Farmers' Perception and Its Impacts on the Adaption Of

Total Page:16

File Type:pdf, Size:1020Kb

Farmers' Perception and Its Impacts on the Adaption Of FARMERS’ PERCEPTION AND ITS IMPACTS ON ADOPTION OF NEW AGROFORESTRY TREE (Gliricidia sepium) IN MWALA DIVISION, KENYA WANJIRU BEATRICE NZILU N50/CE/22643/2010 A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science (Environmental Education) in the School of Environmental Studies of Kenyatta University March 2015 DECLARATION This thesis is my original work and has not been presented for a Degree in any other University or any other award. Signature:…………………………. Date:………………………... Wanjiru Beatrice Nzilu (N50/CE/22643/2010) Department of Environmental Education SUPERVISORS We confirm that the work reported in this thesis was carried out by the candidate under our supervision as University supervisors. Signature:………………….…………….. Date:…………………………. Dr. Samuel C.J.Otor Department of Environmental Science Signature:………………….…………….. Date:…………………………. Dr. John Muriuki Department of Environmental Education DEDICATION This thesis is dedicated to my family, the Nzilus: Joy, Nathaniel and Samuel for standing by me in and out of season. They were very supportive and encouraged me even when the work became very tough to a point of despair. They held me up with prayers, sacrifice, and patience and with powerful kind words throughout my education. ACKNOWLEDGEMENTS I sincerely thank the Almighty God for granting me an opportunity to undertake my postgraduate studies at Kenyatta University, His provisions, and His grace that has been sufficient upon my life. He has given me the insight, sound mind, energy, good health and the grace to come this far with this thesis. I sincerely appreciate the people who generously advised and supported me when I was writing this thesis. I am most grateful and would like to thank Dr. Samuel C. J. Otor and Dr John Muriuki for their supervision, encouragement, guidance and support throughout the period of the research. Special thanks to Dr. Cecilia Gichuki and Dr. Judy Kariuki for their scholarly guidance, support, criticism and corrections towards the preparation of this thesis. I owe special gratitude to my family for their prayers, moral and financial support. God bless you. TABLE OF CONTENTS DECLARATION .................................................................................................... ii DEDICATION ....................................................................................................... iii ACKNOWLEDGEMENTS .................................................................................. iv LIST OF TABLES .............................................................................................. viii LIST OF FIGURES .............................................................................................. ix LIST OF PLATES .................................................................................................. x ABBREVIATIONS AND ACRONYMS ............................................................ xi ABSTRACT .......................................................................................................... xii CHAPTER ONE: INTRODUCTION ................................................................. 1 1.1 Introduction ........................................................................................................ 1 1.2 Background to the study .................................................................................... 1 1.3 Statement of the Problem ................................................................................... 4 1.3.1 General Objective ............................................................................................ 5 1.3.2 Specific Objectives .......................................................................................... 5 1.3.3 Research Questions ......................................................................................... 5 1.3.4 Research Hypotheses ...................................................................................... 6 1.4 Significance of the study .................................................................................... 6 1.5 Limitation and Delimitation of the Study .......................................................... 7 1.5.1 Limitation ........................................................................................................ 7 1.5.2 Delimitation ..................................................................................................... 7 1.6 Theoretical and conceptual framework ............................................................. 8 1.6.1 Theoretical framework .................................................................................... 8 1.7 Definitions of Terms ........................................................................................ 10 CHAPTER TWO .................................................................................................. 12 LITERATURE REVIEW .................................................................................... 12 2.1 Introduction ...................................................................................................... 12 2.2 Gliricidia sepium: The current status .............................................................. 12 2.2.1 Taxonomy ...................................................................................................... 12 2.2.2 Tree description ............................................................................................. 12 2.3 Farmers’ perception on agroforestry especially G sepium .............................. 13 2.4 Uses and benefits of G sepium tree species ..................................................... 