The Quest for Phenolic Compounds from Macroalgae: a Review of Extraction and Identification Methodologies

Total Page:16

File Type:pdf, Size:1020Kb

The Quest for Phenolic Compounds from Macroalgae: a Review of Extraction and Identification Methodologies biomolecules Review The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies 1, , 2, 1 3 Sónia A. O. Santos * y , Rafael Félix y , Adriana C. S. Pais ,Sílvia M. Rocha and Armando J. D. Silvestre 1 1 CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (A.C.S.P.); [email protected] (A.J.D.S.) 2 On Leave MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-620 Peniche, Portugal; [email protected] 3 QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-084 These authors contributed equally for this work. y Received: 19 September 2019; Accepted: 25 November 2019; Published: 9 December 2019 Abstract: The current interest of the scientific community for the exploitation of high-value compounds from macroalgae is related to the increasing knowledge of their biological activities and health benefits. Macroalgae phenolic compounds, particularly phlorotannins, have gained particular attention due to their specific bioactivities, including antioxidant, antiproliferative, or antidiabetic. Notwithstanding, the characterization of macroalgae phenolic compounds is a multi-step task, with high challenges associated with their isolation and characterization, due to the highly complex and polysaccharide-rich matrix of macroalgae. Therefore, this fraction is far from being fully explored. In fact, a critical revision of the extraction and characterization methodologies already used in the analysis of phenolic compounds from macroalgae is lacking in the literature, and it is of uttermost importance to compile validated methodologies and discourage misleading practices. The aim of this review is to discuss the state-of-the-art of phenolic compounds already identified in green, red, and brown macroalgae, reviewing their structural classification, as well as critically discussing extraction methodologies, chromatographic separation techniques, and the analytical strategies for their characterization, including information about structural identification techniques and key spectroscopic profiles. For the first time, mass spectrometry data of phlorotannins, a chemical family quite exclusive of macroalgae, is compiled and discussed. Keywords: bioactive compounds; extraction; characterization; macroalgae; phenolic compounds; phlorotannins; mass spectrometry; seaweed 1. Introduction Phenolic compounds constitute one of the most numerous and widespread groups of secondary metabolites. These components are important to the normal growth and development of algae and terrestrial plants, providing defense mechanisms against infections, injuries, and environmental aggressions. As part of both animal and human diet, the nutraceutical properties assigned to phenolic compounds are almost endless [1]. Therefore, in recent years, there has been an outstanding demand for the search for phenolic compounds from natural sources, with a focus on plants [2], fruits [3], or ensuing agro-industrial biomass residues [4]. Marine macroalgae (seaweeds) have been seen in the last years as a valuable source of bioactive components, including phenolic compounds [5], which Biomolecules 2019, 9, 847; doi:10.3390/biom9120847 www.mdpi.com/journal/biomolecules Biomolecules 2019, 9, 847 2 of 56 Biomolecules 2019, 9, 847 2 of 58 in some cases are quite exclusive to macroalgae, e.g., phlorotannins. Despite the growing number of studiesthe regardinggrowing number the analysis of studies ofthe regarding phenolic the fraction analysis ofof macroalgaethe phenolic [fraction6,7], including of macroalgae the optimization [6,7], of extractionincluding conditionsthe optimization [8,9] of and extraction analysis conditions [10] of such [8,9] components, and analysis [10] a detailed of such and components, comprehensive a revisiondetailed of their and phenoliccomprehensive composition revision as of well their as pheno of thelic extraction composition and as analytical well as of methodologiesthe extraction and applied to theiranalytical detailed methodologies characterization, applied has to nottheir been detailed available characterization, so far. Actually, has not and been despite available the so increasing far. Actually, and despite the increasing interest from the scientific community, the bioprospection