Geometric Uniformization in Genus 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analytic Vortex Solutions on Compact Hyperbolic Surfaces
Analytic vortex solutions on compact hyperbolic surfaces Rafael Maldonado∗ and Nicholas S. Mantony Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, U.K. August 27, 2018 Abstract We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. 1 Introduction Consider the Abelian-Higgs field theory on a background surface M with metric ds2 = Ω(x; y)(dx2+dy2). At critical coupling the static energy functional satisfies a Bogomolny bound 2 1 Z B Ω 2 E = + jD Φj2 + 1 − jΦj2 dxdy ≥ πN; (1) 2 2Ω i 2 where the topological invariant N (the `vortex number') is the number of zeros of Φ counted with multiplicity [1]. In the notation of [2] we have taken e2 = τ = 1. Equality in (1) is attained when the fields satisfy the Bogomolny vortex equations, which are obtained by completing the square in (1). In complex coordinates z = x + iy these are 2 Dz¯Φ = 0;B = Ω (1 − jΦj ): (2) This set of equations has smooth vortex solutions. As we explain in section 2, analytical results are most readily obtained when M is hyperbolic, having constant negative cur- vature K = −1, a case which is of interest in its own right due to the relation between arXiv:1502.01990v1 [hep-th] 6 Feb 2015 hyperbolic vortices and SO(3)-invariant instantons, [3]. -
Animal Testing
Animal Testing Adrian Dumitrescu∗ Evan Hilscher † Abstract an animal A. Let A′ be the animal such that there is a cube at every integer coordinate within the box, i.e., it A configuration of unit cubes in three dimensions with is a solid rectangular box containing the given animal. integer coordinates is called an animal if the boundary The algorithm is as follows: of their union is homeomorphic to a sphere. Shermer ′ discovered several animals from which no single cube 1. Transform A1 to A1 by addition only. ′ ′ may be removed such that the resulting configurations 2. Transform A1 to A2 . are also animals [6]. Here we obtain a dual result: we ′ give an example of an animal to which no cube may 3. Transform A2 to A2 by removal only. be added within its minimal bounding box such that ′ ′ It is easy to see that A1 can be transformed to A2 . the resulting configuration is also an animal. We also ′ We simply add or remove one layer of A1 , one cube O n present a ( )-time algorithm for determining whether at a time. The only question is, can any animal A be n a configuration of unit cubes is an animal. transformed to A′ by addition only? If the answer is yes, Keywords: Animal, polyomino, homeomorphic to a then the third step above is also feasible. As it turns sphere. out, the answer is no, thus our alternative algorithm is also infeasible. 1 Introduction Our results. In Section 2 we present a construction of an animal to which no cube may be added within its An animal is defined as a configuration of axis-aligned minimal bounding box such that the resulting collection unit cubes with integer coordinates in 3-space such of unit cubes is an animal. -
Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs
Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs Samir Datta1, Raghav Kulkarni2, Raghunath Tewari3, and N. Variyam Vinodchandran4 1 Chennai Mathematical Institute Chennai, India [email protected] 2 University of Chicago Chicago, USA [email protected] 3 University of Nebraska-Lincoln Lincoln, USA [email protected] 4 University of Nebraska-Lincoln Lincoln, USA [email protected] Abstract We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the prob- lems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class SPL. Since SPL is contained in the logspace counting classes ⊕L (in fact in ModkL for all k ≥ 2), C=L, and PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in FLSPL. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier. As our main technical result, we design a logspace computable and polynomially bounded weight function which isolates a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant genus. We use results from algebraic topology for proving the correctness of the weight function. 1998 ACM Subject Classification Computational Complexity Keywords and phrases perfect matching, bounded genus graphs, isolation problem Digital Object Identifier 10.4230/LIPIcs.STACS.2011.579 1 Introduction The perfect matching problem and its variations are one of the most well-studied prob- lems in theoretical computer science. -
Arxiv:1406.2663V2 [Hep-Th]