14 2.5 Trends in agroforestry ...................................................................................... 20 CHAPTER THREE ............................................................................................. 21 RESEARCH METHODOLOGY ....................................................................... 21 3.1 Introduction .................................................................................................... 21 3.2 Research design and locale .............................................................................. 21 3.3.1 The study area ............................................................................................... 22 3.3.2 Climate, vegetation and soils ........................................................................ 24 3.3.2.1 Climate ....................................................................................................... 24 3.3.2.2 Vegetation .................................................................................................. 24 3.3.2.3 Soils ............................................................................................................ 24 3.4 Target Population ............................................................................................. 25 3.5 Sampling Techniques and Sample Size Determination .................................. 25 3.5.1 Sampling Techniques .................................................................................... 25 3.5.2 Sample size determination ............................................................................ 25 3.6 Research instruments ....................................................................................... 26 3.6.1 Questionnaire................................................................................................. 27 3.6.2 Interviews ...................................................................................................... 27 3.6.3 Observations .................................................................................................. 28 3.7 Data analysis and presentation ......................................................................... 28 CHAPTER FOUR ................................................................................................ 29 RESULTS AND DISCUSSION .......................................................................... 29 4.1 Introduction ...................................................................................................... 29 4.2 General and Demographic Information ........................................................... 29 4.2.1 General information ...................................................................................... 29 4.2.2 Findings for Objective, Research Question and Hypothesis one ................ 30 4.2.2.1 Gender of the respondents ......................................................................... 30 4.2.2.2 Contingence for association between gender and adoption of G sepium . 31 4.2.2.3 Age bracket of the respondents .................................................................. 31 4.2.2.4 Income generating activities for the respondents ...................................... 33 4.2.2.5 Education level of respondents .................................................................. 34 4.2.2.6 Respondents’ attendance to training and extension services .................... 35 4.2.2.7 Gender equality of training ........................................................................ 37 4.2.2.8 Willingness to attend training .................................................................... 38 4.3 Other factors that influenced the adoption of G sepium in agroforestry ........ 39 4.3.1 Introduction ................................................................................................... 39 4.3.1.1 Rainfall ......................................................................................................
Recommended publications
  • Gliricidia Sepium (Jacq.) Steud.]
    Available online at www.ijpab.com Choudhary et al Int. J. Pure App. Biosci. 5 (5): 40-47 (2017) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.4036 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 5 (5): 40-47 (2017) Research Article In vitro Regeneration in Callus Culture of Gliricidia [Gliricidia sepium (Jacq.) Steud.] Kaushlya Choudhary, M. L. Jakhar*, Aparna, Ravi Kumar and Hari Ram Jat Department of Plant Breeding and Genetics, SKN College of Agriculture, Jobner (Jaipur) 303329 *Corresponding Author E-mail: [email protected] Received: 12.06.2017 | Revised: 20.07.2017 | Accepted: 29.07.2017 ABSTRACT An efficient protocol was developed for callus induction and shoot regeneration in Gliricidia [Gliricidia sepium (Jacq.) Steud.]. Callus induction was observed at majority levels of plant growth regulators, however, profuse callus induction was observed on MS medium supplemented with 0.25 and 0.5 mg/l BAP alone and in combination 0.5 mg/l (BAP) + 2.5 mg/l (IAA). The shoot morphogenesis was observed in callus when incubated at 0.5 mg/l (BAP) + 2.5 mg/l (IAA), upon subculture on same levels of plant growth regulator. De novo shoot organogenesis from callus cultures were observed with 50 – 60 % frequency. Photoperiod regime 14:10 was found best for shoot bud and callus induction. Highest root induction was observed on 0.5 mg/l IAA under in vitro proliferated shoot with 100 % frequency. Key words: Gliricidia, callus induction, regeneration, plant growth regulator. INTRODUCTION stabilization and as green manure. Gliricidia is Gliricidia [Gliricidia sepium (Jacq.) Steud., 2n widely used to provide shade for crops like =22] is a fast growing, medium size, semi cacao, coffee, and other shade loving crops, deciduous, multipurpose forage tree belonging living fence post for pasture and properly to the family Fabaceae.