of interest from the scientific community, the bioprospection of phenolic compounds from macroalgae phenolic compounds from macroalgae has been a challenging issue. The large size and complexity has been a challenging issue. The large size and complexity of their structures, together with the high of their structures, together with the high abundance of polysaccharides on the macroalgae matrix, abundancemake the of isolation polysaccharides and characterization on the macroalgae of phenolic matrix, fraction makequite difficult. the isolation On this and vein, characterization a multi-step of phenolicstrategy fraction (Figure quite 1), diincludingfficult. Ondifferent this vein, fractionation a multi-step techniques strategy after (Figure phenolic1), including compounds di ff erent fractionationextraction, techniques has been done after by phenolicdifferent scientists, compounds which extraction, influenced has afterward been done the effectiveness by different of scientists, the whichstructural influenced characterization. afterward the effectiveness of the structural characterization. Figure 1. Schematic representation of the multi-step strategy applied to the identification of macroalgae Figure 1. Schematic representation of the multi-step strategy applied to the identification of phenolicmacroalgae compounds. phenolic compounds. Therefore,Therefore, the aimthe aim of this of reviewthis review is to provideis to pr aovide comprehensive a comprehensive overview overview of published of published information on theinformation phenolic on composition the phenolic ofcomposition green, red, of green, and brownred, and macroalgae, brown macroalgae, reviewing reviewing their their structural classification,structural classification, as well as critically as well as discuss critically extraction discuss extraction methodologies, methodologies, chromatographic chromatographic separation methodologies,separation methodologies, and structural and identification structural identification techniques techniques and key and spectroscopic key spectroscopic profiles profiles of identified of phenolicidentified compounds. phenolic compounds. Due to the well-knownDue to the well-known significant significant inter- oreither inter- intra-speciesor either intra-species variability of macroalgaevariability composition, of macroalgae depending composition, on depending both macroalgae on both macroalgae characteristics characteristics (e.g., age, (e.g., size, age, tissue size, type) andtissue abiotic type) factors and (e.g., abiotic nutrients, factors (e.g., salinity, nutrients, light, salinity, season), light, phenolic season), content phenolic values content will notvalues be discussedwill not be discussed in detail here. Most studies here revised have reported total phenolic (TPC) or in detail here. Most studies here revised have reported total phenolic (TPC) or phlorotannins contents phlorotannins contents (TPhC) only based on spectrophotometric methods, as will be discussed (TPhC) only based on spectrophotometric methods, as will be discussed below, for which the possible below, for which the possible co-extraction of, e.g., polysaccharides may have a significant co-extractioncontribution. of, e.g., polysaccharides may have a significant contribution. ThisThis appraisal appraisal can can constitute constitute aa landmarklandmark on on th thee systematization systematization of the of themulti-step multi-step procedures procedures usedused to study to study macroalgae, macroalgae, fostering fostering research research and and the the valorization valorization of of a verya very abundant abundant source source of of natural compounds,natural compounds, representing, representing, therefore, therefore, an important an important contribution contribution to the to development the development of the of so-calledthe blueso-called biotechnology, blue biotechnology, one of the most one important of the most areas forimportant the sustainable areas for world the sustainable development. world development. 2. Wide Chemical Diversity of Phenolic Compounds Present in Macroalgae 2. Wide Chemical Diversity of Phenolic Compounds Present in Macroalgae Structurally, phenolic compounds present in macroalgae vary from simple molecules, such as Structurally, phenolic compounds present in macroalgae vary from simple molecules, such as phenolic and cinnamic acids or flavonoids, to the more complex phlorotannin polymeric structures. phenolic and cinnamic acids or flavonoids, to the more complex phlorotannin polymeric structures. 2.1. Simple Phenolic Compounds 2.1. Simple Phenolic Compounds Hydroxybenzoic acid derivatives, such as gallic acid (Figure2), are commonly reported as constituents of different green, red, and brown macroalgae species [11–14]. Flavan-3-ol derivatives, such as epicatechin or epigallocatechin (Figure2), have been one of the major class of phenolic Biomolecules 2019, 9, 847 3 of 56 components detected in green, red, and brown macroalgae [11,15]. Other flavonoids, such as rutin, quercitrin, hesperidin, myricetin, morin, kaempferol, and cirsimaritin (Figure2),
