Summary of Introduction to Evolutionary Biology V0.2

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Introduction to Evolutionary Biology V0.2 Summary of Introduction to Evolutionary Biology v0.2 Gleb Ebert September 27, 2017 Preface This document aims to summarize the lecture Introduction to Evolutionary Biology as it was taught in the autumn semester of 2017. Unfortunately I can’t guarantee that it is complete and free of errors. You can contact me under [email protected] if you have any suggestions for improvement. The newest version of this summary can always be found here: https://n.ethz.ch/~glebert/ 1 1 Introduction 1.4 Macroevolution 4) Survival and reproduction of individuals are not random; but individuals with the most favorable → Definition: Evolution means biological change over time indirect observation: long time-scales long-term variation given the environment are those better at Technical basis: Phenotypes of individuals that are en- changes surviving. coded by heritable genotypes vary in a population and These postulates can be tested in real world populations Evidence of Macroevolution: their frequencies change (e.g. Darwin’s finches from the Galapagos islands). One 1 ) Successions & Extinctions has to be careful to not misinterpret biasing factors. For Law of succession: pattern of correspondence be- example heritability measures can be skewed by misiden- 1.1 History tween fossile and recent forms from the same locale tified paternity, misidentified maternity, food quality or Comparative anatomy: Georges Cuvier argued maternal effects such as egg quality. Aristotle: Ladder of nature / perfection that certain species are extinct. Recent macrofauna Carl von Linn´e: Systematic classification of life is only a fraction of all that ever existed James Hutton & Charles Lyell: Gradual long-term 2) Transitional forms 2.2 Definition processes shaped earth (Uniformitarianism) Darwinian evolution predicts intermediate forms Jean-Baptiste de Lamarck: Inheritance of acquired between a species and its ancestor (e.g. Microrap- Natural selection acts on individuals (more specifically, characteristics (Lamarckian evolution) tor gui and Archaeopteryx between dinosaurs and phenotypes), its consequences occur in populations as al- Charles Darwin: Evolution is descent with modifica- modern birds lele frequency changes. tion and results in survival of the fittest 3) Homologies (Owen: ”the same organ in different animals under every variety of form and function) can be found through comparative anatomy and 2.3 Darwinian vs. Lamarckian evolution 1.2 Microevolution comparative embryology. The similarity is due to inheritance from a common ancestor. They are Different processes proposed for the same pattern. direct observation: small time-scales → short-term phenotypically and genetically defined and enable 1. No initial variation Initial variation changes the use of model organisms. 2. Individuals adapt Selection acts on Some molecular homologies are during their lifetime individuals 3. Inheritance of aquired Inheritance of Evidence of Microevolution: • the universal genetic code: bases and codons changes/characters surviving alleles if 1) Observation from natural populations • the small-subunit (SSU) ribisomal RNA genes (IAC) environment leads to • Bacterial adaptation to antibiotic stress adaptation • Soapberry bug adaptation to fruit 2 Natural selection ⇒ individuals and ⇒ populations evolve 2) Observation from living anatomy populations evolve Epigenetic modifications are attached to the genetic code Vestigal and rudimentary traits Natural selection is the process underlying adaptive evo- • and can be passed on to the offspring (up to two gener- Kiwi wings lution • Human coccyx (Steissbein) ations). Thus their evolutionary relevance is short-term. • Human arrector pili muscle (Haaraufrichter- Muskel) 2.1 Darwins postulates of evolutionary change • 2.4 Limits (Appendix might be safe house for good gut Evolutionary change over time is a deductive implication bacteria) of four postulates. • Natural selection acts on existing traits 1) All populations contain variable individuals • Natural adaptation does not lead to perfection 1.3 Speciation 2) Variation among individuals is, at least in part, her- • Natural selection is non-random, but it is not pro- itable gressive Ring species are one species splitting into two. They 3) Some individuals are more successful at surviving • Natural selection is blind to the future, but tells us provide evidence of speciation. and reproducing than others tales from the past 2.5 “Perfection” in nature William Paley argued, that the vertebrate eye is too per- fect and complicated to have resulted from natural pro- cesses. Thus it must be a creation of a conscious designer. By looking closely at eyes from various chordates one can see that there is a lot of variation in the complexity of the eye. Thus Paleys argument is wrong..
