufacturing side, chlor-alkali producers continued the gradual shift away from mercury cells to more energy-efficient membrane technology.

Chlorine production totalled 10.39 million Demand for caustic soda (also called Chlorine and caustic soda are used in tonnes last year (2006) compared with sodium hydroxide) fluctuated more than half of all commercial 10.45 million in 2005 and the significantly, but overall there was strong chemis try applica tions to create 10-year-high of 10.54 million in 2004. demand for the second year in a row. hundreds of second ary compounds Capacity utilisation rates in 2006 that in turn contribute to plastics, averaged 83% compared with 84% As a result, caustic stocks held by pharmaceuticals and thousands of in 2005. producers dropped below 300,000 other products. The largest use of tonnes in March 2006 and reached an chlorine is in production of polyvinyl For every tonne of chlorine produced, all-time low of 215,000 tonnes in chloride (PVC or vinyl) plastic (see p. 19) about 1.1 tonnes of caustic soda is November. It was not until March and for caustic soda in the production made and production of the two 2007 that stock levels returned of pulp & paper (see p. 20). chemicals last year exceeded above the 300,000 tonnes mark. 20 million tonnes. Germany is the largest chlorine producer (see below) accounting for 43.8% of European chlorine production in 2006 (kilotonnes)

Poland + Czech Republic Germany 4,553 + Hungary + Slovak Republic 731 (43.8%) (7.0%)

Belgium + The Netherlands 1,401 (13.5%) Spain + Portugal + Greece 716 (7.0%) France 1,282 (12.3%)

UK + Austria + Switzerland + Finland Italy 496 + Sweden + Norway 1,215 (4.8%) (11.6%)

Note: Countries are grouped as shown to comply with EU competition law

18 / Chlorine Industry Review 2006-2007 18 European production. Belgium/The of European capacity. End 2006, it The long time frame is essential to allow Netherlands (13.5%) overtook France represented 43% and by end 2007 is chlor-alkali producers to absorb the (12.3%) in 2006 to become the second expected to be overtaken as the principal estimated €3,000 million investment largest chlorine producer after Germany. technology by the more energy-efficient required to effect the phase-out without France dropped to third place. Together, membrane process. By 2010, mercury damaging the industry's competitive the top three regions accounted for about cells are expected to represent less than position on global markets. 70% of total production last year. 35% of capacity. The 2010 phase-out decision taken in Chlorine and caustic soda are produced This gradual shift away from mercury 1998 was in response to public concerns by electrolysis using three main cells stems from a voluntary commit - about human health and environmental technologies – mercury, membrane and ment made by European industry to issues related to mercury. It is a naturally- diaphragm. The mercury process has close or convert such plants to non- occurring toxic element found in the been used for more than a century. Ten mercury technology by 2020 (except for earth’s crust and mined industrially. years ago, it accounted for more than 60% production of a few speciality chemicals). European chlorine applications in 2006 (10.14 million tonnes)

Inorganics 14.0% Isocyanates Disinfectants, water treatment, & oxygenates 27.0% paint pigments, silicon chips Upholstery, insulation, footwear, plastics, pesticides, car parts

Other organics 8.9% Detergents, ship & bridge paints, lubricants, wallpaper adhesives, herbicides, insecticides Solvents 3.3% Metal degreasing, adhesives, dry cleaning, plastics Epichlorohydrin 5.7% Pesticides, epoxy resins, printed circuits, sports boats, fishing rods

PVC 34.1% Chloromethanes 7.0% Pipes, flooring, medical supplies, Silicon rubbers, decaffeinators, clothing, windows PTFE, paint strippers, cosmetics

19 19 Industry overview

During 2006, mercury plants were in the UK, INEOS Chlor completed a Under a 2001 agreement with Euro decommissioned in several countries. new membrane cell room as part of a Chlor, such mercury replaced tonne-for- In The Netherlands, Akzo Nobel shut continuing modernisation programme; tonne metal that would have otherwise down a plant (74,000 tonnes/year) in the company retains some existing been mined. This route was taken Hengelo as part of a restructuring to mercury cells at the site. because it reduced emissions from minimize chlorine transportation; in mining and processing new mercury, France, Arkema closed mercury cells As mercury cells are decommissioned, saved energy and met legitimate (184,000t/y) at St Auban in the Alpes/ producers return recovered surplus demands for the metal elsewhere Haute-Provence region; in Belgium, mercury to Minas de Almadén in Spain, in the world. Tessenderlo Chemie replaced a mercury which until it ceased production was the plant (150,000 t/y) with membrane largest mercury mine in Europe. During the past six years about technology (270,000 t/y) and at Runcorn 2,000 tonnes of liquid mercury from

European caustic soda applications 2006 (9.89 million tonnes)

Miscellaneous 16% Soaps 3% Neutralisation, gas scrubbing, Shampoos, cosmetics pharmaceuticals, rubber recycling Mineral oils 2% Greases, fuel additives Water treatment 5% Flocculation, pH control Bleach 3% Textiles, disinfectants Food industries 3% Phosphates 3% Fruit and vegetable peeling, Detergents ice cream, thickeners, wrappings Pulp, paper, cellulose 13% Other inorganics 13% Bleaching paper pulp, adhesives, Paints, glass, ceramics, fuel cells, heat transfer printing ink perfumes Rayon 2% Bedspreads, surgical dressings Organics 31% Aluminium and metals 6% Artificial arteries, parachutes, Greenhouses, car panels, steel hardening pen tips, hosiery, telephones

20 / Chlorine Industry Review 2006-2007 20 Storage in salt mines provides corrosion-free environment

decommissioned plants has been under such circumstances that there is European sales of perchloroethylene recovered and reused, but about 9,600 no risk of corrosion (there is no (PER) were stable at 55,000 tonnes tonnes remains in 43 mercury-based humidity in a salt mine). (2005: 56,000 t). PER is still the solvent plants in 14 countries. of choice for 80% of dry-cleaning shops Both the EU Commission and Euro Chlor and continues to gain market share as a Since the EU Commission announced in are convinced that such disposal can be TRI substitute for metal degreasing. 2005 that it intended to phase out all done safely provided appropriate mercury exports by 2011 as part of a storage and rigorous safety For the first time since 1997, methylene strategy against mercury pollution, Euro requirements are observed. chloride sales slightly increased to Chlor has been developing a plan to 134,000 tonnes (2005: 132,000 t). provide safe, indefinite storage of liquid With an EU regulation on exports It remains the most widely-used mercury in deep underground salt mines. expected to be agreed early 2008, Euro chlorinated solvent, particularly for Chlor is now able to finalise plans for pharmaceutical production. Mercury from chlor-alkali plants - as well a voluntary commitment by producers as non-ferrous metal and natural gas on storage after 1 July 2011. 7th International cleaning industries - would be stored in Technology Conference - hermetically-sealed steel containers Solvents market April 2008 stabilises Euro Chlor will hold its Seventh International Chlorine Technology The European market for chlorinated Conference & Exhibition at the Lyon Combustion main source solvents stabilised in 2006, totalling Congress Centre, France, 15-17 April of mercury emissions 214,000 tonnes in the EU-25 plus 2008. The event is intended primarily for Some 70% of global mercury emis- Norway, Switzerland and Turkey. This chlor-alkali industry personnel involved sions of human origin come from is 1% lower than 2005 (216,000 t). in production, maintenance, engineer- coal-fired power stations and the ing, health, safety and environmental incineration of waste materials. The more stringent carcinogenicity protection. There will be a special ses- Cremation is a significant source, classification for trichloroethylene (TRI) sion (15 April) for technology presen- principally due to volatisation of imposed by the EU in 2002 continued tations by member companies on amalgam dental fillings. Combustion to hit sales, down 11% to 25,000 tonnes improvements in energy consumption. in the production of steel, non-fer- (2005: 28,000 t). TRI sales have fallen rous metals, pig iron and cement 60% since 2001 and only three Information: Chlorine Online website also contributes to emissions. European producers remain. at www.eurochlor.org.

21 21 Chlorine production plants January 2007

8

North-East Atlantic 56 9

74 57 55 75 North Sea

Baltic 40 82

24 28 85 52 32 51 29 54 35 30 34 25 59 3 23 5 21 60 19 4 22 17 26 58 31 7 6 33 87 10 20 36 18 27 37 63 39 89 77 1 16 68 43 88 11/13 72 50 67 45 12/14 65 62 70 49 71 41 61 66 69 42

64 48 38 44 Mediterranean

22 / Chlorine Industry Review 2006-2007 22 Country * Company Site Process Capacity Country * Company Site Process Capacity (000 tonnes) (000 tonnes) Austria 1 Donau Chemie Brückl M 65 Italy 41 Altair Chimica Volterra Hg 27 Belgium 3 SolVin Antwerp Hg, M 474 42 Solvay Bussi Hg 87 4 SolVin Jemeppe M 176 43 Caffaro Torviscosa Hg 68 5 Tessenderlo Chemie Tessenderlo Hg, M 400 44 Syndial Assemini/Cagliari M 153 Czech Rep. 6 SPOLANA Neratovice Hg 135 45 Syndial Porto Marghera Hg 200 7 Spolchemie Usti Hg 61 48 Eredi Zarelli Picinisco Hg 6 Finland 8 Akzo Nobel Oulu Hg 43 49 Solvay Rosignano Hg 125 9 Finnish 50 Tessenderlo Chemie Pieve Vergonte Hg 42 Chemicals Joutseno M 75 Netherlands 51 Akzo Nobel Botlek M 633 France 10 PPC Thann Hg 72 52 Akzo Nobel Delfzijl M 108 11 Rhodia Pont de Claix D 220 54 GE Plastics Bergen op Zoom M 89 12 Arkema Fos D, M 270 Norway 55 Borregaard Sarpsborg M 45 13 Arkema Jarrie Hg 170 56 Elkem Bremanger M 10 14 Arkema Lavera Hg, D 341 57 Hydro Polymers Rafnes M 260 16 MSSA Pomblières Na 42 Poland 58 PCC Rokita Brzeg Dolny Hg 125 17 Prod. Chim. 59 ZACHEM Bydgoszcz D 60 d'Harbonnières Harbonnières Hg 23 60 Anwil Wloclawek M 214 18 Solvay Tavaux Hg, M 375 87 Tarnow Tarnow Hg 43 19 Tessenderlo Chemie Loos Hg 18 Portugal 61 Solvay Povoa M 29 Germany 20 BASF Ludwigshafen Hg, M 385 62 CUF-Químicos 21 Bayer Dormagen M, HCl 480 Industriais Estarreja M 68 22 Bayer Leverkusen M, HCl 330 Slovak Rep. 63 Novácke chemické 23 Bayer Uerdingen Hg, M 240 závody Novaky Hg 76 24 Bayer Brunsbuttel HCl 210 Slovenia 88 TKI Hrastnik Hrastnik M 15 25 Dow Schkopau M 250 Spain 64 Ercros Huelva Hg 101 26 Vinnolit Knapsack Hg, M 310 65 Ercros Sabinanigo Hg 25 27 CABB Gersthofen M 40 66 Ercros Vilaseca Hg, M 190 28 Dow Stade D, M 1,585 67 Electroquímica 29 Akzo Nobel Ibbenbüren Hg 125 de Hernani Hernani M 15 30 Akzo Nobel Bitterfeld M 83 68 Elnosa Lourizan Hg 34 31 Degussa Lülsdorf Hg 136 69 Ercros Flix Hg 150 32 INEOS Chlor Wilhelmshaven Hg 149 70 Química del Cinca Monzon Hg 31 33 LII Europe Frankfurt Hg 167 71 SolVin Martorell Hg 218 34 Solvay Rheinberg D, M 200 72 Solvay Torrelavega Hg 63 35 VESTOLIT Marl Hg, M 216 Sweden 74 Akzo Nobel Skoghall M 95 36 Vinnolit Gendorf Hg 82 75 Hydro Polymers Stenungsund Hg 120 37 Wacker Chemie Burghausen M 50 Switzerland 77 SF-Chem Pratteln Hg 27 Greece 38 Hellenic Petroleum Thessaloniki Hg 40 89 Borregaard Atisholtz M 10 Hungary 39 BorsodChem Kazincbarcika Hg, M301 UK 82 INEOS Chlor Runcorn Hg, M 767 Ireland 40 MicroBio Fermoy M 6 85 Albion Thetford M 7 TOTAL 12,681 * Number on map * Number on map

Process: Hg: Mercury M: Membrane Na: Sodium D: Diaphragm HCI: Electolysis of HCI to Cl2 Company names in italic are not Euro Chlor members. 23 23 Euro Chlor

Regulatory and HSE 1989 in order to provide the sector continual health, safety and focal point with strengthened scientific, advocacy environmental improvements and communications capabilities. Since complemented by open and Euro Chlor represents the interests then, a strong focus has been placed transparent communications of 97% of chlor-alkali producers in the on sound science coupled with with key stakeholders. EU-27 and the EFTA regions with the EU institutions and international authorities. It also provides a focal point for members to share best practices on Management committee (30 July 2007) health, safety and environment (HSE) Chairman, Tane, C INEOS Chlor matters as well as co-ordinate Co-chairman, Ohm, C Bayer MaterialScience scientific and communications Coenen, F Tessenderlo Chemie activities to improve understanding Constant, F Solvay of chlorine chemistry. Fuhrmann, W Akzo Nobel Base Chemicals García Brú, F Ercros In Europe, 39 producer members of Garrigue, F Rhodia Services Euro Chlor directly employ about 39,000 Kahsnitz, J VESTOLIT people at 69 manufac-turing locations in Lamm, R Dow 19 countries. However, almost 2,000,000 Märkl, R BASF Pelzer, A PCC Rokita jobs are directly or indirectly related to Procházka, M Spolchemie chlorine and its co-product caustic soda Raae, S Norsk Hydro when downstream activities are taken Rieche, T Degussa into consideration. Russo, G Syndial Tual, D Arkema Apart from producers, Euro Chlor Winhold, M Vinnolit also has 44 Associate members and 39 Technical Correspondents. These Secretariat staff include national chlorine associations Steel, Alistair Executive Director and working groups, suppliers of Minne, Françoise Senior Assistant equipment, materials and services as Garny, Véronique Science Director well as downstream users and van Wijk, Dolf Science Manager producers outside Europe. Marquardt, Wolfgang Science Manager Bertato, Valentina Science Manager From offices in Brussels, Euro Chlor Harcz, Péter Science Manager also provides the Secretariat for the Norré, Viviane Assistant Seys, Arseen Deputy Executive Director; World Chlorine Council, a global network Environment & Regulatory Affairs Director of national or regional organisations in Andersson, Caroline Regulatory Affairs Counsellor more than 27 countries. WCC represents Coppens, Isabelle Assistant producers accounting for more than Orban, André ECSA & Chlorinated Paraffins Manager 80% of worldwide chlor-alkali production. Whippy, Peter Communications Manager Tomas Moreno, Anna Communications Coordinator Euro Chlor was founded nearly 40 years Debelle, Jean-Pol Technical & Safety Director ago as a production-oriented technical Albus, Claire Assistant organisation but was restructured in

24 / Chlorine Industry Review 2006-2007 24 Organisation Committees & working groups The 16 Secretariat staff employed at offices in Brussels represent nine Management Technical & safety nationalities (Belgian, English, Dutch, • Management Committee • General Technical Committee French, German, Hungarian, Italian, • Sustainability ad hoc Task Force (GTC) Spanish and Swedish) and between • Statistics Committee • Environmental Protection WG them speak 10 languages. • GEST (Safety) WG Advocacy & communications • Equipment WG Guidance and overall strategic direction • Regulatory Affairs Committee • Transport WG is provided by the Management • EU Advisory Group • Health WG Committee and 38 committees and • National Chlorine Associations WG • Electromagnetic Fields WG working groups provide specialist • Chlorine Communicators’ • Analytical WG knowledge and support. Network (CCN) European Chlorinated Solvent Product groups Association • Chlorinated Paraffins Sector • Management Committee Global co-ordination Group • Communication & responsibilities • Potassium Group Outreach WG • General Technical WG Euro Chlor’s Deputy • Occupational & Environmental Executive Direc tor Science Health WG Dr Arseen Seys, • Steering Committee • Product WG who is responsible • Environmental Working Group • Chlorinated Solvents Risk for Regulatory & • Toxicology WG Assessment WG Environmental • Risk Assessment ad hoc WGs • Chloroform Risk Affairs, is also - Caustic soda Assessment WG Mana ging Dir ector - Chlorine • REACH Steering Committee of the World Chlorine Council. This - Sodium hypochlorite (with six product teams) followed transfer of the WCC • Biocides Strategy Group Secretariat in January 2007 from the Registration Groups Chlorine Chemistry Division (CCD) of - Chlorine the American Chemistry Council to - Sodium hypochlorite Euro Chlor. - Calcium hypochlorite • REACH Project Team Dr Seys is responsible for co-ordi- nating the combined resources of the main WCC members to meet broad global industry goals and tar- gets. He is a frequent speaker on chemicals regulations, product stew- ardship and sustainability at semi- nars around the world held under the auspices of the WCC, International Council of Chemical Associations (ICCA) and UN bodies.