Recommended publications
  • Università Di Bologna in Cotutela Con Università Dell'algarve
    Allma Mater Studiiorum – Uniiversiità dii Bollogna in cotutela con Università dell’Algarve DOTTORATO DI RICERCA IN Scienze Della Terra, Della Vita E Dell’Ambiente Ciclo XXIX Settore Concorsuale di afferenza: 05/C1 Ecologia Settore Scientifico disciplinare: BIO/07 Ecologia GENETIC BACKGROUND, RANGE SHIFTS AND ASSOCIATED MICROBIAL RESPONSES OF CANOPY ALGAE UNDER CHANGING ENVIRONMENT Presentata da: Roberto Buonomo Coordinatore Dottorato Relatori Prof. Barbara Mantovani Prof. Laura Airoldi Prof. Ester A. Serrão Co–relatori Dr. Aschwin H. Engelen Esame finale anno 2017 “Dove inizia la fine del mare? O addirittura: cosa diciamo quando diciamo: mare? Diciamo l'immenso mostro capace di divorare qualsiasi cosa, o quell'onda che ci schiuma intorno ai piedi? L'acqua che puoi tenere nel cavo della mano o l'abisso che nessuno può vedere? Diciamo tutto in una sola parola o in una sola parola tutto nascondiamo? Sto qui, a un passo dal mare, e neanche riesco a capire, lui, dov'è. Il mare. Il mare.” – Alessandro Baricco, Oceano Mare Genetic background, range shifts and associated microbial responses of canopy algae under changing environment ABSTRACT Marine forests are a key habitat across temperate rocky shores, increasing dimensional complexity, local biodiversity, and productivity. However, canopy-forming algae are experiencing a general global decline, mostly driven by human pressures on coastal ecosystems and global changes. In contrast with their high ecological relevance, little is known about how their genetic diversity, dispersal and connectivity can be affected by global changes, despite the expected consequences for population resilience. I focused on studying brown macroalgae of the genus Cystoseira, one of the leading canopy-forming seaweed genera along European coasts, coupling molecular and ecological approaches to understand several processes that affect these marine forests.
    [Show full text]
  • Investigating the Genetic Origin of Three Fucus Morphotypes Using Microsatellite Analysis
    Investigating the genetic origin of three Fucus morphotypes using microsatellite analysis Frida Catharina Skovereng Knoop Master of Marine Biology, June 2021 Supervisors: Inga Kjersti Sjøtun, Pedro Miguel de Azevedo Ribeiro, Geir Dahle Department of Biological Sciences, University of Bergen 1 Acknowledgements First, I would like to say thank you Kjersti, for shaping the thesis and for giving me the opportunity to participate in this project. Without exception, you have been so kind and supportive throughout the whole process. Although I only got to explore a small part of the vast world of algae, it surely has been an inspirational and interesting journey full of new learnings. Thank you for your guidance and patience in the field, the lab, and for always answering my questions. I could not ask for a better supervisor, and it has been a pleasure to work with you. Pedro, thank you for being an excellent co-supervisor. During this thesis, I very much appreciated your positive attitude and patience. Thank you for taking your time to explain the processes behind the molecular work and for guiding me through the statistical part, which I found particularly challenging. During stressful times, your support kept me calm and made sure I did not lose focus. Also, your feedback was very much appreciated. A special thank you to co-supervisor Geir Dahle at the Institute of Marine Science (IMR) for taking your time to help with the genetic analysis, the ABI Machine, and allele scoring, which was only possible at IMR. I also want to thank you for sharing your knowledge regarding microsatellite analysis, being helpful with the statistics, and providing good feedback.