Recommended publications
  • Maria Triantafyllidou
    The limits of species recognition: heterospecific song learning in pied flycatchers Maria Triantafyllidou Degree project in biology, Bachelor of science, 2016 Examensarbete i biologi 15 hp till kandidatexamen, 2016 Biology Education Centre and Department of Ecology and Genetics/Animal Ecology, Uppsala University Supervisors: Dr. Anna Qvarnström and Dr. David Wheatcroft ABSTRACT The closely related species pied flycatcher (Ficedula hypoleuca) and collared flycatcher (F. albicollis) co-occur on the Swedish island of Öland, where they compete over similar resources. The majority of male pied flycatchers have been found to incorporate elements of the collared flycatcher song in their repertoire. Given that birdsong is partly inherited and partly learned, the relative contribution of genetic predispositions versus acoustic stimuli varies across different species. The results show that in pied flycatchers, song acquisition is tightly correlated with imprinting, and can therefore be greatly influenced by heterospecific tutors in their surroundings, i.e. male collared flycatchers. I found that pied males are capable of not only memorizing collared song elements, but also producing them with high fidelity. Thus, I infer that pied flycatchers are characterized by a high degree of vocal plasticity. INTRODUCTION The importance of sexual signals in speciation It is largely recognized that sexual signals play a key role in mate recognition as they indicate species identity and mate quality. It has been increasingly appreciated that they also play a significant role in patterns of speciation (Slabbekoorn and Smith 2002, Ritchie 2007, Verzijden et al. 2012). That is linked with the fact that sex traits evolve quickly and are therefore likely to diverge among closely related species, eventually leading to reproductive isolation (Qvarnström et al.
    [Show full text]
  • Evolution and Stability of Ring Species
    Evolution and Stability of Ring Species 1 Ayana de Brito Martins Marcus A. M. de Aguiar 2,3 Yaneer Bar-Yam 3 1 Instituto de Biociências, Universidade de São Paulo 2 Instituto de Física, Universidade Estadual de Campinas 3 New England Complex Systems Institute Ring Species REPRODUCTIVE ISOLATION Ring species in nature Phylloscopus Irwin et al. 2005 Geographical barriers Geographical barriers POPULATION Geographical barriers Geographical barriers The model GENES AGENT 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 POSITION IN SPACE X(AGENT), Y(AGENT) The model L CARRYING CAPACITY MUTATION RATE The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 DISCRETE GENERATION The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 Tn+2 DISCRETE GENERATIONS The model: population growth Tn Tn+1 The model: population growth Tn Tn+1 The model: population growth Tn Tn+1 The model: Reproduction BREEDING NEIGHBORHOOD S The model: Reproduction BREEDING NEIGHBORHOOD S The model: Reproduction THERE IS A CRITICAL GENETIC DISTANCE ABOVE WHICH INDIVIDUALS DO NOT REPRODUCE INDIVIDUAL 0 0 1 1 0 0 0 0 0 0 ... 0 0 0 1 0 0 0 1 0 0 NEIGHBOR 1 ≠ ≠ ≠ ≠ ≠ ≠ 1 0 1 1 0 0 1 0 0 1 ... 0 0 1 1 0 0 0 0 1 0 ADDITIVE EFFECT The model: Reproduction The model: Reproduction ! The model: Reproduction RECOMBINATION 1 0 0 0 1 0 0 0 0 0 ..
    [Show full text]
  • The Herring Gull Complex Is Not a Ring Species Dorit Liebers1†, Peter De Knijff 2 and Andreas J
    Received 6 October 2003 Accepted 8 January 2004 Published online 31 March 2004 The herring gull complex is not a ring species Dorit Liebers1†, Peter de Knijff 2 and Andreas J. Helbig1* 1Institute of Zoology, University of Greifswald, Vogelwarte Hiddensee, 18565 Kloster, Germany 2Forensic Laboratory for DNA Research, MGC-Department of Human and Clinical Genetics, Leiden University Medical Center, PO Box 9503, 2300 RA Leiden, The Netherlands Under what circumstances speciation in sexually reproducing animals can occur without geographical disjunction is still controversial. According to the ring-species model, a reproductive barrier may arise through ‘isolation by distance’ when peripheral populations of a species meet after expanding around some uninhabitable barrier. The classical example of this kind of speciation is the herring gull (Larus argentatus) complex, with a circumpolar distribution in the Northern Hemisphere. Based on mitochondrial DNA variation among 21 gull taxa, we show that members of this complex differentiated largely in allopa- try following multiple vicariance and long-distance-colonization events, not primarily through isolation by distance. Reproductive isolation evolved more rapidly between some lineages than between others, irres- pective of their genetic distance. Extant taxa are the result of divergent as well as reticulate evolution between two ancestral lineages originally separated in a North Atlantic refugium and a continental Eura- sian refugium, respectively. Continental birds expanded along the entire north Eurasian coast and via Beringia into North America. Contrary to the ring-species model, we find no genetic evidence for a closure of the circumpolar ring through colonization of Europe by North American herring gulls. However, closure of the ring in the opposite direction may be imminent, with lesser black-backed gulls about to colonize North America.