Multiboundary Wormholes and Holographic Entanglement Vijay Balasubramaniana;b, Patrick Haydenc, Alexander Maloneyd;e, Donald Marolff , Simon F. Rossg aDavid Rittenhouse Laboratories, University of Pennsylvania 209 S 33rd Street, Philadelphia, PA 19104, USA bCUNY Graduate Center, Initiative for the Theoretical Sciences 365 Fifth Avenue, New York, NY 10016, USA cDepartment of Physics, Stanford University Palo Alto, CA 94305, USA dDepartment of Physics, McGill University 3600 rue Universit´e,Montreal H3A2T8, Canada eCenter for the Fundamental Laws of Nature, Harvard University Cambridge, MA 02138, USA f Department of Physics, University of California, Santa Barbara, CA 93106, USA gCentre for Particle Theory, Department of Mathematical Sciences Durham University, South Road, Durham DH1 3LE, UK Abstract The AdS/CFT correspondence relates quantum entanglement between boundary Conformal Field Theories and geometric connections in the dual asymptotically Anti- de Sitter space-time. We consider entangled states in the n−fold tensor product of a 1+1 dimensional CFT Hilbert space defined by the Euclidean path integral over a Riemann surface with n holes. In one region of moduli space, the dual bulk state is arXiv:1406.2663v2 [hep-th] 23 Jun 2014 a black hole with n asymptotically AdS3 regions connected by a common wormhole, while in other regions the bulk fragments into disconnected components. We study the entanglement structure and compute the wave function explicitly in the puncture limit of the Riemann surface in terms of CFT n-point functions. We also use AdS minimal surfaces to measure entanglement more generally. In some regions of the moduli space the entanglement is entirely multipartite, though not of the GHZ type. -
Irreducible Canonical Representations in Positive Characteristic 3
IRREDUCIBLE CANONICAL REPRESENTATIONS IN POSITIVE CHARACTERISTIC BENJAMIN GUNBY, ALEXANDER SMITH AND ALLEN YUAN ABSTRACT. For X a curve over a field of positive characteristic, we investigate 0 when the canonical representation of Aut(X) on H (X, ΩX ) is irreducible. Any curve with an irreducible canonical representation must either be superspecial or ordinary. Having a small automorphism group is an obstruction to having irre- ducible canonical representation; with this motivation, the bulk of the paper is spent bounding the size of automorphism groups of superspecial and ordinary curves. After proving that all automorphisms of an Fq2 -maximal curve are de- fined over Fq2 , we find all superspecial curves with g > 82 having an irreducible representation. In the ordinary case, we provide a bound on the size of the auto- morphism group of an ordinary curve that improves on a result of Nakajima. 1. INTRODUCTION Given a complete nonsingular curve X of genus g 2, the finite group G := ≥ 0 Aut(X) has a natural action on the g-dimensional k-vector space H (X, ΩX ), known as the canonical representation. It is natural to ask when this representation is irre- ducible. In characteristic zero, irreducibility of the canonical representation implies that g2 G , and combining this with the Hurwitz bound of G 84(g 1), one can≤ observe | | that the genus of X is bounded. In fact, Breuer| [1]| shows ≤ that− the maximal genus of a Riemann surface with irreducible canonical representation is 14. In characteristic p, the picture is more subtle when p divides G . The Hurwitz bound of 84(g 1) may no longer hold due to the possibility of wild| | ramification in arXiv:1408.3830v1 [math.AG] 17 Aug 2014 the Riemann-Hurwitz− formula. -
Hyperbolic Vortices
Hyperbolic Vortices Nick Manton DAMTP, University of Cambridge [email protected] SEMPS, University of Surrey, November 2015 Outline I 1. Abelian Higgs Vortices. I 2. Hyperbolic Vortices. I 3. 1-Vortex on the Genus-2 Bolza Surface. I 4. Baptista’s Geometric Interpretation of Vortices. I 5. Conclusions. 1. Abelian Higgs Vortices I The Abelian Higgs (Ginzburg–Landau) vortex is a two-dimensional static soliton, stabilised by its magnetic flux. Well-known is the Abrikosov vortex lattice in a superconductor. I Vortices exist on a plane or curved Riemann surface M, with metric ds2 = Ω(z; z¯) dzdz¯ : (1) z = x1 + ix2 is a (local) complex coordinate. I The fields are a complex scalar Higgs field φ and a vector potential Aj (j = 1; 2) with magnetic field F = @1A2 − @2A1. They don’t back-react on the metric. I Our solutions have N vortices and no antivortices. On a plane, N is the winding number of φ at infinity. If M is compact, φ and A are a section and connection of a U(1) bundle over M, with first Chern number N. I The field energy is 1 Z 1 1 1 = 2 + j φj2 + ( − jφj2)2 Ω 2 E 2 F Dj 1 d x (2) 2 M Ω Ω 4 where Dj φ = @j φ − iAj φ. The first Chern number is 1 Z N = F d 2x : (3) 2π M I The energy E can be re-expressed as [E.B. Bogomolny] E = πN + 1 Z 1 Ω 2 1 2 F − (1 − jφj2) + D φ + iD φ Ω d 2x 2 1 2 2 M Ω 2 Ω (4) where we have dropped a total derivative term. -
The Fundamental Polygon 3 3. Method Two: Sewing Handles and Mobius Strips 13 Acknowledgments 18 References 18