25 25 Membership

Full members Arch Chemicals Unilever Hellas Akzo Nobel Base Chemicals Asahi Kasei Chemicals Verband der Chemischen Industrie (VCI) Altair Chimica Association of Chemical Industry of the Waterchem Anwil Czech Republic (SCHP) Arkema Association of the Dutch Chemical Technical correspondents BASF Industry (VNCI) AGC Chemicals Europe Bayer MaterialScience Bochemie Alcan PMGE Pechiney Nederland Borregaard Industries Chemical Industries Association (CIA) Applitek BorsodChem Chemieanlagenbau Chemnitz Arabian Chlorine CABB Chemoform Asahi Organic Chemicals Industry Caffaro Chlorine Engineers Bayer Technology Services CUF-Químicos Industriais Colgate-Palmolive Europe Carburos Metálicos Degussa ExxonMobil Petroleum and Chemical Chemtec Dow Deutschland Anlagengesellschaft essenscia - Belgian federation for Crane Resistoflex Donau Chemie chemistry and life sciences Descote Electroquímica de Hernani Federchimica Assobase Electroquímica de Sagua Electroquímica del Noroeste (Elnosa) GHC Gerling, Holz & Co Eramet Ercros Hungarian Chemical Industry Garlock Finnish Chemicals Association (MAVESZ) GEA Messo Hellenic Petroleum Industrie De Nora H2SCAN Corporation Hydro Polymers Jianghan Salt & Chemical Complex UK Health and Safety Executive INEOS Chlor K + S ISGEC LII Europe Leuna Tenside Koruma Klor Alkali MSSA LOMBARDA H Kronos Novácke Chemické Závody Lonza Lubrizol Advanced Materials Europe PCC Rokita Nankai Chemical Industry Nufarm Coogee Pty PPC SAS National Petrochemical Company of Iran O.P.W Fluid Transfer Group Europe Produits Chimiques d'Harbonnières NCP Chlorchem Occidental Chemical Química del Cinca Nippon Soda Phönix Armaturen – Werke Rhodia Services Plast- & Kemiföretagen – The Swedish Powell Fabrication & Manufacturing SF-Chem Plastics and Chemicals Federation Recherche 2000 Solvay Polish Chamber of the Chemical Industry Samson SolVin (PIPC) Sasol Polymers SPOLANA PPG Industries Senior Flexonics Ermeto Spolchemie Procter & Gamble Eurocor Severn Trent Water Syndial SGCI Chemie Pharma Schweiz Shaw, Son & Greenhalgh Tessenderlo Chemie Shikoku Chemicals SIEM – Supranite VESTOLIT Sojitz Europe Simon Carves Vinnolit Spanish Chlorine Producers Association Smart-Hose Technologies ZACHEM (ANE) Technip France Syndicat des Halogènes et Dérivés (SHD) Tronox Pigments Associate members Syngenta Trust Chemical Industries Al Kout Industrial Projects Teijin Twaron W.L.Gore & Associates Albion Chemical Distribution Tosoh Corporation WT Armatur Angelini A.C.R.A.F. Uhde

26 / Chlorine Industry Review 2006-2007 26 Full members

Akzo Nobel Base Chemicals BV Bayer MaterialScience AG CUF-Químicos Industriais S.A. P O Box 247 D-51368 Leverkusen Quinta da Industria NL-3800 AE Amersfoort GERMANY Beduído THE NETHERLANDS Switchboard: +49 214 301 P-3860-680 Estarreja Switchboard: +31 33 467 67 67 General fax: +49 214 303 88 10 PORTUGAL General fax: +31 33 467 61 19 www.bayermaterialscience.com Switchboard: +351 234 810 300 www.akzonobel.com General fax: +351 234 810 306 Borregaard Industries Ltd www.cuf-qi.pt Altair Chimica SpA P O Box 162 Via Moie Vecchie, 13 N-1701 Sarpsborg Degussa AG I-56047 Saline di Volterra (PI) NORWAY Bennigsenplatz 1 ITALY Switchboard: +47 69 11 80 00 D-40474 Düsseldorf Switchboard: +39 05 88 98 11 General fax: +47 69 11 87 70 GERMANY General fax: +39 05 88 44 392 www.borregaard.com Switchboard: +49 211 6504 0410 www.altairchimica.com General fax: +49 211 6504 1472 BorsodChem RT www.degussa.com Anwil SA P O Box 208 ul. Torúnska, 222 H-3702 Kazincbarcika Dow Deutschland Anlagengesellschaft PL-87-805 Wloclawek HUNGARY mbH POLAND Switchboard: +36 48 511 211 Werk Stade Switchboard: +48 54 236 30 91 General fax: +36 48 511 511 D-21677 Stade General fax: +48 54 236 19 83 www.borsodchem.hu GERMANY www.anwil.pl Switchboard: +49 4146 910 CABB GmbH General fax: +49 4146 912 600 Arkema Am Unisys-Park 1 www.dow.com 420, rue d’Estienne d’Orves D-65840 Sulzbach am Taunus 92705 Colombes Cedex GERMANY Donau Chemie FRANCE Switchboard: +49 6930 527 777 Am Heumarkt, 10 Switchboard: +33 1 49 00 80 80 General fax: +49 6930 5277 778 1030 Wien General fax: +33 1 49 00 83 96 www.cabb-chemicals.com AUSTRIA www.arkema.com Switchboard:+ 43 1 711 470 Caffaro SRL www.donau-chemie.com BASF AG Piazzale Marinotti 1 Carl-Bosch-Str., 38 I-33050 Torviscosa (UD) Electroquímica de Hernani SA D-67056 Ludwigshafen ITALY Avenida de Madrid, 13 - 1 GERMANY Switchboard: +39 0431 3811 E-20011 San Sebastian Switchboard: +49 621 600 General fax: +39 0431 381 379 SPAIN General fax: +49 621 604 25 25 www.caffaro.it Switchboard: +34 94 345 11 41 www.basf.com General fax: +34 94 345 39 65

27 27 Full members

Electroquímica del Noroeste S.A.U. INEOS Chlor Ltd PPC SAS (Elnosa) Runcorn Site HQ 95 rue du Général de Gaulle P O Box 265 South Parade, PO Box 9 68802 Thann Cedex E-36080 Pontevedra Runcorn FRANCE SPAIN Cheshire WA7 4JE Switchboard: +33 3 8938 46 00 Switchboard: +34 98 685 37 20 UNITED KINGDOM General fax: +33 3 8938 46 01 General fax: +34 98 684 09 62 Switchboard: +44 19 2856 1111 www.ppchemicals.com www.ineoschlor.com Ercros SA Produits Chimiques d'Harbonnières Avenida Diagonal 595 - 10a pl. LII Europe GmbH P O Box 1 E-08014 Barcelona Industriepark Hoechst Place de l'Eglise SPAIN D-65926 Frankfurt am Main F-80131 Harbonnières Switchboard: +34 93 439 30 09 GERMANY FRANCE General fax: +34 93 430 80 73 Switchboard: +49 69 305 20 50 Switchboard: +33 3 228 576 30 www.ercros.es General fax:+ 49 69 305 20 57 General fax: +33 3 228 576 31 www.liieurope.com www.spch.fr Finnish Chemicals Oy P O Box 7 MSSA SAS Química del Cinca SA FIN-32741 Äetsä Pomblière Avenida Diagonal, 352 Entlo. FINLAND F-73600 Saint Marcel E-08013 Barcelona Switchboard: +358 204 31 11 FRANCE SPAIN General fax: +358 204 310 431 Switchboard: +33 4 79247070 Switchboard: +34 93 458 40 00 www.finnishchemicals.com General fax: +33 4 79247050 General fax: +34 93 458 40 07 www.metauxspeciaux.fr www.qcinca.es Hellenic Petroleum SA P O Box 10044 Novácke Chemické Závody A/S Rhodia Services GR-541 10 Thessaloniki M.R. Stefanika, 1 40, Rue de la Haie Coq GREECE SK-97271 Novaky F-93306 Aubervilliers Cedex Switchboard: +30 2310 750 000 SLOVAK REPUBLIC FRANCE General fax: +30 2310 750 001 Switchboard: +421 46 568 11 11 Switchboard: +33 1 53 56 50 00 www.hellenic-petroleum.gr General fax: +421 46 546 12 23 General fax: +33 1 53 56 54 91 www.nchz.sk www.rhodia-eco-services.com Hydro Polymers Drammensveien 164 PCC Rokita SA SF-Chem N-0240 Oslo c/o PCC AG P O Box 1964 NORWAY Moerser Straße 149 CH-4133 Pratteln 1 Switchboard : +47 22 538 100 D-47198 Duisburg SWITZERLAND General fax: +47 22 532 444 GERMANY Switchboard: +41 61 825 31 11 www.hydropolymers.com Switchboard: +49 2066 20 19 11 General fax: +41 61 821 80 27 General fax: +49 2066 546 82 www.sf-chem.com www.pccag.com

28 / Chlorine Industry Review 2006-2007 28 Solvay SA Tessenderlo Chemie SA Rue du Prince Albert, 33 Rue du Trône, 130 B-1050 Bruxelles B-1050 Bruxelles BELGIUM BELGIUM Switchboard: +32 2 509 61 11 Switchboard: +32 2 639 18 11 General fax: +32 2 509 66 17 General fax: +32 2 639 17 02 www.solvay.com www.tessenderlo.com

SolVin SA VESTOLIT GmbH & Co. KG Rue de Ransbeek, 310 P O Box 10 23 60 B-1120 Bruxelles D-45753 Marl BELGIUM GERMANY Switchboard: +32 2 264 21 11 Switchboard: +49 2365 4905 General fax: +32 2 264 30 61 General fax: +49 2365 4000 www.solvinpvc.com www.vestolit.de

SPOLANA a.s. Vinnolit GmbH & Co. KG ul. Prace 657 Corporate Center CZ-277 11 Neratovice Carl-Zeiss-Ring 25 CZECH REPUBLIC D-85737 Ismaning Switchboard: +420 315 661 111 GERMANY General fax: +420 315 682 82 Switchboard: +49 89 96 1030 www.spolana.cz General fax: +49 89 96 103 103 www.vinnolit.com Spolchemie Revolu ní 1930/86 ZACHEM S.A. CZ-400 32 Ústí nad Labem Ul. Wojska Polskiego 65 CZECH REPUBLIC PL-85-825 Bydgoszcz Switchboard: +420 477 161 111 POLAND General fax: +420 477 163 333 Switchboard: +48 52 374 81 00 www.spolchemie.cz General fax: +48 52 301 02 82 www.zachem.com.pl Syndial SpA Piazza Boldrini, 1 I-20097 San Donato Milanese (MI) ITALY Switchboard: +39 02 520 326 00 General fax: +39 02 520 326 16 31 July 2007

29 29 Euro Chlor provides a focal point for the chlor-alkali industry’s drive to achieve a sustainable future through economically and environmentally sound manufacture and use of its products. Based in Brussels, at the heart of the European Union, the federation works with national, European and international authorities to ensure that legislation affecting the industry is workable, efficient and effective.

Euro Chlor Avenue E. van Nieuwenhuyse 4, box 2 B - 1160 Brussels, Belgium tel: +32 2 676 72 11 fax: +32 2 676 72 41 [email protected] www.eurochlor.org

© Euro Chlor 08/2007

25 . 6 . 88 Official Journal of the European Communities No L 158/35

COUNCIL DIRECTIVE of 16 June 1988 amending Annex II to Directive 86/280/EEC on limit values and quality objectives for discharges of certain dangerous substances included in List I of the Annex to Directive 76/464/EEC

(88/347/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Economic Community, and in particular Article 130 S thereof, * ■ Having regard to Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community ('), and in particular Articles 6 and 12 thereof, Having regard to Council Directive 86/280/EEC of 12 June 1986 on limit values and quality objectives for discharges of certain dangerous substances included in List I of the Annex to Directive 76/464/EEC (2), Having regard to the proposal from the Commission (3), Having regard to the opinion of the European Parliament (4), Having regard to the opinion of the Economic and Social Committee (*), Whereas, in order to protect the aquatic environment of the Community against pollution by certain dangerous substances, Article 3 of Directive 76/464/EEC introduces a system of prior authorization laying down emission standards for discharges of the substances in List I in the Annex thereto ; whereas Article 6 of the said Directive provides that limit values shall be laid down for such emission standards and also quality objectives for the aquatic environment affected by discharges of the substances ; Whereas Member States are required to apply the limit values except in cases where they may employ quality objectives ; Whereas Directive 86/280/EEC will have to be amended and supplemented, on proposals from the Commission, in line with developments in scientific knowledge relating principally to the toxicity, persistence and accumulation of the substances referred to in living organisms and sedi­ ments, or in the event of an improvement in the best technical means available ; whereas it is necessary, for that purpose, to provide for additions to the said Directive, relating to measures in respect of other dangerous substances, and for amendments to the content of Annex II ; ' Whereas, on the basis of the criteria laid down in Directive 76/464/EEC, aldrin, dieldrin, endrin, isodrin, hexachlorobenzene, hexachlorobutadiene and chloroform should be made subject to the provisions of Directive 86/280/EEC,

HAS ADOPTED THIS DIRECTIVE :

Article 1 Annex II to Council Directive 86/280/EEC is amended as follows : 1 . The following are added below the title : 4. Relating to aldrin, dieldrin, endrin and isodrin 5. Relating to hexachlorobenzene

n OJ MO L 1 29, 1 «. 5 . 1976, p . 23 . (2) OJ No L 181 , 4. 7. 1986, p . 16. P) OJ No c V4o ' 18 3 1985 P' ^ N° ° ^ 3' U' P' 3' °J N° C 3 '4, U ' 1987' p' 5 and 0 OJ No C 122, 9 . 5. 1988' and OJ No C 120, 20 . 5 . 1986, p . 164. 0 OJ No C 232, 31 . 8 . 1987, p. 2, OJ No C 356, 31 . 12. 1987, p . 69 and OJ No C 188, 29 . 7. 1985, p., 19 . 25 . 6 . 88 No L 158/36 Official Journal of the European Communities

6. Relating to hexachlorobutadiene 7 . Relating to chloroform'. 2. The following sections are added : 'IV. Specific provisions relating to : — aldrin (No 1)0 CAS-No 309-00-2 — dieldrin (No..71)(2) CAS-No 60-57-1 — endrin (No 77) (3) CAS-No 72-20-8 — isodrin (No 130) (4) CAS-No 465-73-6 (') Aldrin is the chemical compound C 12xi8 Cl6 1 , 2, 3, 4, 10, 10-hexachloro-l , 4, 4a, 5, 8 , 8a-hexahydro-l , 4-endo-5, 8-exo­ dimethanonaphtalene. (2) Dieldrin is the chemical compound C 12H8 C1 6U 1 , 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-l , 4, 4a, 5, 6, 7, 8 , 8a-octahydro-l , 4-endo-5, 8-exo-dimethanonaphtalene . (3) Endrin is the chemical compound C 12H 8 C1 60 1 , 2, 3 , 4, 10, 10-hexachloro-6, 7-epoxy-l , 4, 4a, 5, 6, 7, 8 , 8a-octahydro-l , 4-endo-5, 8-endo-dimethanonaphtalene ." (4) Isodrin is the chemical compound C 12H8 C1 6 1 2, 3, 4, 10 , 10-hexachloro-l , 4, 4a, 5, 8 , 8a-hexahydro-l , 4-endo-5, 8-endo­ dimethanonaphtalene . Heading A (1, 71, 77, 130) : Limit values for emission standards (>) Limit value expressed as Type of To be Type of industrial plant (2) average Concentration in complied with value Weight effluent ja.g/ 1 of as from water discharged (3)

1 . 1 . 1989 Production of aldrin and/or Monthly 3 g per tonne of 2 dieldrin and/or endrin inclu­ total production ding formulation of these capacity (g/tonne) substances on the same site Daily 15 g per tonne of 10 o 1 . 1 . 1989 total production capacity (g/tonne) (4) 1 (') The limit values indicated in this heading shall apply to the total discharge of aldrin, dieldrin and endrin . If the effluent resulting from the production or use of aldrin , dieldrin and/or endrin (including forrrtulation of these substances) also contains isodrin, the limit values laid down above shall apply to the total discharges of aldnn, dieldrin, endrin and isodrin . ft Among the industrial plants referred to under heading A, point 3, of Annex I, reference is made in particular to plants formulating aldrin, and/or dieldrin and/or endrin away from the production site . (3) These figures take account of the total amount of water passing through the plant . M If oossible, daily values should not exceed twice the monthly value.