    [Show full text]
  • Plants and Ecology 2013:2
    Fucus radicans – Reproduction, adaptation & distribution patterns by Ellen Schagerström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Fucus radicans - Reproduction, adaptation & distribution patterns by Ellen Schagerström Supervisors: Lena Kautsky & Sofia Wikström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Plants & Ecology The Department of Ecology, Environment and Plant Sciences Stockholm University S-106 91 Stockholm Sweden © The Department of Ecology, Environment and Plant Sciences ISSN 1651-9248 Printed by FMV Printcenter Cover: Fucus radicans and Fucus vesiculosus together in a tank. Photo by Ellen Schagerström Summary The Baltic Sea is considered an ecological marginal environment, where both marine and freshwater species struggle to adapt to its ever changing conditions. Fucus vesiculosus (bladderwrack) is commonly seen as the foundation species in the Baltic Sea, as it is the only large perennial macroalgae, forming vast belts down to a depth of about 10 meters. The salinity gradient results in an increasing salinity stress for all marine organisms. This is commonly seen in many species as a reduction in size. What was previously described as a low salinity induced dwarf morph of F. vesiculosus was recently proved to be a separate species, when genetic tools were used. This new species, Fucus radicans (narrow wrack) might be the first endemic species to the Baltic Sea, having separated from its mother species F. vesiculosus as recent as 400 years ago. Fucus radicans is only found in the Bothnian Sea and around the Estonian island Saaremaa. The Swedish/Finnish populations have a surprisingly high level of clonality.
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • Species Are Hypotheses: Avoid Connectivity Assessments Based on Pillars of Sand Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D
    Species are hypotheses: avoid connectivity assessments based on pillars of sand Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D. Aurelle, Magalie Castelin, Anne Chenuil, Christophe Destombe, Didier Forcioli, Myriam Valero, et al. To cite this version: Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D. Aurelle, et al.. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology, Wiley, 2015, 24 (3), pp.525-544. hal-02002440 HAL Id: hal-02002440 https://hal.archives-ouvertes.fr/hal-02002440 Submitted on 31 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Ecology Species are hypotheses : avoid basing connectivity assessments on pillars of sand. Journal:For Molecular Review Ecology Only Manuscript ID: Draft Manuscript Type: Invited Reviews and Syntheses Date Submitted by the Author: n/a Complete List of Authors: Pante, Eric; UMR 7266 CNRS - Université de La Rochelle, Puillandre, Nicolas; MNHN, Systematique & Evolution Viricel, Amélia; UMR 7266 CNRS -
    [Show full text]
  • Defence on Surface of Rhodophyta Halymenia Floresii
    THESE DE DOCTORAT DE UNIVERSITE BRETAGNE SUD ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Biotechnologie Marine Par Shareen A ABDUL MALIK Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Thèse présentée et soutenue à « Vannes », le « 7 July 2020 » Unité de recherche : Laboratoire de Biotechnologie et Chimie Marines Thèse N°: Rapporteurs avant soutenance : Composition du Jury : Prof. Gérald Culioli Associate Professor Président : Université de Toulon (La Garde) Prof. Claire Gachon Professor Dr. Leila Tirichine Research Director (CNRS) Museum National d’Histoire Naturelle, Paris Université de Nantes Examinateur(s) : Prof. Gwenaëlle Le Blay Professor Université Bretagne Occidentale (UBO), Brest Dir. de thèse : Prof. Nathalie Bourgougnon Professor Université Bretagne Sud (UBS), Vannes Co-dir. de thèse : Dr. Daniel Robledo Director CINVESTAV, Mexico i Invité(s) Dr. Gilles Bedoux Maître de conferences Université Bretagne Sud (UBS), Vannes Title: Systèmes de défence de surface de la Rhodophycée Halymenia floresii : Analyse metabolomique et interactions avec les bactéries épiphytes Mots clés: Halymenia floresii, antibiofilm, antifouling, métabolomique, bactéries associées à la surface, quorum sensing, molecules de défense Abstract : Halymenia floresii, une Rhodophycée présente Vibrio owensii, ainsi que son signal C4-HSL QS, a été une surface remarquablement exempte d'épiphytes dans les identifié comme pathogène opportuniste induisant un conditions de l'Aquaculture MultiTrophique Intégrée (AMTI). blanchiment. Les métabolites extraits de la surface et Ce phénomène la présence en surface de composés actifs de cellules entières de H. floresii ont été analysés par allélopathiques. L'objectif de ce travail a été d'explorer les LC-MS.