    [Show full text]
  • Ring Species and the Museum
    Ring Species and the Museum Mike Seward OEB 275br May 7th, 2013 Biological Species Concept (BSC) Definition: a species is a group of interbreeding natural populations that are reproductively isolated from other such groups. Ring Species Ring species are a connected series of neighboring populations, each of which can interbreed with adjacent populations, but where at least two “end” populations are too distantly related to interbreed. Challenges the BSC because there can be gene flow through the ring to these “end” populations despite being reproductively isolated. Examples of Ring Species There are only a few confirmed ring species including the: Ensatina eschscholtzii salamander in California (a) Phylloscopus trochiloides greenish warbler in Asia (b) Larus gull in the Arctic circle (c) Euphorbia tithymaloides plant in Central America. Phylloscopus trochiloides greenish warbler Ensatina eschscholtzii salamander Online Genetic Databases GenBank will provide genomic information that we can then examine using software programs. GenBank IDs Sample ID Population Lat Long GenBank 202330 croc 35.04722 -118.48598 L75796 195607 croc 34.65289 -119.02541 L75797 172480 plat c 39.037 -120.9075 JN022615 225030 plat c 39.01371 -120.33931 JN022616 172459 oreg b 38.9064 -120.6445 L75813 CM165 oreg b 40.90261 -123.58649 JN022617 CM166 oreg b 40.90261 -123.58649 JN022618 CM167 oreg b 40.90261 -123.58649 JN022619 CM168 oreg b 40.90261 -123.58649 JN022620 CM171 oreg b 40.90261 -123.58649 JN022621 BatchGeo to select samples FASTA format with BatchEntrez
    [Show full text]
  • Evolution and Stability of Ring Species
    Evolution and stability of ring species Ayana B. Martinsa, Marcus A. M. de Aguiarb,c, and Yaneer Bar-Yamc,1 aInstituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil; bInstituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, Brazil; and cNew England Complex Systems Institute, Cambridge, MA 02142 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved February 15, 2013 (received for review September 30, 2012) Neutral models, in which genetic change arises through random acteristic is that the Siberian taxa, which occur in the area of variation without fitness differences, have proven remarkably secondary contact (i.e., ring closure) of the expanding population, successful in describing observed patterns of biodiversity, despite have much larger distribution ranges than do other subspecies. the manifest role of selection in evolution. Here we investigate the The correlation between range size and latitude is a strong pattern effect of barriers on biodiversity by simulating the expansion of found in many terrestrial groups of the Old World (19). a population around a barrier to form a ring species, in which the We simulated the formation of a ring species (Fig. 1) (20), two ends of the population are reproductively isolated despite explicitly including the ring topography and allowing a small ongoing gene flow around the ring. We compare the spatial and initial population to grow as it expands and differentiates around genetic properties of a neutral agent-based population model to a geographical barrier (Fig. S1). We used an individual-based the greenish warblers’ complex, a well-documented example of an model based on neutral replacement with local mating, migra- actual ring species in nature.
    [Show full text]
  • Ring Species As Bridges Between Microevolution and Speciation
    Genetica 112–113: 223–243, 2001. 223 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Ring species as bridges between microevolution and speciation Darren E. Irwin1, Jessica H. Irwin1 & Trevor D. Price Department of Biology 0116, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; 1Present address: Department of Ecology, Section of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden (Phone: (46) 46 222 3706; Fax: (46) 46 222 4716; E-mail: [email protected]) Key words: circular overlap, gene flow, Greenish warbler, Phylloscopus trochiloides, ring species, sexual selection, song, speciation Abstract A demonstration of how small changes can lead to species-level differences is provided by ring species, in which two reproductively isolated forms are connected by a chain of intermediate populations. We review proposed cases of ring species and the insights they provide into speciation. Ring species have been viewed both as illustrations of the history of divergence of two species from their common ancestor and as demonstrations that speciation can occur in spite of gene flow between the diverging forms. Theoretical models predict that speciation with gene flow can occur when there is divergent ecological selection, and geographical differentiation increases the likelihood of speciation. Thus ring species are ideal systems for research into the role of both ecological and geographical differentiation in speciation, but few examples have been studied in detail. The Greenish warbler is a ring species in which two northward expansions around the Tibetan plateau have been accompanied by parallel evolution in morphology, ecology, and song length and complexity.
