Tensor Products of Spaces of Measures and Vector Integration in Tensor Product Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measure Integral Inclusions with Fast Oscillating Data 1
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 107, pp. 1{13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MEASURE INTEGRAL INCLUSIONS WITH FAST OSCILLATING DATA BIANCA-RENATA SATCO Abstract. We prove the existence of regulated or bounded variation solu- tions, via a nonlinear alternative of Leray-Schauder type, for the measure integral inclusion Z t x(t) 2 F (s; x(s)) du(s); 0 under the assumptions of regularity, respectively bounded variation, on the function u. Our approach is based on the properties of Kurzweil-Stieltjes integral that, unlike the classical integrals, can be used for fast oscillating multifunctions on the right hand side and the results allow one to study (by taking the function u of a particular form) continuous or discrete problems, as well as impulsive or retarded problems. 1. Introduction Motivated by problems occurring in fields such as mechanics, electrical engineer- ing, automatic control and biology (see [2,20,30]), an increasing attention has been given to measure-driven differential equations in the theory of differential equations: equations of the form dx(t) = g(t; x(t))dµ(t); where µ is a positive regular Borel measure. An equal interest has been shown to the related integral problems and, more recently, for practical reasons (arising, e.g., from the theory of optimal control), to the set-valued associated problems. Such studies cover some classical cases like usual differential inclusions (when µ is abso- lutely continuous with respect to the Lebesgue measure), difference inclusions (for discrete measure µ) or impulsive problems (when the measure µ is a combination of the two types of measures). -
Models of Linear Logic Based on the Schwartz $\Varepsilon $-Product
MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ ε-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the ε-product de- fined by Laurent Schwartz, we construct several models of Differential Linear Logic based on usual mathematical notions of smooth maps. This improves on previous results in [BET] based on con- venient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated notion stable by duality called k-reflexivity, allow- ing for a ∗-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the ε product. We adapt Meise’s definition of Smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with conveniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same ∗-autonomous cat- egories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the ε-product (without reflexivization). Contents 1. Introduction 2 1.1. A first look at the interpretation of Linear Logic constructions 6 Part 1. Three Models of MALL 7 2. Preliminaries 7 2.1. Reminder on topological vector spaces 7 2.2. Reminder on tensor products and duals of locally convex spaces. 8 2.3. Dialogue and ∗-autonomous categories 10 2.4. -
Marie Kerjean
Tensor products and *-autonomous categories Marie Kerjean Laboratory PPS, Universit´eParis Diderot [email protected] The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational semantics has sought continuous models of computation through Scott domains [9]. Moreover, the infinite nature of the exponential of Linear Logic calls for infinite dimensional spaces, for which topology becomes necessary. One of the first intuitions that comes to mind when thinking about objects in a ∗-autonomous category is the notion of reflexive vector space, i.e. a a tvs which equals its double dual. When A is a vector space, the transpose dA : A ! (A !?) !? of the evaluation map evA :(A !?) × A !? is exactly the canonical injection of a vector space in its bidual. Then, requiring dA to be an isomorphism amounts to requiring A to be reflexive. However, the category of reflexive topological vector spaces is not ∗-autonomous, as it is not closed. Barr [2] constructs two closed subcategories of the category of tvs by re- stricting to tvs endowed with their weak topology (wtvs) or with their Mackey topology (mtvs), which are both polar topologies. Indeed, if E is a tvs, one can define its dual E0 as the space of all continuous linear form on E. -
The Failure of Fatou's Theorem on Poisson Integrals of Pettis Integrable Functions* Francisco J