THE CLASSIFICATION OF SURFACES CASEY BREEN Abstract. The sphere, the torus, and the projective plane are all examples of surfaces, or topological 2-manifolds. An important result in topology, known as the classification theorem, is that any surface is a connected sum of the above examples. This paper will introduce these basic surfaces and provide two different proofs of the classification theorem. While concepts like triangulation will be fundamental to both, the first method relies on representing surfaces as the quotient space obtained by pasting edges of a polygon together, while the second builds surfaces by attaching handles and Mobius strips to a sphere. Contents 1. Preliminaries 1 2. Method One: the Fundamental Polygon 3 3. Method Two: Sewing Handles and Mobius Strips 13 Acknowledgments 18 References 18 1. Preliminaries Definition 1.1. A topological space is Hausdorff if for all x1; x2 2 X, there exist disjoint neighborhoods U1 3 x1;U2 3 x2. Definition 1.2. A basis, B for a topology, τ on X is a collection of open sets in τ such that every open set in τ can be written as a union of elements in B. Definition 1.3. A surface is a Hausdorff space with a countable basis, for which each point has a neighborhood that is homeomorphic to an open subset of R2. This paper will focus on compact connected surfaces, which we refer to simply as surfaces. Below are some examples of surfaces.1 The first two are the sphere and torus, respectively. The subsequent sequences of images illustrate the construction of the Klein bottle and the projective plane. -
An Optimal Systolic Inequality for Cat(0) Metrics in Genus Two
AN OPTIMAL SYSTOLIC INEQUALITY FOR CAT(0) METRICS IN GENUS TWO MIKHAIL G. KATZ∗ AND STEPHANE´ SABOURAU Abstract. We prove an optimal systolic inequality for CAT(0) metrics on a genus 2 surface. We use a Voronoi cell technique, introduced by C. Bavard in the hyperbolic context. The equality is saturated by a flat singular metric in the conformal class defined by the smooth completion of the curve y2 = x5 x. Thus, among all CAT(0) metrics, the one with the best systolic− ratio is composed of six flat regular octagons centered at the Weierstrass points of the Bolza surface. Contents 1. Hyperelliptic surfaces of nonpositive curvature 1 2. Distinguishing 16 points on the Bolza surface 3 3. A flat singular metric in genus two 4 4. Voronoi cells and Euler characteristic 8 5. Arbitrary metrics on the Bolza surface 10 References 12 1. Hyperelliptic surfaces of nonpositive curvature Over half a century ago, a student of C. Loewner’s named P. Pu presented, in the pages of the Pacific Journal of Mathematics [Pu52], the first two optimal systolic inequalities, which came to be known as the Loewner inequality for the torus, and Pu’s inequality (5.4) for the real projective plane. The recent months have seen the discovery of a number of new sys- tolic inequalities [Am04, BK03, Sa04, BK04, IK04, BCIK05, BCIK06, KL05, Ka06, KS06, KRS07], as well as near-optimal asymptotic bounds [Ka03, KS05, Sa06a, KSV06, Sa06b, RS07]. A number of questions 1991 Mathematics Subject Classification. Primary 53C20, 53C23 . Key words and phrases. Bolza surface, CAT(0) space, hyperelliptic surface, Voronoi cell, Weierstrass point, systole. -
New Trends in Teichmüller Theory and Mapping Class Groups
Mathematisches Forschungsinstitut Oberwolfach Report No. 40/2018 DOI: 10.4171/OWR/2018/40 New Trends in Teichm¨uller Theory and Mapping Class Groups Organised by Ken’ichi Ohshika, Osaka Athanase Papadopoulos, Strasbourg Robert C. Penner, Bures-sur-Yvette Anna Wienhard, Heidelberg 2 September – 8 September 2018 Abstract. In this workshop, various topics in Teichm¨uller theory and map- ping class groups were discussed. Twenty-three talks dealing with classical topics and new directions in this field were given. A problem session was organised on Thursday, and we compiled in this report the problems posed there. Mathematics Subject Classification (2010): Primary: 32G15, 30F60, 30F20, 30F45; Secondary: 57N16, 30C62, 20G05, 53A35, 30F45, 14H45, 20F65 IMU Classification: 4 (Geometry); 5 (Topology). Introduction by the Organisers The workshop New Trends in Teichm¨uller Theory and Mapping Class Groups, organised by Ken’ichi Ohshika (Osaka), Athanase Papadopoulos (Strasbourg), Robert Penner (Bures-sur-Yvette) and Anna Wienhard (Heidelberg) was attended by 50 participants, including a number of young researchers, with broad geo- graphic representation from Europe, Asia and the USA. During the five days of the workshop, 23 talks were given, and on Thursday evening, a problem session was organised. Teichm¨uller theory originates in the work of Teichm¨uller on quasi-conformal maps in the 1930s, and the study of mapping class groups was started by Dehn and Nielsen in the 1920s. The subjects are closely interrelated, since the mapping class group is the -
Period Relations for Riemann Surfaces with Many Automorphisms