    [Show full text]
  • Speciation and Hybridization in the Salamander Ring Species Ensatina Eschscholtzii by Thomas James Devitt
    The Dividing Link: Speciation and Hybridization in the Salamander Ring Species Ensatina eschscholtzii By Thomas James Devitt A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Craig Moritz, Co-chair Professor Jimmy McGuire, Co-chair Professor David B. Wake Professor George K. Roderick Spring 2010 Abstract The Dividing Link: Speciation and Hybridization in the Salamander Ring Species Ensatina eschscholtzii by Thomas James Devitt Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Craig Moritz, Co-chair Professor Jimmy McGuire, Co-chair Plethodontid salamanders of the Ensatina eschscholtzii complex have received special attention from evolutionary biologists because they represent one of the very few examples of a ring species, a case where two reproductively isolated forms are connected by a chain of intergrading populations surrounding a central geographic barrier. Ensatina has become a textbook example of speciation, yet there still remain fundamental gaps in our knowledge of this fascinating system. In this study, consisting of three components, I extend previous work on the Ensatina complex in new directions. In Chapter 1, I conducted a fine-scale genetic analysis of a hybrid zone between the geographically terminal forms of the ring using Bayesian methods for hybrid identification and classification in combination with mathematical cline analyses. F1s and pure parentals dominated the sample. Cline widths were concordant and narrow with respect to dispersal, but there is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines.
    [Show full text]
  • Speciation Genomics 2020 W
    Workshop on Population and Speciation Genomics 2020 W. Salzburger | Speciation Speciation by Prof. Walter Salzburger Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland Speciation is the evolutionary process by which novel species originate from earlier ones. This process ———————— DIVERSIFICATION is, in principle, equivalent to the divergence of lineages — also called DIVERSIFICATION — at the level The accumulation of (genetic) differences of populations, but implies that new species have arisen from it. Speciation is responsible for the between two ore evolution of the organismal diversity of life on Earth. more taxa through time. Species concepts SPECIMEN An individual There is no consensus in biology what precisely a species is. In practical terms, individuals are grouped organism used for into species in order to categorize organisms and to give these categories names, which in turn scientific study or display. facilitates the identification of biological SPECIMENS. Species descriptions are usually done by taxonomists, who classify species on the basis of shared morphological characters following taxonomy GENE POOL guidelines. Such diagnostic characters are then used to distinguish between members of different species Total number of and to identify organisms, for example using field guides or identification keys. Species identification genes in an interbreeding can be cumbersome because of natural variation: Individuals within a species are variable and there is population at a given usually no “ideal” or “typical” individual. Evolutionary biologists, on the other hand, interpret species time (and across all individuals). as independent evolutionary units. Accordingly, members of the same species share a GENE POOL and fundamental evolutionary processes such as selection and DRIFT operate within a species.
    [Show full text]
  • F26 Phyletic Gradualism < Uncommon >
    THE SYNTHETIC THEORY OF EVOLUTION 351 f26 Phyletic gradualism < uncommon > Natura non facit saltum (“Nature does not make leaps” or as Shakespeare put it: “Nature does nothing by starts and leaps, or in a hurry.”)1 ‘If it could be demonstrated that any complex organ existed which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down. But I can find no such case.’ [—Darwin] ... nor has anybody since, ... —Dawkins2 Phyletic gradualism is the evolutionary history of some fossil rodent lineages,3 ammonites,4 and in the speciation of some microfossil genera,5 such as the radiolaria. But it is not a common fossil- recorded feature of evolution. This surprise finding for evolutionary paleontologists was one that few chose to emphasize before the true nature of genetic inheritance became well understood. Some gradualistic evolutionary tales, as for titanotheres (Figure f26.1), are so oft told that as fairy tales (classified in both the Dewey decimal and the Library of Congress systems as nonfiction!) they, in the psyche, are folklore.6 For example, Darwin’s wrote nothing about the length of giraffe’s neck (Wallace did, see Footnote f26.1). T. H. Huxley recognized a like problem with his theory-driven Darwinian account of the evolution of the horse, that had become famous for its reasonableness and for his memorable telling of it, before he discovered that the four genera of horses that he had described (Footnote f26.2) never had in reality the opportunity to evolve one from the other. While visiting America on a lecture tour in 1876, he had occasion to see Marsh’s collection of American fossil horses.7 From that vastly more complete fossil evidence, he realized that the European genera that he had strung together as an evolving lineage, had been migrants to Europe from America and that in the bush of the horse’s evolution each were offshoot branches that had gone separately extinct.