Heading B (1, 71, 77, 130): Quality objectives Quality objectives ng/ 1 . to be complied with as from Environment Substance 1 . 1 . 1989 1.1.1994

10 Inland surface waters Aldrin 30 for the four substances in total Dieldrin with a maximum 10 Estuary waters of 5 for endrin Internal coastal waters other than estuary Endrin ll 5 , waters „ \ ll 5 Territorial waters Isodrin Standstill : The concentration(s) of aldrin and/or dieldrin and/or endrin and/or isodrin in sediments and/or molluscs and/or shellfish and/or fish must not increase signifi­ cantly with time. 25. 6 . 88 Official Journal of the ^European Communities No L 158/37

Heading C (1, 71, 77, 130): Reference method of measurement 1 . The reference method of measurement to be used for determining aldrin, dieldrin, endrin and/or isodrin in effluents and the aquatic environment is gas chromatography with elec­ tron-capture detection after extraction by means of an appropriate solvent. The limit of determination (') for each substance is 2,5 ng/1 for the aquatic environment and 400 ng/1 for effluents, depending on the number of parasite substances present in the sample. 2. The reference method to be used for determining aldrin, dieldrin and/or endrin and/or isodrin in sediments and organisms is gas chromatography with electron-capture detection after appropriate preparation of samples . The limit of determination is 1 Jig/kg dry weight for each separate substance . 3 . The accuracy and precision of the method must be ± 50 % at a concentration which represents twice the value of the limit of determination .

(') The limit of determination" x g of a given substance is the smallest quantity, quantitatively determi­ nable in a sample on the basis of a given working method, which can still be distinguished from zero.

V. Specific provisions relating to hexachlorobenzene (HCB) (No 83)

CAS-1 18-74-1

Heading A (83) : Limit values for emission standards Standstill : There must be no significant direct or indirect increase over time in pollution arising from discharges of HCB and affecting concentrations in sediments and/or molluscs and/or shellfish and/or fish .

Limit values To be Type of industrial Type of average expressed as complied ' Plant 000 value with as weight concentration from

1 . HCB production and monthly 10 g HCB/tonne 1 mg/1 of HCB processing of HCB produc­ tion capacity ' 1 . 1 . 1990 daily 20 g HCB/tonne 2 mg/1 of HCB of HCB produc­ tion capacity i

2. Production of perchloro monthly 1,5 g HCB/tonne 1,5 mg/1 of HCB ethylene (PER) and carbon of PER + CC14 tetrachloride (CC14) by total production perchlorination capacity > 1 . 1 . 1990 daily 3 g HCB/tonne of 3 mg/1 of HCB PER + CC14 total production capa­ city i

— 3 . Production of trichloroethy­ monthly — — lene and/or perchloroethy­ lene by any other process (4)

— daily — —

(') A simplified monitoring procedure may be introduced if annual discharges do not exceed 1 kg a year. 0 Among the industrial plants referred to in Annex I, heading A, point 3, reference is made in particular to industrial plants producing quintozene and tecnazene, industrial plants producing chlorine by chlor-alkali electrolysis with graphite electrodes, industrial rubber processing plants, plants manufacturing pyrotechnic products and plants produ­ cing vinylchloride. (3) On the basis of experience gained in implementing the Directive, and taking into account the fact that the use of best technical means already makes it possible to apply in some cases much more stringent values than those indi­ cated above, the Council shall decide, on the basis of proposals from the Commission, upon more stringent limit values, such decision to be taken by 1 January 1995. (4) It is not possible at present to adopt limit values for this sector. The Council shall adopt such limit values at a later stage, acting on a proposal from the Commission. In the meantime, Member States will apply national emission stan­ dards in accordance with Annex I, heading A, point 3 . 25 . 6. 88 No L 158/38 Official Journal of the European Communities

Heading B (83): Quality objectives (')

Standstill : The concentration of HCB in sediments and/or molluscs and/or shellfish and/or fish must not increase significantly with time. (n The Commission shall keep under review the possibility of setting more stringent quality objectives, taking into account measured concentrations of HCB in sediments and/or molluscs and/or shellfish and/or fish, and will report to the Council , by 1 January 1995, for decision as to whether any changes should be made to the Directive .

To be Quality Unit of Environment complied objective measurement with as from

Inland surface waters

Estuary waters 0,03 Rg/ 1 1 . 1 . 1990 Internal coastal waters other than estuary waters

Territorial waters I

Heading C (83): Reference method of measurement

1 . The reference method of measurement to be used for determining the presence of HCB in effluents and waters is gas chromatography with electron-capture detection after extraction by means of an appropriate solvent. The limit of determination (') for HCB shall be within the range 1 to 10 ng/ 1 for waters and 0,5 to 1 JJ.g/ 1 for effluents depending on the number of extraneous substances present in the sample .

2. The reference method to be used for determining HCB in sediments and organisms is gas chromatography with electron-capture detection after appropriate preparation of the sample . The limit of determination (') shall be within the range 1 to 10 Hg/kg of dry matter. 3 . The accuracy and precision of the method must be ± 50 % at a concentration which represents twice the value of the limit of determination ('). (') The "limit of determination" x g of a given substance is the smallest quantity, quantitatively determi­ nable in a sample on the basis of a given working method, which can still be distinguished from zero.

VI . Specific provisions relating to hexachlorobutadiene (HCBD) (No 84) CAS-87-68-3

Heading A (84) : Limit values for emission standards Standstill : There must be no significant direct or indirect increase over time in pollution arising from discharges of HCB and affecting concentrations in sediments and/or molluscs and/or shellfish and/or fish . 25. 6 . 88 Official Journal of the European Communities No L 158/39

Type of Limit values To be Type of industrial expressed as average complied plant C )(2)(3) value with as weight concentration from

1 . Production of perchloro­ monthly 1,5 g HCBD/tonne 1,5 mg/ 1 of HCBD ethylene (PER) and carbon of total production tetrachloride (CC14) by capacity of PER + perchlorination CC14 1 . 1 . 1990 daily 3 g HCBD/tonne 3 mg/1 of HCBD of total production capacity of PER + CC14

2 . Production of trichloroethy­ monthly lene and/or perchloroethy­ lene by any other process (4)

» daily

(') A simplified monitoring procedure may be introduced if annual discharges do not exceed 1 kg a year. (2) Among the industrial plants referred to in Annex I, heading A, point 3, reference is made in particular to industrial plants using HCBD for technical purposes. (3) On the basis of experience gained in implementing this Directive, and taking into account the fact that the use of best technical means already makes it possible to apply in some cases much more stringent values than those indi­ cated above, the Council shall decide, on the basis of proposals from the Commission, upon more stringent limit values, such decision to be taken by 1 January 1995. 0 It is not possible at present to adopt limit values for this sector. The Council shall adopt such limit values at a later stage, acting on a proposal from the Commission . In the meantime, Member States will apply national emission stan­ dards in accordance with Annex I, heading A, point 3 .

Heading B (84) : Quality objectives () Standstill : The concentration of HCBD in sediments and/or molluscs and/or shellfish and/or fish must not increase significantly with time . (') The Commission shall keep under review the possibility of setting more stringent quality objectives, taking into account measured concentrations of HCBD in sediments and/or molluscs and/or shellfish and/or fish , and will report to the Council, by 1 January 1995, for decision as to whether any changes should be made to the Directive .

To be Environment Quality Unit of measurement complied objective with as ' from

Inland surface waters Estuary waters » 0,1 M-g/ 1 1 . 1 . 1990 Internal coastal waters other than estuary waters

Territorial waters

Heading C (84): Reference method of measurement 1 . The reference method of measurement to be used for determining HCBD in effluents and waters is gas chromatography with electron-capture detection after extraction by means of an appropriate solvent . The limit of determination (') for HCBD shall be within the range 1 to 10 ng/ 1 for waters and 0,5 to 1 µg/ 1 for effluents, depending on the number of extraneous substances present in the sample . 2. The reference method to be used for determining HCBD in sediments and organisms is gas chromatography with electron-capture detection after appropriate preparation of the sample . The limit of determination (') shall be within the range 1 to 10 µg/kg of dry matter. 25 . 6. 88 No L 158/40 Official Journal of the European Communities

3 . The accuracy and precision of the method must be ± 50 % at a concentration which represents twice the value of the limit of determination ('). (') The "limit of determination" xg of a given substance is the smallest quantity, quantitatively determi­ nable in a sample on the basis of a given working method, which can still be distinguished from zero . VII. Specific provisions relating to chloroform (CHC13) (No 23)(') CAS-67-66-3

Heading A (23): Limit values for emission standards

Limit value To be (monthly averages) complied Type of industrial expressed as ("JO with as plant 00 from weight concentration

1 . Production of chloromethanes from 10 g CHC13/tonne 1 mg/ 1 1 . 1 . 1990 methanol or from a combination of of total production methanol and methane (6) capacity of chloro­ methanes

2. Production of chloromethanes by chlori­ 7,5 g CHCI3/tonne 1 mg/ 1 1 . 1 . 1990 nation of methane of total production \ I capacity of chloro­ methanes 1 r. ...

3 . Production of chlorofluorocarbon (CFC) Q — (■) In the case of chloroform , Article 3 of Directive 76/464/EEC shall apply to discharges from industrial processes which may in themselves contribute significantly to the level of chloroform in the aqueous effluent ; in particular it shall apply to those mentioned under Heading A of this Annex . Article 5 of this Directive applies if sources other than those listed in this Annex are identified. (2) Among the industrial plants referred to under heading A, point 3 of Annex I, special reference is made, in the case of chloroform, to plants manufacturing monomer vinyl chloride using dichlorethane pyrolysis, those producing bleached pulp and other plants using CHC1 3 as a solvent and plants in which cooling waters or other effluents are chlorinated . The Council shall adopt limit values for these sectors at a later stage, acting on proposals from the Commission . (3) A simplified monitoring procedure may be introduced if annual discharges do not exceed 30 kg a year. (4) Daily average limit values are equal to twice the monthly average values. (5) jn view 0f the volatility of chloroform and in order to ensure compliance with Article 3 (6), where a process involving agitation in the open air of effluent containing chloroform is used, the Member States shall require compliance with the limit values upstream of the plant concerned ; they shall ensure that all water likely to be polluted is taken fully into account . (6) I.e. by hydrochlorination of methanol, then chlorination of methyl chloride. P) It is not possible at present to adopt limit values for this sector. The Council shall adopt such limit values at a later date, acting on a proposal from the Commission . In the meantime, Member States will apply national emission stan­ dards in accordance with Annex I, heading A, point 3 .

Heading B (23): Quality objectives (') (') Without prejudice to Article 6 (3) of Directive 76/464/EEC, where there is no evidence of any problem in meeting and continuously maintaining the quality objective set out above, a simplified monitoring procedure may be introduced .

To be Quality Unit of Environment complied objectives measurement with as from

+ 12 Inland surface waters 1 Estuary waters Hg/ 1 1 . 1 . 1990 Internal coastal waters other than estuary waters

Territorial waters t 25 . 6 . 88 Official Journal of the European Communities No L 158/41

Heading C (23): Reference method of measurement 1 . The reference method of measurement to be used for determining the presence of chloroform in effluents and the aquatic environment is gas chromatography. A sensitive detector must be used when concentration levels are below 0,5 mg/ 1 and in this case the determination limit (') is 0,1 µg/1 . For concentration levels higher than 0,5 mg/1 a determination limit of 0,1 mg/ 1 is acceptable. 2. The accuracy and precision of the method must be ± 50 % at a concentration which repre­ sents twice the value of the determination limit. 0) T"e "determination limit" x g of a given substance is the smallest quantity, quantitatively determinable in a sample on the basis of a given working method, which can still be distinguished from zero.'

Article 2 Member States shall take the measures necessary to comply with this Directive by 1 January 1989 with regard to aldrin, dieldrin, endrin and isodrin, and by 1 January 1990 with regard to the other substances . They shall forthwith inform the Commission thereof. Member States shall communicate to the Commission, the provisions of national law which they adopt in the field governed by this Directive .

Article 3 This Directive is addressed to the Member States.

Done at Luxembourg, 16 June 1988 .

For the Council

\ The President K. TÖPFER INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

Dernièremiseàjour:10/05/2005

RESPONSABLE DU PROGRAMME

J.-M. BRIGNON : [email protected]

EXPERTS AYANT PARTICIPE A LA REDACTION

S. Soleille

INERIS –DRC- MECO

Version N°1-mai 05 Page1sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

SOMMAIRE

1 Généralités ...... 3 1.1 Définitionetcaractéristiquesprincipales...... 3 1.2 Réglementation ...... 3 2 Productionetutlisation ...... 4 2.1 Production ...... 4 2.2 Utilisations...... 5 3 Rejetsetprésencedansl’environnement ...... 6 3.1 Voiesderejet ...... 6 3.2 Présencedansleseaux ...... 7 4 Possibilitésderéductiondesrejets...... 7 5 Aspectséconomiques ...... 8 6 Conclusion ...... 8 7 Référénces...... 8 7.1 Expertsetentreprisesinterrogés...... 8 7.2 Bibliographie ...... 9

INERIS –DRC- MECO

Version N°1-mai 05 Page2sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

1 GENERALITES

1.1 Définition et caractéristiques principales L’hexachlorobutadiène est également appelé HCBD, perchlorobutadiène, DolenPur ou 1,1,2,3,4,4hexachloro1,3butadiène. Il correspond au nombre CAS87683 et possède la formulemoléculaireempiriqueC 4Cl 6: Cl Cl Cl

Cl Cl Cl

Figure 1. Formule de l’hexachlorobutadiène 1.2 Réglementation Ladirective88/347/CEE 1fixedesvaleurslimitesd’émissiond’HCBDpourlesinstallationsde productiondeperchloréthylène(PER)etdetétrachlorométhane(CCl 4)parperchloration(1,5 grammepartonnedecapacitédeproduction).Pourlesinstallationsdeproductioncombinée detrichloréthylène(TRI)et/oudeperchloréthylène,ladirectiveprévoitdefixerdesvaleurs limitesd’émissionmaisreporteladécision. Cettedirectivefixeégalementl’objectifdequalitépourleseauxdesurfacepourl’HCBDà 0,1g/l. L’OMSrecommande0,6g/lcommevaleurlimitedepotabilité. Les initiatives de l’Union européenne prônent la décontamination des sédiments et des organismescontaminésparl’HCBDetfixentl’objectifdequalitédel’eauà0,1mg/l[Tilman, 2003].

1 Directive 88/347/CEE du Conseil du 16 juin 1988 modifiant l’annexe II de la directive 86/280/CEE concernantlesvaleurslimitesetlesobjectifsdequalitépourlesrejetsdecertainessubstancesdangereuses relevantdelalisteIdel’annexedeladirective76/464/CEE.

INERIS –DRC- MECO

Version N°1-mai 05 Page3sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

L’annexeIdeladirective93/72/CEE 2classel’HCBDcomme:nocifencasdecontactavecla peau ou d’ingestion (R21/22), irritant pour les yeux et le système respiratoire (R36/37), présentantunrisquepossibled’effetsirréversibles(R40),pouvantcauserunesensibilisation par contact avec la peau (R43), très toxique pour les organismes aquatiques et pouvant causerdeseffetsadversesàlongtermeàl’environnementaquatique(R50/53). Le Conseil européen des producteurs de vinyle (European Council of Vinyl Manufacturers, ECVM)s’estfixéunevaleurlimitevolontairede10g/ldanslesrejetsd’eaudesusinesde productiondeEDC/VCM/PVC,qu’ilsdevaientrespecteravantfin2003.

2 PRODUCTION ET UTLISATION

2.1 Production 2.1.1 Production D’aprèsEurochlor,laproductioncommercialedeHCBDaétééliminéeenEurope. 2.1.2 Sous-produit de la production et de la régénération de solvants chlorés L’HCBDconstitueunsousproduitdelaproductiondecertainessubstanceschimiqueschlorées comme certains solvants chlorés (tétrachloréthylène et trichloréthylène), le tétrachlorométhane,lechloruredevinyle,lechlorured’allyleetl’épichlorhydrine[Kuszet al.,1984;U.S.EPA,1980;Choudhary,1995].D’aprèsl’USEPA,audébutdesannées1980, lesdéchetsprovenantdelaproductiondecertainshydrocarbureschloréspouvaientcontenir de33à80%d’HCBD.Cesdéchetsétaientmajoritairementincinérés.L’incinérationpermet dedétruirel’HCBDàplusde99,9%.[EPA,1982;inChoudharyetal.,1994].Onaestiméque, danslesannées1970auxCanada,laformationd’HCBDreprésentait1,5%delaproduction totaledetétrachloréthylène[Brownetal.,1975;inTayloretal.,2001]. D’après des données de 1991 du BUA 3, une agence allemande de conseil sur les produits chimiques usagés, peu de procédés encore en usage produisent, comme sousproduits, de l’HCBD.Ellecitelachlorolyseàbassepressionpourlaproductiondetétrachloréthylèneetde tétrachlorométhane: entre 0,2 et 0,5 % d’HCBD est contenu dans le produit brut. [Van de Plassche, 2002] Les déchets finalement obtenus après cette opération contiennent, après distillation,7à10%d’HCBDquisontéliminésparincinérationà1200°C.[Tilman,2003]

2Directive93/72/CEEdelaCommissiondu1 er septembre1993portantdixneuvièmeadaptationauprogrès techniquedeladirective67/548/CEEduConseilconcernantlerapprochementdesdispositionslégislatives, réglementaires et administratives relatives à la classification, l’emballage et l’étiquetage des substances dangereuses. 3BeratergremiumfürAltstoffe.