    [Show full text]
  • Bioeconomic Evaluation of Feedings Beef Cattle in Mozambique
    Livestock Science 247 (2021) 104466 Contents lists available at ScienceDirect Livestock Science journal homepage: www.elsevier.com/locate/livsci Bioeconomic evaluation of feedings strategies in the yearling beef cattle system in Mozambique T´elis Adolfo Cumbe a,b, Amir Gil Sessim a, Fredy Andrey Lopez-Gonz´ alez´ a, Daniele Zago a, Antonia´ Mendes Paizano Alforma a,c, Júlio Otavio´ Jardim Barcellos a,* a Department of Animal Science, Federal University of Rio Grande do Sul (UFRGS), 7.712 Bento Gonçalves Ave., Porto Alegre, Rio Grande do Sul, 91540-000, Brazil b Faculty of Agricultural Science, Zambezi University (UniZambeze) P.O. Box 213, Ulongu´ `e, Tete, 2306, Mozambique c Estaçao~ Zoot´ecnica de Angonia´ (EZA), Centro Regional da Zona Centro, Instituto de Investigaçao~ Agraria´ de Moçambique (IIAM), Ulongu´ `e, Tete, Moçambique HIGHLIGHTS • Simulation is a valuable tool for the feeding management of beef cattle. • Communal cattle grazing systems may be improved by using alternative feedstuffs. • Diets based on low-cost feeding strategies provide better economic returns. ARTICLE INFO ABSTRACT Keywords: The application of feeding strategies (FS) to meet nutrient requirements of beef cattle grazing on native pastures Communal pasture during the dry season, are required to improve the productivity of production systems in tropical regions. The Feeding strategy objective of this study was to evaluate the bioeconomic effects of different FSs applied to yearling bulls in Economic analysis Mozambique, using modeling and simulations as tools to support decision making. A simple deterministic simulation model was developed, assuming initial body weight (120 kg), average daily gain (ADG), feedstuffs, and production costs as inputs.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Diversity and Genetic Differentiation Among Subpopulations of Gllricidia Sepium Revealed by PCR-Based Assays
    Heredity74 (1995) 10—18 Received 17 January 1994 Genetical Society of Great Britain Diversity and genetic differentiation among subpopulations of Gllricidia sepium revealed by PCR-based assays I. K. DAWSON*, A. J. SIMONSt, R. WAUGH & W. POWELL Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA and f Oxford Forestry Institute, South Parks Road, Oxford 0X1 3R8, U.K. Randomlyamplified polymorphic DNA (RAPD), and a mitochondrial marker based on amplifica- tion of the V7 region of the mitochondrial small ribosomal RNA (srRNA) gene, were used to partition genetic variation within a single population of Gliricidia sepium sampled from Guatemala. Seventeen per cent of the variation detected with RAPDs was partitioned among subpopulations and indicated a greater level of discrimination than previously detected with isozymes. Cluster analysis indicated a direct relationship between this variation and the geographical distance between subpopulations. A polymorphism identified within the maternally inherited mitochondrial V7 srRNA product, which relied on digestion with restriction endonucleases, confirmed the genetic subdivision identified with RAPDs, and suggested a relatively limited role for seed in gene dispersal. Introduction PCR is less technically demanding than RFLPs and requires only small amounts of DNA. In addition, PCR Theoptimal collection and utilization of genetic provides great flexibility in detecting genetic variation resources from natural plant populations requires a as a variety of primers can be used which are designed
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • GLIRICIDIA SEPIUM FACTSHEET Establishment, Management and Benefits
    GLIRICIDIA SEPIUM FACTSHEET Establishment, management and benefits What is Gliricidia sepium? 4. Gliricidia stabilizes soils against acidification. Application of 1.6 to 4.0 tonnes of fresh mulch of gliricidia per acre Gliricidia sepium, commonly known as ‘gliricidia’, is a (0.4 hectare) increases soil pH, nutrient content and crop fast-growing, nitrogen-fixing shrub, exotic to Kenya but native yields. to El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama and the United States of America. 5. Gliricidia is a deep-rooted agroforestry tree with limited lateral root growth (except in areas with hard pan where lateral root is more pronounced). This lessens competition with food crops for water and nutrients. 6. Its ability to pull up nutrients from far beneath the ground into a crop’s root zone makes it one of the best agroforestry trees for intercropping. 7. Gliricidia can tolerate repeated cuttings and has high shoot regrowth. It can be managed in this way in crop Figure 1. Gliricidia sepium seedling (left) and flower (right). fields for at least two decades before replanting is Photo: World Agroforestry needed. Gliricidia as an agroforestry species 1. It is a fast-growing shrub and establishes well on acidic, degraded and infertile soils. 2. Gliricidia is an excellent biomass producer (both wood and leaf). Thus, it provides households with both firewood (including charcoal) and fodder for livestock and poultry. The fodder is rich in nitrogen. Figure 3. Coppiced gliricidia. Photo: World Agroforestry 3. It is an excellent soil improver, being both a nitrogen fixer and an excellent recycler of nutrients. Thus, it causes increase in soil fertility and crop yields by almost 2 to 3 Other benefits times without any fertilizer application.