PERIOD RELATIONS FOR RIEMANN SURFACES WITH MANY AUTOMORPHISMS LUCA CANDELORI, JACK FOGLIASSO, CHRISTOPHER MARKS, AND SKIP MOSES Abstract. By employing the theory of vector-valued automorphic forms for non- unitarizable representations, we provide a new bound for the number of linear rela- tions with algebraic coefficients between the periods of an algebraic Riemann surface with many automorphisms. The previous best-known general bound for this num- ber was the genus of the Riemann surface, a result due to Wolfart. Our new bound significantly improves on this estimate, and it can be computed explicitly from the canonical representation of the Riemann surface. As observed by Shiga and Wolfart, this bound may then be used to estimate the dimension of the endomorphism algebra of the Jacobian of the Riemann surface. We demonstrate with a few examples how this improved bound allows one, in some instances, to actually compute the dimension of this endomorphism algebra, and to determine whether the Jacobian has complex multiplication. 1. Introduction The theory of vector-valued modular forms, though nascent in the work of various nineteenth century authors, is a relatively recent development in mathematics. Perhaps the leading motivation for working out a general theory in this area comes from two- dimensional conformal field theory, or more precisely from the theory of vertex operator algebras (VOAs). Indeed, in some sense the article [Zhu96] – in which Zhu proved that the graded dimensions of the simple modules for a rational VOA constitute a weakly holomorphic vector-valued modular function – created a demand for understanding how such objects work in general, and what may be learned about them by studying the representations according to which they transform. -
The Fifteenth Annual Meeting of the American Mathematical Society
THE ANNUAL MEETING OF THE SOCIETY. 275 THE FIFTEENTH ANNUAL MEETING OF THE AMERICAN MATHEMATICAL SOCIETY. SINCE the founding of the Society in 1888, the regular, including the annual, meetings have been held almost Without exception in New York City, as the most convenient center for the members living in the eastern states and others who might from time to time attend an eastern meeting. The summer meeting, migratory between limits as far apart as Boston and St. Louis, has afforded an annual opportunity for a fully repre sentative gathering, and provision has been made for the con venience of the central and western members by the founding of the Chicago Section in 1897, the San Francisco Section in 1902, and the Southwestern Section in 1906. The desire has, however, often been expressed that the annual meeting of the Society might, when geographic and other conditions were exceptionally favorable, be occasionally held like that of many other scientific bodies in connection with the meeting of the American association for the advancement of science, a gather ing which naturally affords many conveniences of travel and scientific advantages. It was therefore decided to hold the annual meeting of 1908 at Baltimore in affiliation with the Association, the days chosen being Wednesday and Thursday, December 30-31. Two sessions were held on each day in the Biological Laboratory of Johns Hopkins University. The total atten dance numbered about seventy-five, including the following fifty-seven members of the Society : Miss C. C. Barnum, Dr. E. G. Bill, Professor G. A. Bliss, Professor E. -
GENERIC DIRICHLET POLYGONS and the MODULAR GROUP by A
GENERIC DIRICHLET POLYGONS AND THE MODULAR GROUP by A. M. MACBEATH Dedicated to Robert Rankin, teacher, colleague and friend on his seventieth birthday 1. Introduction. The concept of "marked polygon", made explicit in this paper, is implicit in all studies of the relationships between the edges and vertices of a fundamental polygon for Fuchsian group, as well as in the topology of surfaces. Once the matching of the edges under the action of the group is known, one can deduce purely combinatorially the distribution of the vertices into equivalence classes, or cycles. Knowing a little more, the order of the rotation group fixing a vertex in each cycle, we can write down a presentation for the group. It was recognized by Poincare that, when we have a polygon which is not a priori associated with a group, but when a matching of its edges is known and certain simple metric conditions, one of which he overlooked, are satisfied, then a group with the given polygon as fundamental polygon can be constructed. This is the celebrated Poincare Existence Theorem, for which a complete satisfactory proof has been published only as recently as 1971, independently by Maskit and de Rham ([6], [12]). If we choose a fixed base-point in the hyperbolic plane, then for every discrete isometry group F we can form the Dirichlet polygon by selecting only those points of the plane which are at minimal distance, among points in the same F-orbit, from p. We then have an edge-matching for this polygon. The distribution of groups in a given isomorph- ism class between the various combinatorially possible edge-matchings is of interest in itself and will probably help us to understand related questions such as the action of the Mapping Class Group on Teichmiiller space.