INERIS –DRC- MECO

Version N°1-mai 05 Page4sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

EnFrance,s’iln’existepasdeproductiondeHCBD,plusieursusinesproduisentdessolvants chlorésetsontdoncsusceptiblesderejeterdel’HCBD.AinsiAtofinaetSolvayproduisentdu tétrachloréthylène,dutrichloréthylèneetdutétrachlorométhane(deuxoutroisusinespour Atofina, une usine pour Solvay). D’autres entreprises font de la régénération de solvants chlorésetproduisentainsidutrichloréthylène:Brabantchimie, Caldic (une usinechacun). Dansaumoinsunedecesusines,l’HCBDfaitpartiedespolluantsmesurésdanslesrejets.Les quantitésconstatéessontassezfaibles. OnpeutnoterquelemarchédessolvantschlorésenEuropeoccidentaleestendécroissance: entre 1998 et 2003, le marché du trichloréthylène a diminué de 55%, passant de 85 à 38 kilotonnespar,etceluidutétrachloréthylènede22%,passantde73à57kilotonnesparan [Orban, 2004]. Cette décroissance s’explique par l’amélioration du recyclage, par une meilleure maîtrise des solvants, par l’adoption par les utilisateurs de trichloréthylène de nouvelles méthodes de dégraissage des métaux et par la récente classification du trichloréthylènecommesubstancecancérogènedecatégorie2. D’après le syndicat des producteurs de matières plastiques [SPMP, 2003], on détecte du HCBD,àtrèsfaibleteneur,àlalimitededétection(<100g/l)dansleseffluentsd’uneunité depyrolysederésiduschlorésissusdediversesinstallations.Àceniveaudeconcentrationil estimequ’ilestimpossibled’envisageruntraitementd'élimination. 2.2 Utilisations 2.2.1 Utilisateurs intentionnels 4 L’HCBD n’est plus répertorié parmi les 9400 produits chimiques du guide ‘Achats chimie parachimiepharmacie2002’.D’aprèsEurochlor(2001),iln’estplusutiliséenEurope[Vande Plassche,2002]. Ilpeutservird’intermédiairedanslaproductiondelubrifiantsetdecomposésencaoutchouc. D’aprèslesyndicatnationalducaoutchoucetdespolymères(SNCP,2004),l’HCBDpeutêtre présentdansquelquescaoutchoucsmaiscelarestemarginalentermedetonnage. 2.2.2 Utilisations intentionnelles historiques De petites quantités étaient utilisées commesolvant pour caoutchouc et autres polymères (pour les hydrocarbures à C4 et plus et les élastomères), comme fluide pour gyroscope, commeintermédiairechimiquedanslaproductiondechlorofluorocarbonesetdelubrifiants, comme lubrifiant, dans les liquides isolants ou comme réactif de laboratoire (notamment pourextrairelesproduitschimiquesorganiquesvolatilsdessubstancesorganiques).

4Voirnotamment:Taylor,K,Caux,PY,Moore,Det al. 2001. Liste des substances d’intérêt prioritaire Rapport d’évaluation – Hexachlorobutadiène. Environnement Canada, Loi canadienne sur la protection de l’environnement(1999).

INERIS –DRC- MECO

Version N°1-mai 05 Page5sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

En France, il était largement utilisé comme fumigène pour traiter les vignes contre le Phylloxera. Il n’est plus répertorié dans l’index ACTA des produits phytosanitaires. D’après l’uniondesindustrielspourlaprotectiondesplantes(2003),l’HCBDn’estplusutilisécomme produitphytosanitaireetn’estpasnonplusunsousproduitdefabricationd’autresproduits phytosanitaires. Enfin l’HCBD fut également utilisé comme fluide caloporteur (dans les transformateurs); commefluidehydraulique;commeliqueurnettoyantepourretirerleshydrocarbures;dans l’agriculture,commefongicideetcommeproduitd’enrobagedesemence;pourrécupérerles gazrenfermantduchloredanslesusinesdechlore;dansdesprocédésdeproduction(tige d’aluminiumoudegraphite). 2.2.3 Usages non intentionnels L’HCBD est un contaminant retrouvé dans un certain nombre de substances. Notamment, l’HCBDestuneimpuretédutrichloréthylèneetdutétrachloréthylène(ouperchloréthylène), deux solvants dont l’utilisation est répandue dans les industries du nettoyage à sec et du dégraissage de pièces métalliques. [Tilman, 2003] Cependant d’après Eurochlor, grâce à l’amélioration des procédés de production, l’HCBD n’est plus détectable dans ces deux produits[Eurochlor,2002].

L’HCBD est un contaminant d’autres substances chlorées tels que lechlorure de fer (III) et l’acidechlorhydrique (HCl)ainsiquedesousproduitsde l’industrie du magnésium [Tilman, 2003].

3 REJETS ET PRESENCE DANS L’ENVIRONNEMENT

3.1 Voies de rejet D’aprèsleRoyalHaskoning(2002),lavoiedepénétrationlaplusimportantedel’HCBDdans l’environnement est l’émission (surtout dans l’eau, un peu dans l’air) lors du processus de production de solvants chlorés (trichloréthylène, tétrachloréthylène) et de tétrachlorométhane.Lesautresvoiesdepénétrationsontl’émissionlorsdel’éliminationdes déchetsdelaproductiondeshydrocarbureschlorésrenfermantduHCBD,danslecadredes autresutilisationsindustriellesdecettesubstanceetaucoursduprocessusdeproductiondu magnésium. [Van de Plassche, 2002] Ces trois autres voies d’émission sont faibles voire inexistantesenFrance. En1997,lesémissionsdeHCBDenEuropeontétéde2kg/andansl’airetde100kg/andans l’eau (données obtenues par Eurochlor à partir d’une enquête auprès de 76 sites de l’industrie européenne du chlore). Cela représente une réduction de 98 % des émissions atmosphériquesetde97%desémissionsaqueusesparrapportà1985.[Eurochlor,2002]

INERIS –DRC- MECO

Version N°1-mai 05 Page6sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

LabasededonnéeseuropéenneEPER 5nerépertorieenFrancequ’unseulsiteémetteurde HCBD:ils’agitd’Atofina (usine de Saint Auban, 04), qui produit des produits organiques à base de solvant. Cette installation aurait rejeté 15 kg de HCBD dans l’eau en 2001. EPER répertoriequatreautresinstallationscommeémettricesdeHCBDdansl’Unioneuropéenneen 2001:cesonttouteslesquatredesusinesdeproduitschimiquesinorganiquesetd’engrais. Ellesontémischacuneentre0,1et6,4kgdeHCBDdansleseauxen2001. 3.2 Présence dans les eaux DansleRhin,l’HCBDestconsidérécommesubstanceprioritairedepuis1987.Chaqueannée, entre1990et2000,lesconcentrationsenHCBDdansleRhinontétésensiblementinférieures auxobjectifsderéférence(lepercentile90,ouledoubledupercentile50,estinférieuràla moitiédel’objectifderéférence).[Braunetal.,2003] DanslebassinversantRhinMeuse,l’hexachlorobutadièneestmesurésurtroissupports(eau brute, matières en suspension et sédiments) à plusieurs (20) points de mesure. Toutes les mesures indiquent, pour les trois supports, une concentration dans les eaux superficielles inférieure aux seuils de détection. Cependant, les valeurs guides retenues sont en général inférieuresàcesseuilsdedétection.[Remillon,2003] D’aprèslaDRIRERhôneAlpes,lesrejetsdansl’eaudeHCBDde168établissementsindustriels delarégion,parmilesplusémetteurs,sesontélevésà3g/jen1993età103g/jen1998. Ces rejets proviennent à plus de 99 % du secteur de la chimie et de la pétrochimie (notammentl’usineBlancommeàPontdeClaixdontlesémissionsd’HCBDsemblaientavoir dépassé les valeurs guides en 1998 et la plateforme Rhodia de Pont de Claix). Une part marginaleprovientdehuitétablissementsdepeinture.[DRIRERhôneAlpes,2001]

4 POSSIBILITES DE REDUCTION DES REJETS

La technique de contrôle des émissions la plus importante est l’incinération à haute température des résidus des procédés de production de solvants chlorés [Tilman, 2003]. D’aprèsl’EPA(1982),l’incinérationpermetdedétruirel’HCBDàplusde99,9%[EPA,1982; inChoudharyetal.,1994]. En France, une usine chimique produisant des solvants chlorés traite ses rejets aqueux par stripping notamment. Ce procédé a un très bon rendement pour certaines substances (de l’ordrede96à98%)maisestmoinsefficacepourl’HCBD,moléculeassezlourde.

5http://www.eper.cec.eu.int/ .

INERIS –DRC- MECO

Version N°1-mai 05 Page7sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

Le stripping est généralement particulièrement efficace pour les solvants chlorés volatils. 6 Danscecas,lesgazdesortiedustrippingsontensuiteincinérés[BREFLargeVolumeOrganic ChemicalIndustry,2003].

5 ASPECTS ECONOMIQUES Lescoûtsqu’occasionneraitlasuppressiondesrejetsd’HCBDsontessentiellementlescoûts detraitementdeseffluentspourlesinstallationsquirejettentencoredel’HCBDcommesous produitdeleursprocédésdeproduction. Des techniques de traitement existent (par exemple stripping et incinération) et sont déjà utilisées industriellement, en France notamment, généralement pour réduire les rejets de plusieurssubstances(solvantschlorésnotamment). Nousnedisposonspasdedonnéesprécisessurlescoûtsliésàl’installationetàl’utilisation detelséquipements.

6 CONCLUSION L’hexachlorobutadiène (HCBD) n’est plus produit ni utilisé en France. Il est émis dans l’environnementessentiellementcommesousproduitprovenantdelaproductiondecertains solvants chlorés (trichloréthylène et tétrachloréthylène). Il est peutêtre encore utilisé, de façon marginale, comme intermédiaire de synthèse de certains produits (produits caoutchoutés). Ilestencoreémis,maisdansdesquantitésrelativementfaibles,notammentpardesusines deproductionetderégénérationdesolvantschlorés.Desmesuresdetraitementdesrejets existent(parexemplestrippingsuivid’incinération).Enoutrelemarchédessolvantschlorés estendécroissanceenEurope.Ilsembledonc possible d’atteindre des rejets négligeables, voirenuls,d’ici2015.

7 REFERENCES

7.1 Experts et entreprises interrogés Atofina. Eurochlor/EuropeanChlorinatedSolventAssociation(ECSA).

6http://www.enviro.lu/Luxembourg/Esl3.html?=Depollutionl.html .

INERIS –DRC- MECO

Version N°1-mai 05 Page8sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

SiteInternetd’Eurochlor: http://www.eurochlor.org . Syndicatdesproducteursdematièresplastiques(SPMP). Syndicatnationalducaoutchoucetdespolymères(SNCP). 7.2 Bibliographie Braun,M.,Besozzi,D.,Herata,H.,Falcke,H.,vanDokkum,R.,Langenfeld,F.etal.(2003). Rhin Inventaire 2000 des émissions de substances prioritaires. Commission Internationale pourlaProtectionduRhin. Choudhary, G., Donohue, J.M., Hales, Y.N. (1994). Toxicological profile for hexachlorobutadiene.U.S.Departmentofhealthandhumanservices,PublicHealthService AgencyforToxicSubstancesandDiseaseRegistry. DRIRE RhôneAlpes (2001). 2 ème inventaire des rejets de micropolluants dans 168 établissementsindustrielsdelarégionRhôneAlpes.Directionrégionaledel’industrie,dela rechercheetdel’environnementRhôneAlpes,ministèredel’Aménagementduterritoireet del’Environnement. Eurochlor (2002). Eurochlor Risk Assessment for the Marine Environment Hexachlorobutadiene.Eurochlor,OSPARCOMRegionNorthSea. EuropeanIPPCBureau(2003).IntegratedPollutionPreventionandControl(IPPC)Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry. EuropeanCommission. Infochimie(2002a).Guideachatschimie,parachimie,pharmacie2002. Infochimie (2002b). Guide des fournisseurs, spécial usines chimiques. N° 440 , juilletaoût 2002. Orban, A. (2004). Le marché des solvants chlorés en 2003. European Chlorinated Solvent Association, Solvents Digest ,juillet2004No. 25 . Remillon,O.(2003).Étudedessubstancesprioritairesàprendreencomptepourl’échéance 2015delaDirectiveCadresurl’EausurlebassinRhinMeuse:Modélisationdesapportsdiffus en métaux lourds sur le bassin RhinMeuse – Évaluation de l’évolution des apports sur la période2000à2015.Agencedel’eauRhinMeuse. Taylor, K., Caux, P.Y., Moore, D. et al. (2001). Liste des substances d’intérêt prioritaire Rapport d’évaluation – Hexachlorobutadiène. Environnement Canada, Loi canadienne sur la protectiondel’environnement(1999). Tilman,A.(2003).RapportdesONGEsurl’hexachlorobutadiène(HCBD).SavetheOakRidges Moraine(STORM)Coalition. VandePlassche,E.,Schwegler,A.(2002).Hexachlorobutadiene.RoyalHaskoning.

INERIS –DRC- MECO

Version N°1-mai 05 Page9sur10 INERISDonnéestechnicoéconomiquessurlessubst anceschimiquesenFrance

HEXACHLOROBUTADIENE, HCBD

INERIS –DRC- MECO

Version N°1-mai 05 Page10sur10 P A? offb r bt (

/ , jct I

SON 27416X Atstoffe (BUA) Beratergremium für umweltrelevante Hexachiorbutadien der Geseflschaft Deutscher Chemker BUA-Stoffbericht 62 (August 1991)

Vorsltzender: Chemie der Umversität Tübingen Prof. Dr. E. Bayer. nstrtut für Orgarnsche herausgegeben vom Beratergremium Mitglieder: e V. Hamburg (BUA) Dr. G Alfke, Mineralólwirtschaftsverband Altstoffe Cheme der Universität Ulm für urnvveltrelevante Prof. Dr. K. Ballschmder. Abteilung Analytische Umweltchemikalien/Verbrauchersicherheit, Dr B, Broecker HOECHST AG, Abteilung der Gesellschaft Deutscher Chemiker Institut der Universität Kiel Prof. Dr. 0 Fränzle, Geographisches am Engler-Bunte-Institut der Universitàt Prof. Dr. F. H. Frimmel, DVGW-Forschungsstelle Karisruhe Rh. BASF AG. Toxikologe, Ludwigshafen a. Prof. Dr. H-P G&bke, Vor Toxikologe, Neuherberg (stellvertreterider Prof. Dr H Grem GSF’ Institut für sitzender) und Okologie, Ludwigshafen a. Rh. Dr. W. G. Haltnch BASF AG Emissionsüberwachung Geselischaft für Erdöl, Erdgas und Kohie Dr. H. Jungen. Deutsche Wissenschaftliche e.V Hamburg Berhn Prof. Dr. D Kayser, Bundesgesundhetsamt. und Umwelthygiene der TU München Prof. Dr. Dr W Mucke nshtut für Toxtkologe Unversitàt des Saarlandes, Saarbrücken Prof. Dr. P Müfler, Institut für Biogeographm, Berhn Prof. Dr E Offhaus Umweltbundesamt, Eschborn/Ts. Dr. R. Ott. Deutsche SheH Chemie GmbH, fur Umwelt, Naturschutz und Reaktorsi Prof. Dr U. Schlottmann Bundesministerium cherheit. Bonn Leverkusen Dr N. SchOn BAYER AG, LE Umweltschutz/AWALU, Dr. A. Troge. Umweltbundesamt. Berlin Gäste: für Umwelt, Naturschutz und Reaktorsicherheit, Dr. H. W. Kraus, Bundesministerium Bonn Leuna-Merseburg Prof. Dr R Kummel Technische Hochschule Dr. J. Oberhansberg. BG Chemie, Heidelberg Altstoffe, Frankfurt am Main Dr. H. K Schafer Initiative umweltrelevante Unter Mitarbeit von: Berhn Priv.-Doz. Dr J Ahlers, Umweltbundesamt, Berlin Dr. D. Cohors-Fresenborg. Umweltbundesamt, Universität Tübingen Ettel, Institut fur Organische Chemie der Dr. S. Neuherberg Frau Dr Mangelsdorf. GSF-Institut für Toxikologie/Altstoffgruppe. Dr. B. Muller, DOW STADE GMBH, Stade Stade Frau DipL-Biol V Muller DOW STADE GMBH, für Toxikologie/Altstoffgruppe, Neuherberg Frau Dr. H. Sterzl-Eckert, GSF Institut der Universitãt Tübingen Dr D. Vogel Institut für Organische Chemie Chemie der Universität Tübingen Frau Dipi-Biol L Weis, Institut für Organische Chemie der Universität Tübingen Frau Dr. K. Widmann, lnstitut für Organische Weinheim New York Verantwortlich be der GDCh-Geschäitsstelle: Basel Cambridge Dr. H. Behret, GDCh, Frankfurt am Main ‘7(11 12 13 in 4, Ejntrag die Umwelt bel Herstellung. Verarbeitung, bedingungen: 400 °C, 0,5-2 bar) kann in den anfallenden Anwendung Abfallbeseitigunp und Rohprodukten kein HCBD nachgewiesen werden (Nachweisgrenze 1 mg/kg). Unter BerOcksichtigung der halben Nachweisgrenze 4,1L1lunsverfahrefl und einer TETRA—Produktionsmenge von 7500 t/a nach dem Verfahren der Hochdruck-Chlorolyse (BUA, 1990) ware mit HCBD ist kein Zielprodukt der chemischen Industrie der einem HCBD-Anfall von <5kg/a zu rechnen. Hochdruck Bundesrepublik Deutschland. Es fllt bei Niederdruck— Chiorolyse und Methanstufenchiorierung werden im Verhàltnis Chlorolyseverfahren (ProzeBbedingungen; 500—700 °C, 1,7-5 von 1/4 zu 3/4 angewendet (Hoechst AG, 1990; 1991a). bar; Dow, 1991; HOls AG, 1991b; Wacker, 1991c) zur Produktion von Tetrachiorethen (PER> oder Tetrachlormethan Dagegen fällt die Verbindung bei der Herstellung von (TETRA) als Nebenprodukt an. Abhangig von den gewahlten Hexachiorcyclopentadien mit Gehalten VOfl Ca. 0,2 % (Shell Reaktionsbedingungen kann das Rohprodukt 5 % HCBD oder mehr Nederland Chemie By) oder 1,11 % (Velsicol Chemical enthalten. weiches gemeinsam mit anderen hdher siedenden Corporation. USA) an (BUA, 1988). Hexachiorcyclopentadien Nebenprodukten in den ProzeB zurUckgefDhrt (Ullmann, wird wird in Deutschland nicht produziert (SRI, 1990). 1986; Winnacker-KDcMer, 1982).