    [Show full text]
  • Changes in Rocky Intertidal Community Structure During a Marine Heatwave in the Northern Gulf of Alaska
    fmars-08-556820 February 15, 2021 Time: 11:21 # 1 ORIGINAL RESEARCH published: 17 February 2021 doi: 10.3389/fmars.2021.556820 Changes in Rocky Intertidal Community Structure During a Marine Heatwave in the Northern Gulf of Alaska Benjamin Weitzman1,2*, Brenda Konar2, Katrin Iken2, Heather Coletti3, Daniel Monson4, Robert Suryan5, Thomas Dean6, Dominic Hondolero1 and Mandy Lindeberg5 1 Kasitsna Bay Laboratory, National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, Homer, AK, United States, 2 College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States, 3 Southwest Alaska Network, Inventory & Monitoring Program, National Park Service, Fairbanks, AK, United States, 4 Alaska Science Center, U.S. Geological Survey, Anchorage, AK, United States, 5 Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, AK, United States, 6 Coastal Resources Associates, Carlsbad, CA, United States Edited by: Marine heatwaves are global phenomena that can have major impacts on the structure Christos Dimitrios Arvanitidis, Hellenic Centre for Marine Research and function of coastal ecosystems. By mid-2014, the Pacific Marine Heatwave (HCMR), Greece (PMH) was evident in intertidal waters of the northern Gulf of Alaska and persisted Reviewed by: for multiple years. While offshore marine ecosystems are known to respond to Francisco Arenas, University of Porto, Portugal these warmer waters, the response of rocky intertidal ecosystems to this warming Rodrigo Riera, is unclear. Intertidal communities link terrestrial and marine ecosystems and their University of Las Palmas de Gran resources are important to marine and terrestrial predators and to human communities Canaria, Spain for food and recreation, while simultaneously supporting a growing coastal tourism *Correspondence: Benjamin Weitzman industry.
    [Show full text]
  • Mutton, Robbie John
    UHI Thesis - pdf download summary The Bioactivity and Natural Products of Scottish Seaweeds Mutton, Robbie John DOCTOR OF PHILOSOPHY (AWARDED BY OU/ABERDEEN) Award date: 2012 Awarding institution: The University of Edinburgh Link URL to thesis in UHI Research Database General rights and useage policy Copyright,IP and moral rights for the publications made accessible in the UHI Research Database are retained by the author, users must recognise and abide by the legal requirements associated with these rights. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement, or without prior permission from the author. Users may download and print one copy of any thesis from the UHI Research Database for the not-for-profit purpose of private study or research on the condition that: 1) The full text is not changed in any way 2) If citing, a bibliographic link is made to the metadata record on the the UHI Research Database 3) You may not further distribute the material or use it for any profit-making activity or commercial gain 4) You may freely distribute the URL identifying the publication in the UHI Research Database Take down policy If you believe that any data within this document represents a breach of copyright, confidence or data protection please contact us at [email protected] providing details; we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 ‘The Bioactivity and Natural Products of Scottish Seaweeds’ © A thesis presented for the degree of Doctor of Philosophy (Ph.D) at the University of Aberdeen Robbie John Mutton B.Sc.
    [Show full text]
  • Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-Msn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties
    Mar. Drugs 2012, 10, 2766-2781; doi:10.3390/md10122766 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties Federico Ferreres 1,*, Graciliana Lopes 2, Angel Gil-Izquierdo 1, Paula B. Andrade 2, Carla Sousa 2, Teresa Mouga 3 and Patrícia Valentão 2,* 1 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain; E-Mail: [email protected] 2 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (G.L.); [email protected] (P.B.A.); [email protected] (C.S.) 3 GIRM—Marine Resources Research Group, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, Santuário N.ª Sra. Dos Remédios, Apartado 126, 2524-909 Peniche, Portugal; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (F.F.); [email protected] (P.V.); Tel.: +34-968396324 (F.F.); Fax: +34-968396213 (F.F.); Tel.: +351-220428653 (P.V.); Fax: +351-226093390 (P.V.). Received: 3 October 2012; in revised form: 30 October 2012 / Accepted: 4 December 2012 / Published: 10 December 2012 Abstract: Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn.