    [Show full text]
  • Feed Value of Selected Tropical Grasses, Legumes and Concentrates
    VETERINARSKI ARHIV 76 (1), 53-63, 2006 Feed value of selected tropical grasses, legumes and concentrates Paul Sebastian Mlay1*, Appolinaria Pereka1, Eliot Chikula Phiri1, Sakurani Balthazary1, Jelantik Igusti2, Torben Hvelplund3, Martin Riis Weisbjerg3, and Jørgen Madsen4 1Department of Physiology, Biochemistry, Pharmacology and Toxicology, Morogoro, Tanzania 2Department of Animal Science, The University of Nusa Cendana, Kupang, Indonesia 3Department of Animal Nutrition and Physiology, Danish Institute of Agricultural Sciences, Research Centre Foulum, Tjele, Denmark 4Department of Animal Science and Animal Health, The Royal Veterinary and Agricultural University, Copen- hagen, Frederiksberg, Denmark MLAY, P. S., A. PEREKA, E. C. PHIRI, S. BALTHAZARY, J. IGUSTI, T. HVELPLUND, M. R. WEISBJERG, J. MADSEN: Feed value of selected tropical grasses, legumes and concentrates. Vet. arhiv 76, 53-63, 2006. ABSTRACT Feed value is the potential of the feed to supply the nutrients required by an animal both quantitatively and qualitatively in order to support a desired type of production. Where chemical composition and digestibility of a given feed is known it is possible to calculate its energy content by using appropriate regression equations. Eleven tropical grass species and mixed grass hay, seven legumes and browse trees, and six concentrates were evaluated in terms of chemical composition (CP, EE, OM, CHO and NDF), digestibility (in vitro organic matter digestibility -IVOMD and enzyme solubility of organic matter- EZOM) and calculated energy values. The grass species were: Andropogon timorensis (Kunth), Rev. Gram., Brachiaria brizantha, (A.Rich) Stapf, Bothriochloa radicans (Lehm) A. camus, Chloris guyana Kunth, Cynodon dactylon (L.) Pers, Hyparrhenia rufa (Nees) Stapf, Panicum maximum (Jacq.), Pannisetum purpureum (Schumacher), Setaria sphacelata Stapf & C.
    [Show full text]
  • Characterization of Riparian Tree Communities Along a River Basin in the Pacific Slope of Guatemala
    Article Characterization of Riparian Tree Communities along a River Basin in the Pacific Slope of Guatemala Alejandra Alfaro Pinto 1,2,* , Juan J. Castillo Mont 2, David E. Mendieta Jiménez 2, Alex Guerra Noriega 3, Jorge Jiménez Barrios 4 and Andrea Clavijo McCormick 1,* 1 School of Agriculture & Environment, Massey University, Palmerston North 4474, New Zealand 2 Herbarium AGUAT ‘Professor José Ernesto Carrillo’, Agronomy Faculty, University of San Carlos of Guatemala, Guatemala City 1012, Guatemala; [email protected] (J.J.C.M.); [email protected] (D.E.M.J.) 3 Private Institute for Climate Change Research (ICC), Santa Lucía Cotzumalguapa, Escuintla 5002, Guatemala; [email protected] 4 School of Biology, University of San Carlos of Guatemala, Guatemala City 1012, Guatemala; [email protected] * Correspondence: [email protected] (A.A.P.); [email protected] (A.C.M.) Abstract: Ecosystem conservation in Mesoamerica, one of the world’s biodiversity hotspots, is a top priority because of the rapid loss of native vegetation due to anthropogenic activities. Riparian forests are often the only remaining preserved areas among expansive agricultural matrices. These forest remnants are essential to maintaining water quality, providing habitats for a variety of wildlife Citation: Alfaro Pinto, A.; Castillo and acting as biological corridors that enable the movement and dispersal of local species. The Mont, J.J.; Mendieta Jiménez, D.E.; Acomé river is located on the Pacific slope of Guatemala. This region is heavily impacted by intensive Guerra Noriega, A.; Jiménez Barrios, agriculture (mostly sugarcane plantations), fires and grazing. Most of this region’s original forest J.; Clavijo McCormick, A.