Bei der Herstellung von 1,1,2,2-Tetrachiorethan aus Acety Bei den derzeit in der Bundesrepublik Deutschland zur len und Chior entstand als Nebenprodukt im Rohprodkt etwa Herstellung von PER und TETRA betriebenen Niederdruck 0,4 % HCBD. Die anschlieBende Spaltung von Tetrachiorethan Chlorolyseverfahren, bei denen unter AusschluD von zu Trichiorethen führte zu keiner weiteren HCBD-Bildung. Sauerstoff aliphatische, sauerstofffreie Kohien— und Chlor Diese Produktion endete 1978 (Wacker, 1991b). Die Tn kohienwasserstoffe (grolltenteils Nebenprodukte und! oder chlorethenproduktion der Dynamit Nobel AG lief 1982 aus, ROckstinde anderer Verfahren) mit 1 bis 4 Kohienstoffatomen die HUls AG stelite die gleiche Produktion 1989 em (HOls MolekOl TETRA im zu und PER chioriert werden, fallen im AG, 1990b) Rohprodukt noch ca, 0,2—0,5 % HCBD an. Diese Verminderung im Vergleich zu den oben zitierten S % ist auf ProzeB Zur direkten Herstellung von HC8D konnen Chlorderivate des optimierungen zurOckzuführen. Der bei diesen Verfahren nach Butans bei 400 - 500 °C mit vierfachem ChlorOberschuB unter destiulativer Aufarbeitung verbleibende, 7-10 % HCBD ent Normaidruck chioniert werden. Die HCBD-Ausbeute betriigt haltende RDckstand wird thermisch und durch RDckgewinnung 75 % (Ullmann, 1986). des bei der Verbrennung (1200 °C) entstehenden Chiorwas serstoffs und Kohiendioxids abgasarm stofflich verwertet Die Verbindung kann auch aus Butadien durch Chlorieren im (DOW, 1990). Wirbelschichtreaktor bei 400 - 500 C mit grol3em Chloruber schuB hergestellt werden (Ullmann, 1986). Bei den ausschlielllich zur TETRA-Herstellung angewendeten Verfahren der Hcchdruck-Chl orolyse (ProzeBbedi ngungen: Nach einem Verfahren des Consortiums für Elektrochemische 600 C, 120 bar) und der Methanstufenchiorierung (ProzeB Industnie kann man HCBD aus dem zu 60 % im ROckstand der 1,1,2,2—Tetrachlorethanproduktion enthaltenen 1,1,2,3,4,4- 14 15 Hexachiorbutan gewinnen, indem man wiederholt bei Tabefle 70-80 °C I Angaben zu Anfall, Export und Entsorgung von in Gegenwart von Eisen(III)-chlorid chioriert und anschlie HCBD in der Bundesrepublik Deutschland und der Bend bei 170 °C dehydrochioriert (Ullmann, 1986). EG

Die letzten 3 genannten Verfahren werden technisch in der chemischen Industrie der Bundesrepublik Deutschland nicht Bundesrepublik EG b) einqesetzt. Deutschland a) (Stand 1979) (Stand 1980) (t/a) (t/a) Von dem als Nebenprodukt anfallenden HCBD wurden bis io ca, 300 t/a zu einem hochreinen Produkt aufgearbeitet Anfallende und Menge Ca. 4500 Ca. 10000 Export exportiert (HOls AG, 1990c, s. 4.2). 1021 Ca. 1000 nicht wiederverwertetes HCBD: Verbrennung Ca. 3400 5580-6120 Deponierung 100 1600-2440 4.2 Hersteller und Verarbelter. Produktlonsmengen. Export, Quellen j3, Gesamtverbrauch a) Stellungnahme zur Richtlinie des Rates 76/464/ EWG (1984); b) Kommission der EG (1987)

Das in der Bundesrepublik Deutschland im Jahr 1979 als Nebenprodukt anfallende HCBD wurde auf 4500 Diese t/a geschätzt Schätzungen sind jedoch heute nicht mehr zutreffend. (Stellungnahme zur Richtlinie des Rates 761464/EWG, 1984). Legt man die derzeitigen deutschen Produktionskapazitaten Innerhaib der EG belief sich die anfallende HCBD-Menge nach für PER von Ca. 190000 t/a (SRI, 1990) bzw. für TETRA von Angaben der Commission der Europäischen Gemeinschaften Ca. 85000 t/a (SRI, 1990) (Hoechst ausgenommen, S. 4,1) (1987) auf Ca. 10000 t/a (Stichjahr 1980). Die weitere Ver— zugrunde, so läBt sich - ausgehend von einem HCBD-Gehalt wertung ist in Tabelle 1 aufgefuhrt. von Ca. 0,2 - 0,5 % im Rohprodukt (siehe 4.1) - eine in der Bundesrepublik anfallende HCBD-Menge von 550 - 1400 t/a berechnen. Davon wurden bis 1990 Ca. 300 t/a zu einem hochreinen Produkt aufgearbeitet und exportiert (Hüls AG, 1990c). Die restlichen 250 - 1100 t werden in den ProduktionsprozeB zurOckgefUhrt (siehe 4.1). Angaben zu PER-Importmengen liegen noch nicht vor (PER-BUA-Bericht in Vorbereitung)

Für Westeuropa làBt sich eine HCBD-Menge von Ca. 2000 - 49900 t/a abschätzen, wenn man von einer PER-Produktions kapazitat von 556000 t/a (SRI, 1990) bzw. von einer TETRA Produktionskapazitat von 442000 t/a (SRI, 1990) (Hoechst AG ausgenommen, S. 4.1) ausgeht und eine durchschnittlich beim Ni ederdruck-Chl orolyseverfahren entstehende HCBD—Menge von 4.3 Verarbeitung. Anwendung und Verbrauchsmengen

0,2 - 5 % (s. 4.1) zugrundelegt. 4.3.1 Verarbeitung In geringen Mengen (ca. 10 t/a) fallt HCBD in der Bundes republik Deutschland bei der Verarbeitung (Hoechst AG, Werk HCBD wird in der Bundesrepublik Deutschland nicht weiter Griesheirn) von Hexachiorcyclopentadien (HCBD-Gehalt ca. verarbeitet (Stellungnahrne zur Richtlinie des Rates 0,2 %) zu Endosulfan an; as wird jedoch nach destillativer 76/464/EWG, 1984; Kornmission der EG, 1987) Abtrennung in einer SonderrnUllverbrennungsanlage urnweltver träglich beseitigt (Hoechst AG, 1990; 1991b). Daruberhinaus Die aus der Bundesrepublik exportierten 300 t HCBD/a wurden wird Hexachiorcyclopentadien als Zwischenprodukt zur zur Herstellung von Perchiorvi nylessi gsaurebutylester, Herstellung von Mittein zur FlarnrnschutzausrUstung von einern Hilfsstoff für die Kautschukherstellung, verwendet Kunststoffharzen und Polyrneren verwendet. Daten zu Rest (HUls AG, 1990c). Der Verkauf von HCBD wurde rnit dern Jahr gehalten von HCBD in den Endprodukten liegen bisher nicht 1990 eingestellt, da Perchlorvinylessigsäurebutylester 1991 vor letztrnalig synthetisiert wird (HOls AG, 1990a).

Nach Angaben der Kornrnission der EG (1987) fällt HCBD als Es ist nicht bekannt, ob HCBD in anderen europäischen Nebenprodukt in 13 PER/TETRA-Produktionsstatten in der EG Ländern weiterverarbeitet wird. an: Belgian (1), Vereinigtes Konigreich (1), Spanien (2), Frankreich (3), Niederlande (1), Bundesrepublik Deutschland (4) 4.3.2. Anwendung

Bei den PER/TETRA-Produktionsstatten in der Bundesrepublik HCBD wird in der Bundesrepublik Deutschland nicht verwen Deutschland (SRI, 1990) handelt es sich urn: det (Stellungnahrne zur Richtlinie des Rates 76/464/EWG, 1984; Kommission der EG, 1987). Chernische Werke Hüls, Marl Dow Stade GrnbH, Stade Mischungen von HCBD (50-70 %) und Trichiorethen wurden laut Hoechst AG, Frankfurt llllrnann (1986) in frGheren Jahren als Kühlrnittel in Trans Wacker-Cherni a, Burghausen formatoren verwendet.

Die Perchlorierungsanlage der Hüls AG wurde Ende Mai 1991 Die in Rornpp (1990) zitierten HCBD-Anwendungen als stilloelegt (HUls AG, 1991b). Bel der Hochdruck-Chlorolyse Lösernittel für Polyrnere oder HydraulikflDssigkeit sowie die und der Methanstufenchiorierung der Hoechst AG (Zielprodukt in Ullmann (1986) vorgeschlagenen HCBD-Anwendungen als TETRA) entsteht kein HCBD (siehe 4.1). synthetische Gleitmittel, HydraulikflUssigkeit und nicht brennbares Isolieröl hatten rnoglicherweise frGher in der (iber Irnporte von HCBD in die Bundesrepublik Deutschland ist Bundesrepublik Bedeutung. Es gibt keinerlei Hinweise auf nichts bekannt. derartige aktuelle HCBD-Anwendungen (DOW, 1990). Auch Qber 19

eine derzeitige Anwendung von HCBD als Begasungsmittel Plogliche HCBD-Emissionen bei der PER/TETRA-Hersteliung wer gegen Nematoden (Fragiadakis et a]., 1979) in der Bundes den Ober em Ventsammelsystem einer Verbrennungsanlage republik ist nichts bekannt (DOW, 1990). (1200 °C) zugefuhrt (DOW, 1990) oder können mit PER Emissionen (Emissionserkiarung für PER; Wacker, 1991c) auf HCBD wurde ais Aigizid in Industriewasserreservoiren, Gra treten. dierwerken und KDhiwassersystemen eingesetzt (Uiimann, 1986; Archipova et ai., 1963). Nach Angaben der IARC (1979) Angaben zu etwaigen HCBD—Emissionen bei der Verbrennung wurde HCBD ais Pestizid in Weinbergen vor aliem in der I-ICBD—haitiger Abfãiie liegen nicht vor, UdSSR (Krasniuk et aL, 1969), aber auch in Frankreich, Italien, Griecheniand, Spanien und Argentinien verwendet. HCBD ist im verkaufsfahigen PER nicht nachweisbar bei In einer neueren Veroffentlichung der Kommission der EG Nachweisgrenzen von < 5 pg/i (DOw, 1990) bzw. < 100 pg/i (1987) werden diese Verwendungsarten nicht mehr genannt. (Wacker, 1991a). Der Eintrag von HCBD in die Atmosphare Die berichtete Polymerisation von HCBD (Kirk-Othmer, 1980) aufgrund des Verbrauchs von PER in der Bundesrepublik im auf Oberflachen unter Einwirkung von UV—Licht steilt keine Jahr 1990 von 26300 t (DOW, 1991; Wacker, 1991c) kann unter Anwendung von HCBD in der Bundesrepublik Deutschiand dar. BerGcksichtigung der haiben Nachweisgrenzen auf 0,56 kg/a abgeschatzt werden. Das von Hüis hergesteiite PER wurde in der Bundesrepublik Deutschiand nicht verkauft (Hüis AG, 44 Elntrag in die Atmosphäre 1991b). Angaben zu PER—lmportmengen liegen noch nicht vor (PER-BUA-Bericht in Vorbereitung) Die llmstellung der Trichlorethenproduktion sowie ProzeB optimierungen der Herstellung von PER und TETRA (siehe 4.1) Im verkaufsfähigen TETRA ist HCBD bei einer Nachweisgrenze und die damit einhergehenden Emissionsminderungen hatten von < 5 pg/i (DOw, 1990) nicht nachweisbar. Der Eintrag von eine erhebliche Verringerung des HCBD—Anfalis zur Foige. HCBD in die Atmosphare aufgrund des Verbrauchs von TETRA in Die in der Vergangenheit erfoigten HCBD-Eintrage in die der Bundesrepubiik Deutschiand ist vernachissigbar, da Atmosphäre, aber auch in die Hydrosphare, Geosphare und 99 % des produzierten TETRA zur Hersteiiung von Fluorchior— Biosphire lassen sich rnangeis verfUgbarer Daten nicht kohienwasserstoffen verwendet werden (BIJA, 1990). quantifizieren. Der weitweite Eintrag von HCBD in die Atmosphare wird mit mindestens 3000 t/a angegeben (Class und Bailschmiter, 4.4.1 Eintrag bei Herstellung und Verarbeitung 1986; 1987). Dieser Wert stelit eine grobe Schätzung dar

auf der Grundlage von Luftmessungen aus den Jahren 1982 - HCBD wird in der Bundesrepublik weder gezielt hergesteilt 1985 unter Verwendung eines Zwei-Kompartiment- Modelis (mit noch weiterverarbeitet mit Ausnahme der von der Hüls AG aus je einem Kompartiment für die Süd- und die Nordhemisph,ire). dem PER/TETRA-Prozeli abgetrennten 300 t/a (bis 1990, siehe Dabei wurden ‘steady state’ Bedingungen in der nbrdlichen

42) * Angaben zu mbgUchen HCBO-Emissionen bel der PER/TETRA-Kerstellung der Wacker-Cheeje liegen noch nicht vor. 20 21

Troposphare angenommen und stratospharische und ozeanische 4.5 Eintrag in die Hydrosphàre Senken in erster Näherung vernachlãssigt. Die Vernachiäs sigung dieser Senken ist jedoch im Falie von HCBD nicht zu— 4.5.1 Eintrag bei Herstellung und Verarbeitung Hssig, da sie mit den physikalisch-chemischen Daten (z. B. Wechselwirkungen mit fein verteilter organischer Substanz Obwohl es sich bei den Prozessen, in denen HCBD anf1it, urn von Gewässern, Sedimenten und Böden) nicht vereinbar ist. wasserfrei arbeitende Verfahren handeit, können sich Emis sionen ergeben als Folge von Leckagen an Leitungen, Behäi tern und Apparaturen, Reinigungsarbeiten an Produktions 4 4 2 anlagen sowie Betriebsstorungen.

HC8D wird in der Bundesrepublik Deutschland nicht ange Diese Emissionen sind jedoch nicht exakt quantifizierbar, wendet (siehe 4.3.2). da HCBD im Abwasser in der Regel nicht nachweisbar ist, Die Nachweisgrenzen liegen bei 0,01 * 100 pg/i (DOW, 1990; Hoechst AG, 1990, 1991b; Hills AG, 1991a; Wacker, 1991a; 4.4.3 HCBD-Anfall bei simulierter Müflverbrennunp Bayer, 1991). Auf der Basis der jeweiiigen halben Nachweis grenzen lassen sich firmenbezogen die foigenden rnaxirnalen In doer Sitnulationsapparatur wurden bei 800°C und einer HCBD-Einträge schàtzen: Luftstrornungsgeschwindigkeit von 5 1/mm je 2 g Polytetra chiorisopren bzw. Poiyvinylchiorid verbrannt. In den Ver brennungsgasen konnten bezogen auf 1 g eingesetzter Poiy Firma Abwasser- HCBD- rnermenge 01 Kapazitat pg bzw. 0,08 pg HCBD nachgewiesen werden. Da reinigung Abwasserwerte PER/TETRA die Verbrennungsbedingungen so gewãhit wurden, daB sie der (pg/i) (kg/a) (t/a) Mullzusamrnensetzung und den Bedingungen von MDliverbren DOW Stade nungsanlagen in etwa entsprechen, folgern die Autoren, daB Dampf-Stripper < 0,01 0,15 160000 GmbH, Stade biol. Aufber. die irn MOll vorhandenen chiorhaitigen Polymere Ausgangspro. dukte für die Bildung von unter anderem HCBD in nachweisba HUls AG, Marl bioi. Aufber. < 0,1- 10 75000 <1 rer Konzentration sind (Lahaniatis et al., 1981). Nach An Wacker gaben von Lahaniatis (1991) ist die Mögiichkeit nicht aus Chemie, Dampf—Stripper < 100 566 40000 Burghausen biol . Aufber. geschlosseri, daB bei der Verbrennung von Polymeren in Gegenwart von anorganischen chiorhaitigen Verbindungen Bayer AG, bioi. Aufber. < 2 < 40 * HCBD Leverkusen entsteht.