    [Show full text]
  • Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins
    foods Review Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins Bertoka Fajar Surya Perwira Negara 1,2, Jae Hak Sohn 1,3, Jin-Soo Kim 4,* and Jae-Suk Choi 1,3,* 1 Seafood Research Center, IACF, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; [email protected] (B.F.S.P.N.); [email protected] (J.H.S.) 2 Department of Marine Science, University of Bengkulu, Jl. W.R Soepratman, Bengkulu 38371, Indonesia 3 Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea 4 Department of Seafood and Aquaculture Science, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do 53064, Korea * Correspondence: [email protected] (J.-S.K.); [email protected] (J.-S.C.); Tel.: +82-557-729-146 (J.-S.K.); +82-512-487-789 (J.-S.C.) Abstract: Phlorotannins are polyphenolic compounds produced via polymerization of phloroglucinol, and these compounds have varying molecular weights (up to 650 kDa). Brown seaweeds are rich in phlorotannins compounds possessing various biological activities, including algicidal, antioxidant, anti-inflammatory, antidiabetic, and anticancer activities. Many review papers on the chemical characterization and quantification of phlorotannins and their functionality have been published to date. However, although studies on the safety and toxicity of these phlorotannins have been conducted, there have been no articles reviewing this topic. In this review, the safety and toxicity of phlorotannins in different organisms are discussed. Online databases (Science Direct, PubMed, MEDLINE, and Web of Science) were searched, yielding 106 results.
    [Show full text]
  • Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration
    marine drugs Review Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration Mariana Barbosa, Patrícia Valentão and Paula B. Andrade * REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal; [email protected] (M.B.); valentao@ff.up.pt (P.V.) * Correspondence: pandrade@ff.up.pt; Tel.: +351-220-428-654 Received: 27 November 2020; Accepted: 16 December 2020; Published: 18 December 2020 Abstract: Globally, the burden of neurodegenerative disorders continues to rise, and their multifactorial etiology has been regarded as among the most challenging medical issues. Bioprospecting for seaweed-derived multimodal acting products has earned increasing attention in the fight against neurodegenerative conditions. Phlorotannins (phloroglucinol-based polyphenols exclusively produced by brown seaweeds) are amongst the most promising nature-sourced compounds in terms of functionality, and though research on their neuroprotective properties is still in its infancy, phlorotannins have been found to modulate intricate events within the neuronal network. This review comprehensively covers the available literature on the neuroprotective potential of both isolated phlorotannins and phlorotannin-rich extracts/fractions, highlighting the main key findings and pointing to some potential directions for neuro research ramp-up processes on these marine-derived products. Keywords: phlorotannins; multitarget; neuroprotection; neuroinflammation; Aβ amyloid; oxidative stress 1. Introduction Despite the Sustainable Development Goals aiming to reduce premature mortality from non-communicable diseases by 2030, as the average life expectancy continues to rise, the prevalence of non-communicable neurological disorders is likely to increase.
    [Show full text]
  • Biomarkers of Seaweed Intake Muyao Xi* and Lars O
    Xi and Dragsted Genes & Nutrition (2019) 14:24 https://doi.org/10.1186/s12263-019-0648-4 REVIEW Open Access Biomarkers of seaweed intake Muyao Xi* and Lars O. Dragsted Abstract Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group. Keywords: Biomarkers of food intake, Food exposure marker, Dietary assessment, Seaweed, Macroalgae Introduction originate from a variety of seaweed compounds, such as Seaweeds or macroalgae, including species of brown, soluble fiber and carotenoids [6, 11–15].
    [Show full text]