    [Show full text]
  • Genetic Leakage After Adaptive and Nonadaptive Divergence in the Ensatina Eschscholtzii Ring Species
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2009.00722.x GENETIC LEAKAGE AFTER ADAPTIVE AND NONADAPTIVE DIVERGENCE IN THE ENSATINA ESCHSCHOLTZII RING SPECIES Ricardo J. Pereira1,2,3,4 and David B. Wake1 1Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94720 2E-mail: [email protected] 3CIBIO, Centro de Investigac¸ao˜ em Biodiversidade e Recursos Geneticos,´ Universidade do Porto, Campus Agrario´ de Vairao,˜ 4485-661 Vairao,˜ Portugal 4Departamento de Zoologia e Antropologia, Faculdade de Cienciasˆ da Universidade do Porto, 4099-002 Porto, Portugal Received October 24, 2008 Accepted April 9, 2009 The salamander Ensatina eschscholtzii is an example of a ring species in which extant intermediate stages of terminal forms have a nearly continuous range, offering replicated interactions at several stages of divergence. We employ a greatly expanded allozyme database and individual-based analyses to separate the effects of divergence time and gene flow to evaluate how gradual divergence of populations around the ring contributes to the development of reproductive isolation. Despite the high degree of genetic (D ≤ 0.39) and ecomorphological divergence observed in secondary contacts around the ring, reproductive isolation or rare hybridization is observed only at the terminus of the ring. Instead, in the secondary contacts sampled around the ring, hybrids are common and reproductively successful, enabling genetic leakage between parental genomes and the potential for genetic merger. Nevertheless, genetic admixture is geographically broad (<100 km) only in contacts between ecomorphologically similar populations (within subspecies). When divergence is accompanied by alternative patterns of adaptive divergence (between subspecies), zones of intergradation are narrower and affect populations only locally (>8 km).
    [Show full text]
  • UC Berkeley UC Berkeley Previously Published Works
    UC Berkeley UC Berkeley Previously Published Works Title Wherefore and Whither the Ring Species? Permalink https://escholarship.org/uc/item/217300sh Journal Copeia, 104(1) ISSN 0045-8511 Authors Kuchta, SR Wake, DB Publication Date 2016-03-01 DOI 10.1643/OT-14-176 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Copeia 104, No. 1, 2016, 189–201 Wherefore and Whither the Ring Species? Shawn R. Kuchta1 and David B. Wake2 Ring species are widely recognized as one of the best natural illustrations of species formation. A ring species is a circular arrangement of populations with one boundary characterized by reproductive isolation, but intergradation among populations elsewhere. They form when populations disperse around a central barrier and form a secondary contact characterized by reproductive isolation. Ring species are often presented as a taxonomic conundrum, because the presence of a single boundary exhibiting reproductive isolation leaves the ring of populations uncomfortably situated between one and two species. Here we review the ring species concept, with a focus on the salamander Ensatina eschscholtzii and the Greenish Warbler, Phylloscopus trochiloides. We argue that ring species demonstrate the gradual nature of species formation, and thereby illustrate the model of species formation originally put forth by Darwin. We also argue that ring species have become overly idealized, with a focus on strict criteria to the detriment of evolutionary lessons. Like all models of evolutionary change, the ring species concept is an oversimplification, and an ideal ring species has never been found. Finally, we review ring species in light of the general lineage concept of species, and argue that ring species status, while nicely accommodated by recognizing a single species, is independent of taxonomy.
    [Show full text]
  • • Summary of Topics • Species Concepts
    Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, [email protected] Evolution lecture #13 -- Speciation -- Dec. 5th, 2007 472-480 (ch. 24) in 7th ed. 464-475 (ch. 24) in 6th ed. • Summary of topics • Describe the biological species concept and understand its limitations; be aware of other species concepts, especially the phylogenetic species concept • Understand different mechanisms of reproductive isolation • Contrast allopatric and sympatric modes of speciation • Describe examples of species clusters in connection to concepts of niche, adaptive radiation, and convergent evolution • Species concepts Why classify organisms? All societies classify local plants and animals because they are important to them. We want to eat some; we want to exploit some; we want to avoid eating others; and we want to avoid being eaten or harmed by still others. In Europe, the age of exploration and especially the discovery of North and South America created the need to classify a huge number of new organisms, some of which were very similar to what was known in Europe and others of which were completely different. Linnaeus was the first to successfully devise a system of classifying all organisms and be able to accommodate new types. Now, one of the main reasons to refine our methods of classification is to understand and preserve natural diversity. Species: A basic "kind" of organism; designated through a concept most appropriate to the group of interest, often limited by criteria available to diagnose membership in and boundaries of this group. This is a very controversial topic -- there are many competing species concepts (more than 20!).
    [Show full text]