Hoechst AG, biol. Aufber. < 0,1 ** Frankfurt Reingaswerte von HCBD bei der MUll- und Sonderabfallver

* QueUe g1ichen brennung liegen nicht vor. d. HCBO—Eintrages nicht bekannt; = HCBO-Fintrag vor kiaranlage 0.015 kg/a; = Ablaufwerte beziehet, sich auf die Endosulfan.-Herstellung. die 1991 auf em völHg wasserfreies Verfahren umgestellt rde. Ga bei der TETRA-Produktion der Hoechst AG in Rohprodukt kein HC&) nachgewiesen werden konnte, bleiben entsprechende negi iche Eintragswerte in die Hydrosphäre bier unberOcksichtigt (s. 4.1). 22 23 Diese Werte stellen jedoch keine realen, durch Messungen 4.6 Eintrag in die Gea- und Biosphäre belegten Eintrage, sondern lediglich grob geschätzte Maxi ma1Frachten dar. Es liegen keine Daten vor.

Die Internationale Kommission zum Schutze des Rheins gegen HCBD kann durch Auswaschung aus der Atmosphàre in den Boden Verunreinigung (1989) berechnete für das europaische gelangen. Ferner ist em HCBD-Eintrag in die Geo- und Bio Rheineinzugsgebiet eine HCBO-Gesamtfracht von ca. 70 kg/a sphare über Deponiesickerwasser aus Aitlasten möglich (s. (Stand 1985). Für den Stromkilometer 474,5 der Elbe 4.7). (Schnackenburg. Grenze zur ehemaligen DOR) wurden aus Wochenmischproben HCBD-Tagesfrachten für 1988 ermittelt (ARGE Elbe, 1989), aus denen sich eine HCBD-Jahresfracht 4.7 Eintrag durch Abfälle und deren Behandlung von ca, 150 kg abschätzen Hilt. Der HCBD—Eintrag in die Nordsee Qber F1(isse wird auf der Basis von HCBD In der Bundesrepublik Deutschland werden HCBD-haltige RUck Konzentrationen in Maas und Rhein auf 20 t/a geschätzt stànde aus der PER/TETRA-Herstellung in den Produktionspro (Deutsches Hydrographisches Institut, 1984). Diese 1984 zeil zurQckgefUhrt. getroffene Schãtzung Hilt sich mit den oben zitierten HCBD-Frachten von 70 kg/a und 150 kg/a nicht in Einklang Klärschlämme aus der Abwasseraufbereitung von Anagen zur bri ngen. Herstellung von PER/TETRA, die u.a. HCBD enthalten, werden deponiert (Wacker, 1991a), verbrannt (Wacker, 1991a; Hoechst, 1991b; Hüls AG, 1991a) oder durch RDckgewinnung 4 5. 2 des bei der Verbrennung entstehenden Chiorwasserstoffs und Kohiendioxids abgasarm stofflich verwertet (DOW, 1990), Ocr HCBD wird in der Bundesrepublik nicht angewendet (siehe HCBD-Gehalt der deponierten Klarschlämme sind nicht bekannt 4.3.2). (Wacker, 1991a). Die Deponiesickerwässer werden einer biologischen Kiaranlage zugefflhrt (Wacker, 1991a).

45,3 gjin tiber den Anfall von HCBD-haltigen Abfällen bei der Her stellung von chiorierten Kohienwasserstoffen und deren HCBD kann durch Auswaschung aus der Atmosphare in die Lagerung auf SondermOlldeponien in früheren Jahren liegen Hydrosphare gelangen. keine quantitativen Angaben vor. Frühere HCBD—Funde in Deponiesickerwasser (s. 5.2, Tabelle 3) weisen auf soiche Aitlasten hin. 25 4,8 jftnz derEInträgejndfe)mH 5. Vorkommen in der Umwelt

Eine Bilanzferung der Einträge von HCBD in die verschie denen Sofern die Bezugsbasis (Feuchtgewicht oder Trockengewicht) Umweltkoinpartjmente 1st aufgrund der unzurejchenden der folgenden Daten nicht genannt wird, konnte sic aus der Datenlage kaum möglich, Literatur nicht entnommen werden.

Bisher fehien Daten zu etwaigen HCBD—Eintragen in die Atmosph8re als Folge der PER/TETRA_Herstellung (siehe 4.4.1) und der 5.1 Atmosphäre Verbrennung HCBD_haltger Abfälle.

In Luftproben einiger amerikanischer Städte wurde HCBD 1980 Ocr HCBD-Eintrag in die Atmosphre aufgrund des Verbrauchs von PER wird für in mittleren Konzentrationen von 21-118 ng/m3 gefunden die Bundesrepubji Deutschland auf < 0,56 (Singh et al., 1982). In der nördlichen bzw. sOdlichen kg/a geschatzt. Da TETRA zu 99 % weiterverarbeitet wird (s. 4.4.1), 1st em Hemisphäre wurden an Probenahnieorten, die sich weit ent. entsprechender HCBD-Eintrag vernach]àssjg.. bar, fernt von anthropogenen Quellen befanden, mittlere atmo sphärische HCBD-Konzentrationen von 1,8 bzw. 0,8 ng/m3 gemessen (Class u. Ballschmiter, 1987, siehe Tabelle 2), Ocr ausschlieBljch auf Basis von groben Abschätzungen zu vermutende Untersuchungen aus der Bundesrepublik Deutschland liegen HCBD-Eintrag in die Gewässer der Bundesrepublik nicht vor. Deutschland aus Prozessen, bei denen HCBD anfällt, könnte maximal 620 kg/a betragen. Durch Auswaschungen aus der Atmosphre kann HCBD sowohi in die Hydrosphare als auch in Tabelle 2 Konzentration von Hexachiorbutadien die Geosphare gelangen, in der Atmosphäre (in ng/m3)

Em Eintrag von HCBD in die Geo- und Biosphare über Depo niesickerwasser aus Aitlasten 1st mdglich, Ort u. Jahr Mittelw. Mis. Max. Uteratur

Houston, USA (1980) 118 ±214 11 1648 Siogh et xl, (1982) St. Louis, USA (1980) 32 ± 21 11 107 Sin9h et xl. (1982) Denver, USA (1980) 21 ± 11 0 75 Singh et xl, (1982) Riverside, USA (1980) 43 ± 32 11 171 Singh et xl. (1982) Nördl. Hemisphere (1982—1985) a) 1,8 ± 0.5 0,2 3,2 Class u. Ballschmiter (1987) Sudl. Hemisphere (1982—1985) b) 0,8 ± 0,3 0,8 0,8 Class u. Bxllschmiter (1987)

Probenahemorte: a) Deutsche Bucht, Bretagne, Portugal • Azores, Madeira, Teneriffa, Berxsjda, b) Westafrika, Malediven 26 27

5.2 hje Tabelle 3 (Fortsetzung)

Die in der Kydrosphàre gemessenen KCBD-Konzentrationen sind in Tabeile 3 dargestelit. Ort U. Jahr Me8werte Mnrkungen sur Li teratur Probendore In Untersuchungen von 1976/77 (Bundesrepubiik Deutschiand) wurden mittlere FICBD-Konzentrationen in Oberfiachenge l9sein b. Wesel, 1987 ‘0,01-0,02 Monats- bzw. Wochen- ARW (1987; 1988) wässern von < 0,1 bis 13,2 pg/I berichtet (Maximaiwert; 1988 n.n. saimeelproben b) 47,1; Bauer u. Selenka, 1979). Neueren Untersuchungen Rhein b. Düsseldorf, 1982—86 <1,01 Jahresmittelw., ber. Brauch u. K[ihn (1988) zufoige aus Mc,natsmittelw. liegen die HCBD-Werte meist unter 0,01 pg/i. Lokai wurden jedoch auch erhebiich hdhere Werte gemessen. Ufer Rhein U. Nebenfiüsse LIlA (1987; 1990; 1991) bzw. DUnenfiltrat Rhein Süd, 1986 0,02 13 onnati, Messurigen; des Rheins enthieit < 0,01 bzw. 0,03 pg hochsten HCBD/1. 1989 0.0, c) Angabe d. go Sediment und Schwebstoffe deutscher Gewässer Rhein Piitte, 1986 0,01 moo senen Konzentr. (1982-89) enthielten 1989 0,01 < 0,1 - 300 pg HCBD/kg. In Trinkwasser Robin Nord, 1986 rhO, (Bundesrepubiik Deutschland und Niederiande) wurden 1976-78 1989 0.11, HCBD-Gehaite von <0,01 bis 0,8 pg/i gefunden. Neuere Daten liegen nicht Sieg, 1986 n.n. vor. In kontaminiertem Grund- bzw. Brunnen— 1989 n.n. wasser wurden Wupper, 1986 0.11. mittiere HCBD-Konzentrationen von 0,15 bis 1998 0,01 0,3 (Maximaiwert pg/i 2,53 pg/i) gemessen. In Sickerwasser Erft, 1986 n.n. proben n’s. niederiändischer MOlideponien von 1973/74 iagen die 1989 Ruhr, 1986 n’s. HCBD—Gehaite be) n.n. bis 55 pg/i. 1989 n.n. tlnscher, 1985 0,01 1989 n’s, Lippe, 1986 1,0 Tabelie 3 1989 0,07 Konzentration von Kexachiorbutadien in der Hydrosphäre Mainfahne 5. Wiesbaden, 1982 0,1 (niax.0,2) wdchentiiche Meijers (1985) 1983 0,1 (max.0,8) Stichproben 1. Quart. 1984 ‘0,1 (max.0,4)

Ort u, .Jahr Elbe, 1980 ‘0,02-1,0 elsie weitere Sn- PlELF MeOwerte Anmorkungen zur Literatur (1983) Probenahmo 1981 ‘0,02-0,04 gaben 1982 <1,02-0,05

RInse (pg/i) Eibe-LWngsproffl, 1986 U. 1989 3 bzw, 4 onnati, ARGE ElSe (1987; 1990) Schnackenburg. 1986, Ion 474,5 0,005-0.018 Messungen libel n Schnackenb’Jrg, 1989 0,004-0,012 Their, 5, Wlesbaden, 1987 Geesthacht, 1986, kin 589 <1,001-0,004 <1,01 Monats- bzw. Wochen- ARW (1987; 1988) 1985 n.n, a) sasireiproben 5) Oeesthacht, 1989 0,003-0,014 Rhein 5. tub, 1987 <1,01 Teufelsbruck, 1986, kin 630,1 <1,001-0,803 1988 no. Teufeisbruck. 1989 0,801-0,008 Rhein 5, lXIsseldorf, 1987 ‘0,01 1980 i,n,-0,02 28 29 JZJ11e 3 (Fortsetzung) Tabelle 3 (Fortsetzung)

Ort ii. Jahr MeOwerte Anmerkungen cur Literatur Ort u. Jahr Mellwerte Aneierkungen cur Literatur Probenahire Probenalere

Stader Sand, 1986, km 653,1 ‘0,001—0,002 3 bzw, 4 renati. ARGE flbe (1987; 1990) Rlaein u. Lek, Niederl., 1983 Stader Sand, 1989 0,002-0,007 ‘0.1 52 Proben Meijers (1988) Messungen vor Bodenpassage BrunsbUttel, 1986. km 693 ‘0,001-0,001 0.07 Einzelnessung mach Bodenpassage BrunsbUttel, 1989 <0,001-0,002 -‘0,01 Einzelnessung Scherh6rn, 1986, km 757 <0,001 Trinkwasser, 1977 SchariWirn, 1989 -‘0.001 ‘0,1 Mittelwert aus 100 Rauer (1981) (n.m.—0,8) e) StOdten )jbe Gewasser U. Hafen— n,n.-0,08 d) Einzelproben a. 57 lHweltbehörde Hanturg Grundwasser, gewsser (auGer Elbe). 1983-85 Schweiz (Kontami- 0,2-0,3 line weitere An- Giger u. Schaffmer (19131) Me8stellen, davon (1988) nation durch Deponiesicker- gaben HC8D n.m. in 46 Pr. wasser) [am, 1980 ‘0,02-0,3 ohne weitere An- l4ELF (1983) Brunnenwasser, Tennessee (nahe 0,15 olive 1981/82 41.02 gaben weitere An- Clark et vi. (1982) Sondernilldeponie), 1978 Leime, 1980 41,02-0,93 (n.n.-2,53) f) gaben tI’IELF (1983) 1981/1982 <0,02 Sickerwasser MUildeponie, Weser, 1980/81 ‘0,02 n.n,-55 f) Einzeleessungen an kotcias et a], (1975b) M1ELF (1983) Niederlande, 1973/74 1982 <0,02-0,03 3 Oeponien

Niederlande Sediment, Schwebstoffe (pg/kg Trockensubst.) ljssel (Kaa,en), 1973 0,13 Einzelmessung Goldbach Ketelamer, et al. (1976) Rheinsediment, Hitdorf, 1982 2 ohne weitere 1973 0,13-0,2 Einzelmessungen An- Alberti (1983) ljsselnmer, Wesel • 1982 5 gaben 1973 0,05—0,07 Einzelnessungen Rheinsediment, USA 1987/88 jHhrl. Messung an 15 [WA (1989) Niagara, 1981-83 km 639,1-863,8 11. lifer <0,1-2,1 Standorten, Angabe d. 0,0008±0,0005 104 wdchentl. Proben Oliver u. Nicol (1984) km 659,8—830,0 re. lifer 1,0-10 (0,0003-0.0032) höchst. gee. Konzentr.

Rheinsediirent, 1988/89 1,4—300 (mg/I) 5 manatl. Messungen LWA (1991) km 814,6, Hafen Wend Niederld. Nordseeküste, 1983/84 0,28 108 Proben Van de Meent et al. (1986) Schwebstoffe, Rhein b. Kleve- (41.02-1,3) 3.2 (<1-18) Mittelw. aus zu 4— [WA (1990) Birmen, 1989 Wo.sanirelpr. vereinig Nord±,kUste, Deutsche ten 2h—Mischpr. Bucht, 41,02-1,8 ohne weitere An- Elbeeiindung, U8A (1989) 1986 gaben (jpp, Sediment, 1986/89 [WA (1991) km 221. Dorsten 8-30 4 mnatl. Messungen Grundwasser, Trinkwasser (pg/I) km 84,9, Waltrop <1 4 nonatl. Messungen liheinwasser vor Filtration, km 46,9, oberh. Hüls AG 10 1 Messung 1,0 ohne weitere An- Zoeteman 1976/78 et al. (1980a) lair 37,1, unterh. Hills AG 220 Messung gaben 1 DUnemfiltrat Rhein, 1976/78 0,03 Hanturgische Gewässer Uferfiltrat Rtiejm, 1976/78 ‘0,01 (auSer 41,1-1,8 Einzelpr. a, 25 MeA- ]Wweltbehuirde Hadeurg uferfiltr. Trinkwasser Elbe), 1983—85 stellen, davon 1975/75 -‘0,01 ohne weitere An— 23 n.m. (1986) Zoete,nan et al. (198Db) Hafengewasser, 1983—85 <0.1-56 (max. 0,1 gaben Einzelpr. a. 32 Me13- stel len 30 31