    [Show full text]
  • ESPECIES FORRAJERAS-Trópico Americano.Indd
    Especies Forrajeras Multipropósito Opciones para Productores del Trópico Americano Michael Peters, Luis Horacio Franco, Axel Schmidt y Belisario Hincapié PAGINA DE CATALOGACION Contenido Página Prefacio vi Dedicatoria viii Gramíneas 1 Andropogon gayanus Kunth 2 Axonopus scoparius (Flüggé) Kuhlm. 4 Botrhriochloa pertusa (L.) A. Camus 6 Brachiaria arrecta (Hack. ex T. Durand & Schinz) Stent 8 Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. 10 Brachiaria decumbens Stapf. 12 Brachiaria dictyoneura (Fig. & De Not) Stapf. 14 Brachiaria humidicola (Rendle) Schweick. 16 Brachiaria híbrido 18 Brachiaria mutica (Forssk.) Stapf 20 Chloris gayana Kunth 22 Cynodon plectostachyus (K. Schum.) Pilg. – C. nlemfuensis Vanderyst 24 Dichantium aristatum (Poir.) C.E. Hubb. 26 Digitaria eriantha Steud. 28 Digitaria swazilandensis Stent 30 Echinochloa polystachya (Kunth.) Hitchc. 32 Hemarthria altissima (Poir.) Stapf & C.E. Hubb. 34 Hyparrhenia rufa (Nees) Stapf. 36 Ischaemum indicum (Houtt.) Merr. 38 Melinis minutiflora P. B e a u v. 4 0 Panicum maximum Jacq. 42 Paspalum atratum Swallen 44 Paspalum notatum Flüggé 46 Pennisetum clandestinum Hochst. ex Chiov. 48 Pennisetum purpureum Schumach. 50 Sacharum officinarum L. 52 Setaria sphacelata (Schumach.) Stapf & C.E. Hubb. Var. Anceps (Stapf) Veldkamp 54 Tripsacum laxum Nash – Tripsacum andersonii J. R. Gray 56 iii Página Leguminosas Herbáceas 59 Arachis pintoi Krapov. & W.C. Grez. 60 Calopogonium mucunoides Desv. 62 Centrosema acutifolium Benth. 64 Centrosema brasilianum (L.) Benth. 66 Centrosema macrocarpum Benth. 68 Centrosema molle Mart. ex Benth. 70 Centrosema pascuorum Mart. ex Benth. 72 Centrosema plumieri (Turpin ex Pers) Benth. 74 Chamaecrista rotundifolia (Pers.) Greene 76 Clitoria ternatea L. 78 Desmodium heterocarpon (L.) DC. subsp. ovalifolium (Prain) Ohashi 80 Galactia striata (Jacq.) Urb.
    [Show full text]
  • Intake and Growth Performance of West African Dwarf Goats Fed
    Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol 2, No.10, 2012 Intake and Growth Performance of West African Dwarf Goats Fed Moringa oleifera, Gliricidia sepium and Leucaena leucocephala Dried Leaves as Supplements to Cassava Peels Vincent Asaolu1*, Rachael Binuomote2, Jelili Akinlade2, Olusola Aderinola2, Oyeniyi Oyelami2 1Department of Animal Nutrition and Biotechnology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria 2Department of Animal Production and Health, Ladoke Akintola University of Technology, Ogbomoso, Nigeria *E-mail of the corresponding author: [email protected] Abstract An 84-day feeding trial was employed to investigate dried leaves of Moringa oleifera (MOR), Leucaena leucocephala (LEU) and Gliricidia sepium (GLI) as supplements to cassava peels by 16 growing West African Dwarf goats, with a mixed concentrate (MC) of groundnut cake and wheal offals (50:50) as the reference supplement. Feed intakes, weight gain, feed conversion (FCR) and protein efficiency ratios (PER) were monitored. Crude protein contents of the browse leaves were high and ranged from 21.64 to 28.86 % for GLI and LEU respectively. Dry matter intakes ranged from 3.55 to 4.12 % of body weights for animals on gliricidia leaf and mixed concentrates supplements respectively. MOR supplementation resulted in an average weight gain of 20.83 g/animal/day, comparable (P<0.05) to the value of 21.43 g/animal/day for the MC supplementation. Feed and protein were however more efficiently utilized by animals on the MOR supplement, with FCR and PER values of 14.94 and 1.87 which were both significantly (P>0.05) lower than the corresponding values of 16.54 and 2.74 for animals on the MC supplement.