journal of functional analysis 160, 2841 (1998) article no. FU983338 The Failure of Fatou's Theorem on Poisson Integrals of Pettis Integrable Functions* Francisco J. Freniche, Juan Carlos Garcia-Vazquez, and Luis Rodriguez-Piazza Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain E-mail: frenicheÄcica.es, garciaÄcica.es, piazzaÄcica.es Received May 22, 1997; accepted May 21, 1998 In this paper we prove that for every infinite-dimensional Banach space X and every 1p<+ there exists a strongly measurable X-valued p-Pettis integrable function on the unit circle T such that the X-valued harmonic function defined as its Poisson integral does not converge radially at any point of T, not even in the weak topology. We also show that this function does not admit a conjugate func- tion. An application to spaces of vector valued harmonic functions is given. In the case that X does not have finite cotype we can construct the function with the addi- tional property of being analytic, in the sense that its Fourier coefficients of negative frequency are null. In the general case we are able to give a countably additive vector measure, analytic in the same sense. 1998 Academic Press INTRODUCTION Let + be a finite Borel measure on the unit circle T. The classical Fatou's theorem states that the Poisson integral of + converges radially on every point t at which + is differentiable with respect to the normalized Lebesgue measure *. In particular, because of Lebesgue's differentiation theorem, if F is integrable on T, then its Poisson integral converges almost everywhere. -
Weak Topologies for Linear Logic
Weak topologies for Linear Logic Marie Kerjean Laboratoire PPS, Universit´eParis Diderot, Paris, France [email protected] Abstract We construct a denotational model of Linear Logic, whose objects are all the locally convex and separated topological vector spaces endowed with their weak topology. Linear proofs are interpreted as continuous linear functions, and non-linear proofs as sequences of monomials. The duality in this interpretation of Linear Logic does not come from an orthogonality relation, thus we do not complete our constructions by a double-orthogonality operation. This yields an interpretation of polarities with respect to weak topologies. 1 Introduction Linear Logic [Gir88] can be seen as a fine analysis of classical logic, through polarities and involutive linear negation [LR03]. The linearity hypothesis has been made by Girard [Gir87] after a semantical investigation of Intuitionistic Logic. Semantics has in turn led to various discoveries around Linear Logic, as in Game Semantics or Differential λ-calculus [ER06]. However, the linear negation is often modelized with an orthogonality relation [Ehr02, Ehr05, Gir04] or with a Chu construction [Gir99]. We try to generalize this approach by considering a model whose objects are general topological vector spaces. It allows us to get closer to the algebraic intuitions of Linear Logic, and to reach analogies with functional analysis. As in Scott Domains, we interpret our functions by continuous functions, and especially our linear proofs will be interpreted by linear continuous functions between topological vector spaces. As the topological dual of a space E is not constructed from E with an orthogonality relation, we have the opportunity to construct a new kind of negation. -
Set Valued Integrability in Non Separable Fr\'Echet Spaces And
SET VALUED INTEGRABILITY IN NON SEPARABLE FRECHET´ SPACES AND APPLICATIONS L. DI PIAZZA, V. MARRAFFA AND B. SATCO Abstract. We focus on measurability and integrability for set valued func- tions in non-necessarily separable Fr´echet spaces. We prove some properties concerning the equivalence between different classes of measurable multi- functions. We also provide useful characterizations of Pettis set-valued in- tegrability in the announced framework. Finally, we indicate applications to Volterra integral inclusions. 1. Introduction Due to tremendous interest in applications (e.g. control theory, optimization or mathematical economics), a wide theory was developed for the set-valued inte- grability in separable Banach spaces ([9], [32] and reference inside, [17], [18], [20], [39], [40], [50], [53]). Besides, as seen in [6], a similar theory for non-separable case is necessary; several authors studied the set-valued integrability without separability assumptions in Banach spaces (see [3], [4, 7], [19] and [42]). On the other side, it is well known that evolution partial differential equations in finite- or infinite-dimensional case can be treated as ordinary differential equa- tions in infinite dimensional non-normable locally convex spaces. Also, the study of various differential problems on infinite intervals or that of infinite systems of differential equations naturally lead to the framework of Fr´echet spaces (as in [21], [43], [27] or [11], to cite only a few). Therefore, the study of ordinary dif- ferential equations (and inclusions) in general locally convex spaces has serious motivations. But the way in this direction is paved with difficulties; indeed, even in the single- valued case, as described in [37, Theorem 1], the classical Peano Theorem fails in all infinite-dimensional Fr´echet spaces. -
NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2. -
Bochner Integrals and Vector Measures
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 1993 Bochner Integrals and Vector Measures Ivaylo D. Dinov Michigan Technological University Copyright 1993 Ivaylo D. Dinov Recommended Citation Dinov, Ivaylo D., "Bochner Integrals and Vector Measures", Open Access Master's Report, Michigan Technological University, 1993. https://doi.org/10.37099/mtu.dc.etdr/919 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Mathematics Commons “BOCHNER INTEGRALS AND VECTOR MEASURES” Project for the Degree of M.S. MICHIGAN TECH UNIVERSITY IVAYLO D. DINOV BOCHNER INTEGRALS RND VECTOR MEASURES By IVAYLO D. DINOV A REPORT (PROJECT) Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MATHEMATICS Spring 1993 MICHIGAN TECHNOLOGICRL UNIUERSITV HOUGHTON, MICHIGAN U.S.R. 4 9 9 3 1 -1 2 9 5 . Received J. ROBERT VAN PELT LIBRARY APR 2 0 1993 MICHIGAN TECHNOLOGICAL UNIVERSITY I HOUGHTON, MICHIGAN GRADUATE SCHOOL MICHIGAN TECH This Project, “Bochner Integrals and Vector Measures”, is hereby approved in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MATHEMATICS. DEPARTMENT OF MATHEMATICAL SCIENCES MICHIGAN TECHNOLOGICAL UNIVERSITY Project A d v is o r Kenneth L. Kuttler Head of Department— Dr.Alphonse Baartmans 2o April 1992 Date •vaylo D. Dinov “Bochner Integrals and Vector Measures” 1400 TOWNSEND DRIVE. HOUGHTON Ml 49931-1295 flskngiyledgtiients I wish to express my appreciation to my advisor, Dr. Kenneth L. Kuttler, for his help, guidance and direction in the preparation of this report. The corrections and the revisions that he suggested made the project look complete and easy to read. -
BOCHNER Vs. PETTIS NORM: EXAMPLES and RESULTS 3
Contemp orary Mathematics Volume 00, 0000 Bo chner vs. Pettis norm: examples and results S.J. DILWORTH AND MARIA GIRARDI Contemp. Math. 144 1993 69{80 Banach Spaces, Bor-Luh Lin and Wil liam B. Johnson, editors Abstract. Our basic example shows that for an arbitrary in nite-dimen- sional Banach space X, the Bo chner norm and the Pettis norm on L X are 1 not equivalent. Re nements of this example are then used to investigate various mo des of sequential convergence in L X. 1 1. INTRODUCTION Over the years, the Pettis integral along with the Pettis norm have grabb ed the interest of many. In this note, we wish to clarify the di erences b etween the Bo chner and the Pettis norms. We b egin our investigation by using Dvoretzky's Theorem to construct, for an arbitrary in nite-dimensional Banach space, a se- quence of Bo chner integrable functions whose Bo chner norms tend to in nity but whose Pettis norms tend to zero. By re ning this example again working with an arbitrary in nite-dimensional Banach space, we pro duce a Pettis integrable function that is not Bo chner integrable and we show that the space of Pettis integrable functions is not complete. Thus our basic example provides a uni- ed constructiveway of seeing several known facts. The third section expresses these results from a vector measure viewp oint. In the last section, with the aid of these examples, we give a fairly thorough survey of the implications going between various mo des of convergence for sequences of L X functions. -
Arxiv:1811.04430V2 [Math.OA]