Tabelle 3 (Fortsetzung) 5.4 Biosphäre

5.4.1 Organismen

Ort u. Jahr Me8werte 4nmerkungen zur Literatur Probenabse HCBD wurde in verschiedenen aquatischen und in einigen terrestrischen Organismen in einem weiten Konzentrations Ontario See, Kanada bereich nachgewiesen (siehe Tabelle 4). liodensedleent, 1981 21±13 38 Proben Oliver U. Niimi (1988) Schwebstoffe, 1982-86 6,3±1,5 10 Probe,, Wasser des Sees, 1984 0,000018 7 Proben Pearson und McConnell (1975) untersuchten aquatische und ±0,000007 terrestrische Organismen aus dem Mundungsgebiet des Flusses Schwebstoffe 1985/86 0,002 43 Probes Maguire u. Tkacz (1989) tlersey und der Liverpool Bay, wo chlorkohlenwasserstoffpro (pg/i Wasser) duzierende Anlagen angesiedelt sind. Im Wasser und irn n.s, nlcht nachweisbar, a) Nachweisgrenze 0,01 jig/i; b) Stichproben im wdchentlichen (1987) bzw. Sediment der Liverpool Bay wurden HCBD-Konzentrationen von tg1. (1988) Abstand, die zu Monats— (1987) bzw, Wochensanmeiproben (1988) vereinlgt wurden; c) ‘untere <0,02-0,4 pg/l bzw. <0,02—>8 pg/kg Mwendungsgrenze’ 0,01 jig/i; d) Nachweisgrenze 0,005 pg/i; e) Nacbweisgrenze 0,001 pg/i; Feuchtgewicht gernessen. f) Nadsweisgrenze nicht arigegeben; Marines Plankton und marine Algen aus der Liverpool Bay enthielten bis zu 0,09 bzw. 8,9 pg HCBD/kg. In marinen Wir bellosen wurden bis 3,8 pg/kg gefunden. Die HCBD 5.3 àre Konzentrationen in marinen Fischen erreichten Werte bis 2,0 pg/kg. Leber bzw. Muskel von zwei Wasservogelarteri ho Hamburger Raum wurde 1984 kein HCBD im Boden gefunden. enthielten 0,8 und 5,2 bzw. 2,6 pg HCBD/kg Feuchtgewicht. Die Nachweisgrenze betrug 0,1 pg/kg. Die Proben wurden an 22 MeBstellen unterschiedlicher Nutzung (Industriebereiche, Bei den Fischen aus dem Ijssel- und dem Ketelmeer wurden GrUnf1chen, Wohngebiete) aus 0—25 cm Tiefe entnommen (Urn jeweils auch die KorpergroBe, das Gesamtgewicht, der weltbehörde Hamburg, 1988). relative Fettgehalt und das Alter angegeben (Goldbach et al., 1976). Von 6 Fischarten (n=9) aus dem Ketelmeer wurde In einem (Jbersichtsartjkel der IARC (1979) werden für die zusätzlich der HCBD-Gehalt (bezogen auf Feuchtgewicht) in USA maximale Bodenkonzentrationen von 980 pg HCBD/g ge einzelnen Organen (Leber, Ovar, Niere, Restkdrper) nannt, Die Proben wurden aus der Umgebung von bestimmt, wobei die Leber im Vergleich zu Ovar und Niere Tetrachiorethen- und Trichiorethen_produzierenden Anlagen höher belastet war. Keines dieser Organe wies eine für die entnornrnen, In Bodenproben von Deichen in Louisiana wurden Akkumulation im gesamten Tier repräsentative HCBD—Kon HCBD-Gehalte von nicht nachweisbar bis 800 pg/kg bestimmt zentration auf; deshalb wurde bei den Ubrigen Tieren nur (IARC, 1979). Bodenproben, die entlang einem Querschnitt der dieser Ganzki5rpergehalt bestimmt. In Fischen aus dem starker Deiche entnornmen wurden, enthielten <0,7-321,5 pg HCBD/kg. belasteten Ketelmeer (0,13-0,2 pg HCBD/l) korrelierte der HCBD-Gehalt mit dem Fettgehalt, nicht jedoch bei den Fischen aus dem weniger belasteten Jjsselmeer (0,05-0,07 pg 32 33 HCBD/l). Die Autoren fanden keine Korrelation der Tabelle 4 Yorkommen von HexachiorbUtadien in der Biosphäre KCBO—Konzentration in den Fischen mit dem Alter und der Stellung in der Nahrungskette. Allerdings war die Stich— probenzahl hàufig zu klein, urn ailgerneine Aussagen treffen Organismus Konzentratiofl zu können. Literatur (pg/kg Feuchtgew.)

- Untersuchungen von Laseter et al. (1976) zeigten, dalI die Britische KOste tMesev Flu8mundung, UyrPQol Bayl RCBD-Gehalte in Wassertieren aus Probenahmeorten innerhalb Apuatische Organismen: einer Industrieanlage bzw, nahe einer HCBD-kontarninierten Deponie Plankton in Geismar, Louisiana (Wasser: 0,04—4,7 n.n.- 0,09 a) Pearson u. Mc pg HCBD/l; Enteromorpha cornpressa n.n. a) Connell (1975) Sediment: 190—1080 pg HCBD/kg Feuchtgewicht) bis urn zwei (Grunal ge) Ulva lactuca Gro8enordnungen hoher waren als n.n. a) die I-ICBD—Gehaite in (Grunalge, Meersalat) Organismen aus weniger belasteten Probenahrneorten des versch. Fucusarten 0,6 - 8,9 Mississippiufers Braunal gen) (Wasser: 0,9-1,9 pg HCBD/1; ( Sediment: <0,7 Nereis diversicolor 0,06 -219,4 pg HCBD/kg). (Polychaet)

Mytilus edulis 3,2 - 3,8 (Miesmuschel ) Neuere Daten zum HCBD-Vorkornrnen liegen nur für Kanada und Cerastoderma edule n.n. a) die USA vor. In einer (Herzmuschel ) Krebsart und drei Fischarten aus dem Cancer panurus 0 - 0,9 Calcasieu FluB fanden Pereira et al. (1988) 60 bzw. (Taschenkrebs) 345-1518 Raja clavata pg HCBD/kg Feuchtgewicht. An der Einleitungsstelle (Nagelrochen) Muskel 0,1 - 0,4 einer PER/Trichiorethenaniage wurden im FlulIwasser HCBD Leber 0,2 - 1,5 Konzentrationen Pleuronectes platessa von 1,3 pg/i gernessen, im Bodensediment (Scholle) Muskel 0,03- 0,4 1148 pg/g organischen Koblenstoff und im suspendierten Leber 0,2 - 1,2 Sediment 23,5 pg/g organischen Platichthys fiesus n.n. a) Kohlenstoff. Die dort (Flunder) gefangenen Welse enthielten 3960 pg HCBD/kg Feuchtgewicht, Lirnanda limanda während stromaufwrts gefangene (Kliesche) Muskel 0,05- 0,4 Tiere (Lake Charles, HCBD Leber 0,3 - 2,0 Konzentration in Wasser und Sediment nicht angegeben) 33 pg Scornber scombrus n.n. a) HC8D/kg Feuchtgewicht aufwiesen. (Makrele) Terrestri sche Organ I smen: Organismen aus dem weniger belasteten Ontario See (Wasser: ygis olor 0,018 ± 0,007 ng IICBD/l, Sediment: 21 ± 13 pg/kg Trocken— (Schwan) Leber 5,2 substanz) wiesen HCBD-Gehalte von nicht Niere n.n. a) nachweisbar bis Gallinula chlorppj 2,7 pg/kg Feuchtgewicht auf (Oliver u. Niimi, 1988). (Teichhuhn) Leber 0.8 Muskel 2,6 Eier n.n. a) ______

35

TabeH.ei (Fortsetzung) Tabelle 4 (Fortsetzung)

Organi sinus Konzentrati on Li teratur Organismus Konzentration Literatur (pg/kg Feuchtgew.) (pg/kg Feuchtgew.)

Anas p1 atyrhi nchos Mississippi R. (tinterlauf). LA (Stockente) Pearson u. Mc— Eier n.n. a) Connell (1975) Procambarus spec., n=4 10,6- 70,1 Laseter et al. Ketelmeer. Niederlande (Krebsart) (1976) Gambusia affinis, n=3 112,8—827,3 Detri tus (Koboldkarpfl i ng) (Boden), Goldbach et a] n1 200 (1976) (treibend), n=1 220 Geismar LA (nahe Kontaminationsguelle) = n 3 90 - 400 (01 igochaet) Plankton, n=1 1016 Laseter et al. n = 2 30 - 1670 Wasserpflanzen, n=3 9 - 20 (1976) (Schi animschnecke) Physa spec., n=3 345 n=1 2410 (81 asenschnecke) (Kugelmuschel ) Procambarus spec., n=9 997 Tinca tinca, n=1 950 (Krebsart) (Schleie) BitTilus rutilus, n=10 230 - 1400 ‘Recreation Pond’: (Rotauge) Gambusia affinis, n=27 890 &frrinis brama, n=5 780 • 2040 (Koboldkarpfl i ng) (Blel) “South Effluent”: LJJcjjjia, n=3 280 400 Gambusia affinis, n=24 817 (Wei Gfi schart) “Landfill Pond”: Perca fluviatilis, n=2 130 - 400 Gainbusia affinis, n=27 16205 TTbarsch)

110 - 1150 Lepomis macrochirus, n=45 600 (lander), n=8 (81. Sonnenbarsch) ispxlucius, n=1 260 Mi cropterus salmoi des (Hecht) (Forellenbarsch), n=1 Leber 2405 jjjmeer Niederlande Muskel 72 Rutilus rutilus, n=4 21 - 136 Lake Ontario, Kanada (Rotauge) Goldbach et a]. (1976) JiLajpisbrama, n=5 8 - 53 Plankton, n=3 0,1±0,04 Oliver u. Niimi (81 ci) Mysis relicta, n=2 0,1±0,1 (1988) QsmerLjseerlanus, n=3 38 - 47 ( Game] enart) Pontoporeia affinis, n=6 2,7±1,8 St I z ostedi on 1 uci.pLc 15 - 29 (Fl ohkrebsart)

(lander), n=4 Tubifex tubifex u. Lini- 0,7±0,4 n=4 12 - 53 nodrilus hoffmeisteri, n=6 (Aal) (01 igochaeten) Cottus cognatus, n=5 0,5 (Groppe) versch. Salnioniden, n=60 n.n. a) 36 37 Tabelle 4 (Fortsetzung) 4 pg/kg bzw. zwischefl 5,7 und 13,7 pg/kg (McConnell et. al., 1975). Das geringe Datenmaterial läBt weder auf Organismus Korrelatioflefl zwischen HCBD-Gehalt in Fett bzw. Leber und Konzentration Literatur (pg/kg Feuchtgew.) Alter noch zwischen HCBD-Gehalt in der Leber und HCBD Gehalt im Fett schlief3en. Cal casi eu. LAJn4h& , R/Jj,, jg,Jor tienani age) n=6 60 b) Pereira et al. (Krebsart) udFuttermJtte Micropogonias (1988) 5.4.3 NahrungS- undu-, n=6 902 b) latus (“Atlantic croaker’ , Fi schart) In einigefl der untersuchtefl NahruflgSmittel wurde HCBD in n 4 345 b) (“Spotted sea Konzefltratioflefl von 0,08 - 42 (in einem Fall auch 1320) trout”) pg/kg Feuchtgewicht nachgewiesefl (siehe Tabelle 5). Ictalurus furcatus, n6 1518 b) rt) HUhnerfutter enthielt 2 und 39 pg/kg Feuchtgewicht. Die von Yip (1976) analysierten Proben wurden aus der Umgebung Bayou dInde, (Ablauf d. PER/Trichiorethenanlage): Ictalurus Entfernung) Perchlorethen Trichlor furcatus, 3960 b) (max. 40km von und ethen_prodUZierefld1 Anlagen entnommefl und enthielten Lake Charles, stromaufwärts von Bayou dinde: [ICBD-Mengefl verglichen Ictalurus furcatus 33 b) vermutlich aus diesem Grund hohere mit den Angaben von Kotzias et al. (1975a) und McConnell et n.n. nicht nachweisbar; a) Nachweisgrenze nicht angegeben; b) eigene Berechnungen auf der al. (1975). Die unterschiedliCheT HCBD-Gehalte in Marga Konzentrationsangaben Basis der lipidbezogenen rine, Much und Kondensmilch je nach Herkuflft (Deutschlafld oder GroBbritanniefl) können auf der Basis der vorliegenden erkärt werden. Den relativ hohen Gehalt von 3,7 5.4.2 Mensch Daten nicht pg HCBD/kg FeuchtgeWicht in importierten blauen Weintrauben Autoren die Anwendung von HCBD als In 99 Fettgewebeproben fDhren die auf von Unfallopfern aus verschiedenen Provinzen Insektizid im Weinbau zurDck. Bauer (1981) fand in Kanadas aus dee Jahr 1976 wurde in 93 der Fälle MilchprodUktefl und kosmetisChefl ErzeugnisSen kein HCBD. Die HCBD gefunden, und zwar durchschnittlich 4 pg HCBD/kg NaBgewicht Proben stammtefl aus Bochumer Geschäftefl. Weitere Daten aus (1 - 8 pg HCBD/kg Nai3gewicht) (Mes et al., 1982). neuerer Zeit liegen nicht vor. Aufgrund der geringen Wiederfindungsrate von < 30 % (siehe 33) können diese Werte nur qualitativ betrachtet werden,

In Kbrperfett und Leber von 6 Verstorbenen (Alter 48 - 82 Jahre) variierten die HCBD-Konzentrationen zwischen 0,8 und 38

39 Tabelie 5 Konzentration von Kexachiorbutadien in der Nahrurig und in 5.5 Natürliche Queflefl Futtermittein (in pg/kg)

NatUrliChe Queflen sind nicht bekannt Nahrungs- bzw. Futtermittel Konzentration Literatur (pg/kg Feuchtgew.)

Bundesrepublik Deutschland: Eigelb Pfi anzenmargari 42 Kotzias et iie 33 al. (1975a) Kondensmilch (Trockengew.) Much 4 Dosenfisch n.n. a) Fleisch n.n. HUhnerkornerfutter n.n, Kuhnerlegemehl 39 2 Milchprodukte m. Frucht- zusat (n=12) n.n. b) Bauer (1981) Grolibri tanni en: Margarine n.n. Much a) McConnell et al. Butter 008 (1975) Pflanzenöl 2 Bier 0,2 Fruchtsaft 0,2 Tomaten n.n. Kartoffein 0,8 n.n. Apfel, Birnen n.n. Blaue Weintrauben Fleisch 3,7 c) n,n.

USA Eier (n=15) n.n. Milchfett (n’ZO) d) Yip (1976) GemUse 1320 e) (n’20) n.n. Seefisch (n=28) d) 10-1200 f) nn. nicht nachweisbar, a) Nachweisgrenze b) Nachweisgrenze 0,001 nicht angegeben, von pg/i bei einer Wiederfindungsrate 100 % für Much; c) importierte 5 pg/kg in ‘nonfatty Ware; d) Nachweisgrenze foods’ und 40 e) in I Probe nachgewiesen; pg/kg in fatty foods’; f) in 10 Proben nachgewiesen Serbia, 14 January 2016 --- Regarding request for information on unintentional release of hexachlorobutadiene, we would like to inform you that production, placing on the market (including import) and use of hexachlorobutadiene is not allowed in the Republic of Serbia according to the Law on Chemicals (“Official Gazette of RS”, No. 36/09, 88/10, 92/11, 93/12 and 25/15) and Rulebook on Bans and Restrictions of Production, Placing on the Market and Use of Chemicals (“Official Gazette of RS”, No. 90/13 and 25/15).

In the Republic of Serbia no data regarding production, import, placing on the market and use of hexachlorobutadiene as industrial chemical according to the data from the National Chemicals Registry and we have no data regarding unintentional release of hexachlorobutadiene. ---

United States of America, 20 January 2016

Information on unintentional releases of hexachlorobutadiene In the United States, national emission standards that require the use of best available control technologies have been developed for sources categories emitting HCBD, including rubber tire production, chlorine production, and miscellaneous organic chemical processes. Hexachlorobutadiene is listed as a hazardous air pollutant under 112 of the Clean Air Act. In addition, HCBD is among the chemicals for which emissions/releases must be reported as part of the U.S. Toxics Release Inventory (TRI) program. The most recent information on U.S. hexachlorobutadiene air emissions is summarized in the following:

Emission Sectors Pounds (lb) Short Tons Fuel Combustion ‐ Industrial Boilers, Internal Combustion Engines (ICEs) ‐ Natural Gas 0.022 0.00001 Fuel Combustion ‐ Industrial Boilers, ICEs ‐ Other 33.056 0.01653 Industrial Processes ‐ Cement Manufacturing 252.128 0.12606 Industrial Processes ‐ Chemical Manufacturing 915.206 0.45760 Industrial Processes – Not Elsewhere Classified 319.892 0.15995 Industrial Processes ‐ Petroleum Refineries 2.607 0.00130 Industrial Processes ‐ Storage and Transfer 25.075 0.01254 Solvent ‐ Dry Cleaning 1.400 0.00070 Solvent ‐ Industrial Surface Coating & Solvent Use 0.036 0.00002 Waste Disposal 800.655 0.400

Total 2,350.077 1.175 Source: National Emissions Inventory (2011 v2)

International POPs Elimination Network, 15 January 2016

This submission is in response to a BRS Secretariat request “to collect from parties and observers any additional information that would assist the further evaluation by the Committee of the unintentional production of hexachlorobutadiene” as a result of COP decision SC-7/11.

Background: Taking note of decision SC-7/11, by which the Conference of the Parties requested the Committee to further evaluate hexachlorobutadiene on the basis of the newly available information in relation to its listing in Annex C and to make a recommendation to the Conference of the Parties on listing hexachlorobutadiene in Annex C for further consideration at its eighth meeting, the Committee decided to establish an intersessional working group to undertake the activities requested in paragraphs 1 and 3 of decision SC-7/11.