    [Show full text]
  • Gliricidia Sepium.Qxd
    gliricidia sepium Action Sheet 54 What is this Action Sheet about? This Action Sheet is about how to plant and use Gliricidia sepium (Mother of cocoa or quickstick) in agroforestry. Gliricidia sepium is a South American nitrogen-fixing tree with many uses on the farm. What can Gliricidia sepium be used for? Food: Flowers can be fried and eaten. Fodder: Leaves are rich in protein and highly digestible for ruminants like goat and cattle, as they are low in fibre and tannin. There is evidence of improved animal production (both milk and meat) in large and small ruminants when Gliricidia is used as a supplement to fodder. However, non-ruminants fed on Gliricidia sepium have shown clear signs of poisoning. Apiculture: The flowers attract honeybees (Apis spp.), hence it is an important species for honey production. Fuel: Good for firewood and charcoal production. The wood burns slowly without sparking and with little smoke. Timber: Very durable and termite resistant; used for railway sleepers, farm implements, furniture, house construction and as mother posts in live-fence establishment. Poison: The leaves, seeds or powdered bark are poisonous to humans when mixed with cooked rice or maize and fermented. It has been used as a poison for pests like rats and mice. Medicine: A traditional remedy for hair loss, boils, bruises, burns, colds, cough, debility, eruptions, erysipelas, fever, fractures, gangrene, headache, itch, prickly heat, rheumatism, skin tumours, ulcers, urticaria and wounds. Erosion control: Hedgerows in alley cropping control soil erosion. Shade and shelter: Often grown as shade for tea, coffee and cocoa. It is also used as a nurse tree for shade-loving species.
    [Show full text]
  • Windbreaks for Agroforestry Fresh Ideas with Multi-Use Species Trees for Improving Sustainability, Resource Conservation, and Profitability on Farms and Ranches
    Windbreaks for Agroforestry Fresh Ideas with Multi-Use Species Trees for Improving Sustainability, Resource Conservation, and Profitability on Farms and Ranches Kona, Hawai‘i May 16-19, 2006 R. J. Joy, Plant Materials Specialist USDA-NRCS Plant Materials Center, Moloka‘i, Hawai‘i Slide 1 Agroforestry is the purposeful WINDBREAKS FOR growing of trees and crops in AGROFORESTRY interacting combinations. We will discuss the basic principles of FRESH IDEAS windbreaks and windbreak WITH MULTI- USE SPECIES design. Windbreak species, with an emphasis on multi-use R. J. JOY, Plant Materials species, and how they may be Specialist used will be discussed; however, each planting site will have its own ecological and climatic conditions. For specific information on a variety of species for windbreaks, contact your local NRCS, CES, or DOFAW office. Slide 2 Windbreaks improve crop yields, PURPOSE OF improve the quality of life for WINDBREAKS people and animals, and provide a variety of other benefits. • Reduce Wind Erosion • Protect Crops and Livestock • Improve Irrigation Efficiency • Provide a Product • Provide Wildlife Habitat Slide 3 Various criteria must be CRITERIA TO considered if windbreaks are to CONSIDER be effective. If they are to • Windbreak Design adequately provide protection, • Species proper planning is necessary. • Site Preparation • Planting • Maintenance Slide 4 For maximum effectiveness, WINDBREAK DESIGN windbreaks should be aligned at right angles or 90 degrees to the • Plant Perpendicular To Wind prevailing troublesome winds. • Space Windbreaks 5-10 X Ht. They may be planted between • Density of 50 – 80% Best 90 and 45 degrees, but if they • Growth Uniformity Important are not planted perpendicular to • Diversify W/ Multiple Species the wind the rows should be spaced closer.
    [Show full text]