TRACES AND PEDERSEN IDEALS OF TENSOR PRODUCTS OF NONUNITAL C*-ALGEBRAS, CRISTIAN IVANESCU AND DAN KUCEROVSKˇ Y´ Abstract. We show that positive elements of a Pedersen ideal of a tensor product can be approximated in a particularly strong sense by sums of tensor products of positive elements. This has a range of applications to the structure of tracial cones and related topics, such as the Cuntz-Pedersen space or the Cuntz semigroup. For example, we determine the cone of lower semicontinuous traces of a tensor product in terms of the traces of the tensor factors, in an arbitrary C*-tensor norm. We show that the positive elements of a Pedersen ideal are sometimes stable under Cuntz equivalence. We generalize a result of Pedersen’s by showing that certain classes of completely positive maps take a Pedersen ideal into a Pedersen ideal. We provide theorems that in many cases compute the Cuntz semigroup of a tensor product. Key words and phrases. C∗-algebra, tensor product. 1. Introduction A unital C∗-algebra is a noncommutative generalization of the algebra C(X) of continuous functions on a compact topological space; in the nonunital case, it is a generalization of the algebra C0(X) of continuous functions that vanish at infinity, or more accurately, functions that are each arbitrarily small outside a sufficient large compact set. This paper studies the structure and applications of the Pedersen ideals of tensor products of nonunital C∗- algebras. The Pedersen ideal of a nonunital C∗-algebra is a noncommutative analogue of the space of compactly supported functions in the space of continuous complex-valued functions on a locally compact Hausdorff space. -
A Note on the Pettis Integral and the Bourgain Property I. Introduction
JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 5, June 1992 A Note on the Pettis Integral and the Bourgain Property Jong Sul Lim, Gwang Sik Eun and Ju Han Yoon Abstract. In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : X* —•> Xi(/z) is weakly compact operator and {T(J<(F, e)) | F C X, F : finite and e > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if /is bounded function with Bourgain property, then T : X** •— L\(/i) by T(a;**) = x** f is weak* —— to — weak linear operator. Also, if operator T : 心 1(P)—牛 즈 * with Bourgain propei-ty, then we show that f is Pettis representable. I. Introduction The theory of integration of function with values in a Banach space has long been a fruitful area of study. In the eight years from 1933 to 1940, seminal papers in this area were writen by Bochner, Gilfand, Pettis, Birhoff and Phillips. Out of this flourish of activity, two in tegrals have proved to be of lastion: the Bochner integral has had a thriving prosperous history. But unfortunately nearly forty years had passed untill 1976 without a significant improvement after B. J. Pet tis integral had been achived during 1977-1990 by many authors [1, 3, 4, 5, 6, 7, 8]. In 1986, for a finite measure space (Q, E, /』), R. -
On Channels with Finite Holevo Capacity
On channels with finite Holevo capacity. M.E.Shirokov ∗ 1 Introduction As it is well known, the properties of quantum channels differ quite substan- tially for infinite and finite quantum systems. We consider a nontrivial class of infinite dimensional quantum channels, characterized by finiteness of the Holevo capacity (in what follows the χ-capacity). The results in [12] imply some general properties of channels with finite χ-capacity such as compactness of the output set and existence of the unique output optimal average state (theorem 1). It is shown that each channel with finite χ-capacity can be uniformly approximated by channels with finite dimensional output system, having close χ-capacities and the output optimal average states (corollary 1). The class of channels with finite χ-capacity contains subclass of channels with continuous output entropy, called CE-channels. These channels inherit some analytical properties of finite dimensional channels (proposition 1), re- vealing at the same time essential features of infinite dimensional channels arXiv:quant-ph/0602073v1 7 Feb 2006 (example 2). So, we may consider the class of CE-channels as an intermediate one and use technical advantages of dealing with such channels to approach general infinite dimensional channels and systems. For example, the channel of this type was used in [5] in considering properties of infinite dimensional entanglement-breaking channels and of the set of separable states. In [4] the notion of an optimal measure (generalized ensemble) for con- strained infinite dimensional channels was introduced and the sufficient con- dition of its existence was obtained. In this paper we consider a special condition of existence of an optimal measure for unconstrained infinite di- mensional channels with finite χ-capacity (theorem 2, corollary 2, remark 1) ∗Steklov Mathematical Institute, 119991 Moscow, Russia 1 and construct examples of channel with bounded output entropy, for which there exist no optimal measures (examples 1C and 2).