The Committee requested the Secretariat to collect from parties and observers any additional information that would assist the further evaluation by the Committee of the unintentional production of hexachlorobutadiene.

Request: Parties and observers are invited to submit any additional information that would assist the further evaluation by the Committee of the unintentional production of hexachlorobutadiene, in particular:

 Sources of unintentional formation, releases and emissions of hexachlorobutadiene identified in the risk management evaluation for the chemical as well as new sources;  Standard methods for sampling, monitoring, analysis and reporting of unintentional releases of hexachlorobutadiene in various media;  Risk management measures implemented by parties and other stakeholders to reduce and eliminate unintentional emissions and releases of hexachlorobutadiene to air, water and sludge and as a constituent in products;  Alternative processes for the production of halogenated chemicals to reduce and eliminate the unintentional production of hexachlorobutadiene;  Substitution of chlorinated chemicals identified as a source of unintentional releases of hexachlorobutadiene;  Monitoring data on unintentional releases of hexachlorobutadiene;  Cost of measures implemented to reduce and/or eliminate unintentional releases of hexachlorobutadiene.

1

Sources of unintentional formation According to the Risk Management Evaluation on hexachlorobutadiene (HCBD) the substance can be produced unintentionally by, “the production of chlorinated hydrocarbons, production of magnesium, and incineration processes.”1

The HCBD Risk Profile notes that unintentional production of HBCD during production of chlorinated hydrocarbons includes, “perchloroethylene, trichloroethylene and carbon tetrachloride (a.k.a tetrachloromethane, Halon 104, Freon 10 etc.).”2 An additional presentation at POPRC11 by former Committee Member Professor Jianxin Hu noted that in China carbon tetrachloride has been, or is currently used as a feedstock for products including HFC-236fa (C3H2F6), intermediates in production of vinyl chloride monomer (and subsequently pyrethroid pesticides), chlorocarbons (and subsequently to produce HFC-245fa (C3H3F5) and new 3 hydrofluoro-olefin refrigerants), and HFC-365mfc (C4H3F5). The HFC compounds are used refrigerants but are also potent greenhouse gases. HFC-236fa has a high greenhouse gas potential of 9400 – 9810 (carbon is 1).4 HFC-245fa has a high greenhouse gas potential of 950 – 1030 (carbon is 1).5 HFC-365mfc has a high greenhouse gas potential of 890 – 794 (carbon is 1).6

The POPRC found that, “There may be substantial amounts of by-product formation from non- chemical facilities producing magnesium.” 7 Apparently HCBD is formed during the electrolysis method of production, but this is not the principal production process. Instead, “The main global production of magnesium is currently carried out by the reduction of the oxide at high temperatures with silicon.” 8

The HCBD Risk Management Evaluation describes formation and release of HCBD from incinerators, noting that it has been found in fly ash and that, “there is a relation to PCDD/PCDF and other unintentional POPs releases formed by combustion.”9

Alternatives

Chlorinated hydrocarbons Reducing and ultimately eliminating the manufacturing of chlorinated solvents, including perchloroethylene, trichloroethylene and carbon tetrachloride in favor of safer alternatives, is an

1 United Nations Environment Programme (2013) Rick management evaluation on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPS.POPRC.9/13/Add.2 2 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 3 Hu J (2015) Information on unintentional release of HCBD, presentation at POPRC11 4 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 5 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 6 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 7 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 8 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 9 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 2 effective way to prevent the unintentional production of HCBD and other POPs. Because a range of alternatives to the use of chlorinated solvents exist and are in practice, there are significant economic, environmental, and health benefits to be achieved by switching to alternative non- halogenated cleaning solvents or processes. Examples include the use of aqueous solvents, carbon dioxide blasting, and the use of supercritical fluids.10 Alternatives are available for perchloroethylene use in dry cleaning, vapor degreasing, and automotive aerosols. In dry cleaning, perchloroethylene alternatives include professional wet cleaning, liquid carbon dioxide, high flash hydrocarbons, acetal, propylene glycol ethers, cyclic volatile methyl siloxane, and n-propyl bromide. 11 Of these n-propyl bromide is not a safer alternative due to its carcinogenicity, reproductive toxicity, and neurotoxicity.12 Carbon dioxide is safer than perchloroethylene but requires use of high-pressure equipment and the potential for leaks. High flash point hydrocarbons demonstrate concerns for aquatic toxicity, bioaccumulation, and nervous systems effects. Acetal possesses similar aquatic toxicity as perchloroethylene and other toxicity information is lacking. Propylene glycol ethers could have potential effects on the liver, kidneys or central nervous system. The methyl siloxane compound exhibits aquatic toxicity and potential for bioaccumulation and persistence. Wet cleaning poses the least risk to human health and the environment of the seven alternatives. Wet cleaning also requires the least amount of energy and other cost savings since no solvent recovery system is required for use. Alternatives to perchloroethylene use in vapor degreasing include a variety of halogenated and siloxane-based substances. However, the Toxics Use Reduction Institute (TURI) has successfully worked with industries in the US State of Massachusetts to implement aqueous based cleaning for nearly 90% of all companies they have worked with.13 Perchloroethylene is widely used and sometimes at high concentrations in automotive aerosols including in brake cleaning, engine cleaning, and tire cleaning. The Toxics Use Reduction Institute (TURI) identified some cost effective alternatives for these uses with an improved toxicity profile compared to perchloroethylene, but some substances were persistent or possessed other environmental, health, and safety characteristics of concern. 14 Alternatives are also available for trichloroethylene use in adhesive and paint applications, and degreasing. Solvent-based adhesive alternatives include methylene chloride, acetone/heptane combinations, and n-propyl bromide. Each of these has health and environmental hazards that would make them questionable substitutes as discussed above. Other alternatives for adhesive applications include mineral spirits, petroleum-based solvents, petroleum distillates, and VM and P naphthas, although these also present health and environmental hazards. Alternatives that pose the least risk to human health and the environment are aqueous based carriers using latex or latex-synthetic blends and hot melt applications with the use of a solvent-free 100% solids

10 State of Oregon Department of Environmental Quality Office of Pollution Prevention. Alternative Cleaning Solvents and Processes. 11 http://www.turi.org/content/download/7399/134622/file/Perc%20Alternatives%20Assessment%20for%20Dry%20C leaning%20Industry.pd 12 http://www.turi.org/content/download/7399/134622/file/Perc%20Alternatives%20Assessment%20for%20Dry%20C leaning%20Industry.pd 13 http://www.turi.org/About/Library/TURI_Publications/2006_Five_Chemicals_Alternatives_Assessment_Study 14 http://www.turi.org/About/Library/TURI_Publications/2006_Five_Chemicals_Alternatives_Assessment_Study 3 method. Trichloroethylene is also used as a carrier in solvent-based paints. Alternatives include the use of aqueous-based latex paints. For metal degreasing, there are several proven alternatives to trichloroethylene including -based solvents such as terpenes, alcohols, acetone, ketones, and acetate. Safer alternatives include aqueous and semi-aqueous processes, including ultrasonic processing. The Toxics Use Reduction Institute (TURI) has conducted performance evaluations that demonstrate the efficacy of aqueous degreasing alternatives as performing comparably or better than trichloroethylene.15 Tetrachloromethane (also known as carbon tetrachloride, Halon 104, or Freon 10) is listed in the Montreal Protocol16 for global elimination due to its damaging impact on the stratospheric ozone layer. Treaty measures called for total phase-out by 2010. This substance was used as a feedstock in the production of chlorofluorocarbons, in pharmaceuticals, pesticides, blowing agents, and as an industrial degreaser. In the 2002 Assessment of the Technical Options Committee establishes under provisions of the Montreal Protocol, a range of alternative substances and processes are identified to reduce and eliminate the production and release of ozone-depleting chemicals, including carbon tetrachloride.

Pyrethroid pesticides Professor Hu’s presentation mentioned the use of carbon tetrachloride to produce pyrethroid pesticides but the specific substances nor the pest – crop combinations they are supposed to address were provided. Some options for alternatives to address these crop-pes combinations could be investigated if this information was available.

HFC refrigerants Three specific refrigerants were mentioned including HFC-236fa (C3H2F6), HFC-245fa (C3H3F5) and HFC-365mfc (C4H3F5). These HFCs are proposed as alternatives to halon. Apparently in China, carbon tetrachloride is used to produce these alternative refrigerants, though it is not clear if there are alternative synthetic pathways that do not require use of carbon tetrachloride.

HFC-236fa has a high greenhouse gas potential of 9400 – 9810 (carbon is 1).17 USEPA notes that HFC-236fa has an atmospheric lifetime of 209 - 240 years.18 Elimination of carbon tetrachloride is not the only approach to limiting unintentional formation and release of HCBD. However, it was the only route, it would be contrary to Convention goals that further unintentional production of a POP should be permitted to allow production of a substance with a 209 – 240-year atmospheric half-life and with such an extremely high greenhouse gas potential.

HFC-245fa has a high greenhouse gas potential of 950 – 1030 (carbon is 1).19 USEPA notes that HFC-236fa has an atmospheric lifetime of 7.2 – 7.6 years.20 Elimination of carbon tetrachloride is not the only approach to limiting unintentional formation and release of HCBD. However, it was the only route, it would be contrary to Convention goals that further unintentional

15 Toxics Use Reduction Institute Alternatives Fact Sheet for Trichloroethylene. www.turi.org. 16 Article 2d 17 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 18 http://www3.epa.gov/ozone/geninfo/gwps.html 19 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 20 http://www3.epa.gov/ozone/geninfo/gwps.html 4 production of a POP should be permitted to allow production of a substance with a 950 – 1030 - year atmospheric half-life and with such an extremely high greenhouse gas potential.

HFC-365mfc has a high greenhouse gas potential of 890 – 794 (carbon is 1).21 USEPA notes that HFC-236fa has an atmospheric lifetime of 8.6 – 9.9 years.22 Elimination of carbon tetrachloride is not the only approach to limiting unintentional formation and release of HCBD. However, it was the only route, it would be contrary to Convention goals that further production of a POP should be permitted to allow unintentional production of a substance with a 890-794-year atmospheric half-life and with such an extremely high greenhouse gas potential.

For a brief review of the use of hydrofluoro-olefins use in insulation please see this reference.23

Incineration Several elements of the treaty are highly relevant to decisions regarding construction and operation of waste incinerators. Parties are obliged to promote measures that will reduce the releases of unintentional POPs or eliminate their sources.24 Parties are also obliged to promote the development of substitute or modified materials, products and processes to prevent the formation and release of unintentionally produced POPs.25 Parties are obliged to promote the use of best available techniques (BAT) and best environmental practices (BEP) to control the unintentional POPs sources identified in its inventory, and Parties are obliged to require the use of BAT to control certain sources.26

Starting four years after the Convention enters into force for a Party, each Party has the obligation to require the use of BAT for any newly constructed or substantially modified waste incinerators for municipal, hazardous and medical waste and sewage sludge.27

Parties are given flexibility in defining how BAT will be nationally applied. However, each Party has a formal obligation to define BAT in some way, and it must do so taking into account the guidance provided by the Convention and by the adopted Guidelines. Based on a Party’s own definition of BAT, it must promote the use of BAT standards for all sources of unintentional POPs listed in its national inventory, and it must require the use of BAT for new facilities in the source categories listed in Part II of Annex C.

The Convention’s BAT/BEP Guidelines contain several important elements with high relevance to practical considerations for reducing and eliminating POPs – including from incinerators.28 These include serious efforts to avoid construction of incinerators by giving priority to alternatives.

21 US Energy Information Administration https://www.eia.gov/survey/form/eia_1605/excel/GHGsGWPs.xls 22 http://www3.epa.gov/ozone/geninfo/gwps.html 23 Roberts T (2011) New blowing agent addresses climate impact of foam insulation, Green Building Advisor http://www.greenbuildingadvisor.com/blogs/dept/energy-solutions/new-blowing-agent-addresses-climate-impact- foam-insulation 24 Article 5 (b) 25 Article 5 (c) 26 Article 5 (d) and (e) 27 Article 5 (d) and 5 (f), subparagraph (vi) 28 http://chm.pops.int/Implementation/BATBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx 5

“When considering proposals to construct new waste incinerators, priority consideration should be given to alternatives such as activities to minimize the generation of waste, including resource recovery, reuse, recycling, waste separation and promoting products that generate less waste. Priority consideration should also be given to approaches that prevent the formation and release of persistent organic pollutants.”29

The BAT/BEP Guidelines also clearly state a process that decision-makers should follow when deciding on building and operating incinerators and, “should undertake a comparison of the proposed process, the available alternatives and the applicable legislation using what might be termed a “checklist approach”, keeping in mind the overall sustainable development context and taking fully into account environmental, health, safety and socio-economic factors.” 30

The Convention recommends the following elements of the approach: reviewing the proposed new facility in the context of sustainable development; identifying possible and available alternatives; undertaking a comparative evaluation of both the proposed and identified possible and available alternatives; and priority considerations which include avoiding formation and release of unintentional POPs.

The treaty notes that when a proposed incinerator is compared with an alternative, “Health, safety and environmental impacts of proposed alternatives should be compared with the corresponding impacts of the originally proposed facility.” 31

The Convention’s overall guiding principles in reducing and eliminating unintentionally produced POPs include important elements that are often overlooked when making decisions about construction and operation of incinerators32:

 Precaution: “Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation.”  Pollution prevention: “The use of processes, practices, materials, products or energy that avoid or minimize the creation of pollutants and waste, and reduce overall risk to human health or the environment.”  Internalization of costs: “…the polluter should, in principle, bear the cost of pollution, with due regard to the public interest and without distorting international trade and investment.”  Community right to know: “…improved access to information and public participation in decision-making enhance the quality and the implementation of decisions, contribute

29 Stockholm Convention BAT/BEP Guidelines V. Waste incinerators http://chm.pops.int/Implementation/BATBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx 30 Stockholm Convention BAT/BEP Guidelines : Introduction http://chm.pops.int/Implementation/BATBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx 31 Stockholm Convention BAT/BEP Guidelines : Introduction http://chm.pops.int/Implementation/BATBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx 32 Stockholm Convention BAT/BEP Guidelines : Introduction http://chm.pops.int/Implementation/BATBEP/BATBEPGuidelinesArticle5/tabid/187/Default.aspx 6

to public awareness of environmental issues, give the public the opportunity to express its concerns and enable public authorities to take due account of such concerns.”

How would a listing in Annex C listing address unintentional HBCD production? For substances listed in Annex C, Parties to the Convention are obliged to develop an action plan to advance toward this goal, and they are obliged to implement the plan.33 As part of the plan, each Party should develop and maintain a national inventory of sources of unintentionally produced POPs together with an estimate of releases. Parties should evaluate the effectiveness of national laws and policies that contribute to managing these releases and develop strategies aimed at minimizing these releases. Every five years they should review the success of these strategies in meeting Convention obligations and report the results of this review to the COP.34

Chlorinated hydrocarbons Substances listed in Annex C, “are unintentionally formed and released from thermal processes involving organic matter and chlorine as a result of incomplete combustion or chemical reactions.”35 This could include HCBD by-products of chemical reactions used to produce perchloroethylene, trichloroethylene and carbon tetrachloride. To address unintentional production from this source the Risk Management Evaluation already notes that releases can be minimized or eliminated by, “alternative production processes, improved process control, emission control measures, or by substitution of the relevant chlorinated chemicals.” 36

Magnesium The Risk Management Evaluation outlines a series BAT measures for controlling HCBD emissions but warns about the inability of most wastewater treatment plants to remove HCBD that contaminates water resulting from wet scrubbers and wet electrostatic precipitators. The Risk Management Evaluation also notes that, “HCBD often arises in combination with other organochlorine pollutants (e.g. with HCB as in the case of the Orica dump) which are already regulated, among others, through the Stockholm Convention. The measures taken for one substance are therefore often effective for the other substance as well. In such cases there are no additional costs.” 37 Measures to reduce and eliminate dioxin/furan and chlorinated hydrocarbon emissions from magnesium production are described in the BAT/BEP guidelines. 38

Incineration The HCBD Risk Management Evaluation notes that, “Cost efficient BAT and BEP to reduce releases of unintentionally produced HCBD are available and described in relevant documents (UNEP 2007, EC BREF LVOC 2003, EC BREF NFM 2009). Countries already have obligations

33 Article 5 (a) 34 Article 5 (a) including paragraphs (i), (ii), (iii) & v) 35 Annex C Part II 36 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 37 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 38 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 7 to implement control measures for other unintentionally produced POPs (HCB, PeCB, PCB, PCDD/PCDF) under the Convention.” 39 As noted by the Committee, “Countries already have obligations to implement control measures for other unintentionally produced persistent organic pollutants (POPs) (hexachlorobenzene (HCB), pentachlorobenzene (PeCB), polychlorinated biphenyls (PCB), and polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/PCDF) under the Convention. These will be similar to those for HCBD.” 40

______

39 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 40 United Nations Environment Programme (2012) Risk profile on hexachlorobutadiene, Stockholm Convention POPs Review Committee, UNEP/POPs/POPRC.8/16/Add.2 8