C Programming Tools Fall 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Process and Memory Management Commands
Process and Memory Management Commands This chapter describes the Cisco IOS XR software commands used to manage processes and memory. For more information about using the process and memory management commands to perform troubleshooting tasks, see Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide. • clear context, on page 2 • dumpcore, on page 3 • exception coresize, on page 6 • exception filepath, on page 8 • exception pakmem, on page 12 • exception sparse, on page 14 • exception sprsize, on page 16 • follow, on page 18 • monitor threads, on page 25 • process, on page 29 • process core, on page 32 • process mandatory, on page 34 • show context, on page 36 • show dll, on page 39 • show exception, on page 42 • show memory, on page 44 • show memory compare, on page 47 • show memory heap, on page 50 • show processes, on page 54 Process and Memory Management Commands 1 Process and Memory Management Commands clear context clear context To clear core dump context information, use the clear context command in the appropriate mode. clear context location {node-id | all} Syntax Description location{node-id | all} (Optional) Clears core dump context information for a specified node. The node-id argument is expressed in the rack/slot/module notation. Use the all keyword to indicate all nodes. Command Default No default behavior or values Command Modes Administration EXEC EXEC mode Command History Release Modification Release 3.7.2 This command was introduced. Release 3.9.0 No modification. Usage Guidelines To use this command, you must be in a user group associated with a task group that includes appropriate task IDs. -
Process Management
Princeton University Computer Science 217: Introduction to Programming Systems Process Management 1 Goals of this Lecture Help you learn about: • Creating new processes • Waiting for processes to terminate • Executing new programs • Shell structure Why? • Creating new processes and executing new programs are fundamental tasks of many utilities and end-user applications • Assignment 7… 2 System-Level Functions As noted in the Exceptions and Processes lecture… Linux system-level functions for process management Function Description exit() Terminate the process fork() Create a child process wait() Wait for child process termination execvp() Execute a program in current process getpid() Return the process id of the current process 3 Agenda Creating new processes Waiting for processes to terminate Executing new programs Shell structure 4 Why Create New Processes? Why create a new process? • Scenario 1: Program wants to run an additional instance of itself • E.g., web server receives request; creates additional instance of itself to handle the request; original instance continues listening for requests • Scenario 2: Program wants to run a different program • E.g., shell receives a command; creates an additional instance of itself; additional instance overwrites itself with requested program to handle command; original instance continues listening for commands How to create a new process? • A “parent” process forks a “child” process • (Optionally) child process overwrites itself with a new program, after performing appropriate setup 5 fork System-Level -
About ILE C/C++ Compiler Reference
IBM i 7.3 Programming IBM Rational Development Studio for i ILE C/C++ Compiler Reference IBM SC09-4816-07 Note Before using this information and the product it supports, read the information in “Notices” on page 121. This edition applies to IBM® Rational® Development Studio for i (product number 5770-WDS) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code. © Copyright International Business Machines Corporation 1993, 2015. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents ILE C/C++ Compiler Reference............................................................................... 1 What is new for IBM i 7.3.............................................................................................................................3 PDF file for ILE C/C++ Compiler Reference.................................................................................................5 About ILE C/C++ Compiler Reference......................................................................................................... 7 Prerequisite and Related Information.................................................................................................. -
Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research Brett A. Becker∗ Paul Denny∗ Raymond Pettit∗ University College Dublin University of Auckland University of Virginia Dublin, Ireland Auckland, New Zealand Charlottesville, Virginia, USA [email protected] [email protected] [email protected] Durell Bouchard Dennis J. Bouvier Brian Harrington Roanoke College Southern Illinois University Edwardsville University of Toronto Scarborough Roanoke, Virgina, USA Edwardsville, Illinois, USA Scarborough, Ontario, Canada [email protected] [email protected] [email protected] Amir Kamil Amey Karkare Chris McDonald University of Michigan Indian Institute of Technology Kanpur University of Western Australia Ann Arbor, Michigan, USA Kanpur, India Perth, Australia [email protected] [email protected] [email protected] Peter-Michael Osera Janice L. Pearce James Prather Grinnell College Berea College Abilene Christian University Grinnell, Iowa, USA Berea, Kentucky, USA Abilene, Texas, USA [email protected] [email protected] [email protected] ABSTRACT of evidence supporting each one (historical, anecdotal, and empiri- Diagnostic messages generated by compilers and interpreters such cal). This work can serve as a starting point for those who wish to as syntax error messages have been researched for over half of a conduct research on compiler error messages, runtime errors, and century. Unfortunately, these messages which include error, warn- warnings. We also make the bibtex file of our 300+ reference corpus ing, and run-time messages, present substantial difficulty and could publicly available. -
ROSE Tutorial: a Tool for Building Source-To-Source Translators Draft Tutorial (Version 0.9.11.115)
ROSE Tutorial: A Tool for Building Source-to-Source Translators Draft Tutorial (version 0.9.11.115) Daniel Quinlan, Markus Schordan, Richard Vuduc, Qing Yi Thomas Panas, Chunhua Liao, and Jeremiah J. Willcock Lawrence Livermore National Laboratory Livermore, CA 94550 925-423-2668 (office) 925-422-6278 (fax) fdquinlan,panas2,[email protected] [email protected] [email protected] [email protected] [email protected] Project Web Page: www.rosecompiler.org UCRL Number for ROSE User Manual: UCRL-SM-210137-DRAFT UCRL Number for ROSE Tutorial: UCRL-SM-210032-DRAFT UCRL Number for ROSE Source Code: UCRL-CODE-155962 ROSE User Manual (pdf) ROSE Tutorial (pdf) ROSE HTML Reference (html only) September 12, 2019 ii September 12, 2019 Contents 1 Introduction 1 1.1 What is ROSE.....................................1 1.2 Why you should be interested in ROSE.......................2 1.3 Problems that ROSE can address...........................2 1.4 Examples in this ROSE Tutorial...........................3 1.5 ROSE Documentation and Where To Find It.................... 10 1.6 Using the Tutorial................................... 11 1.7 Required Makefile for Tutorial Examples....................... 11 I Working with the ROSE AST 13 2 Identity Translator 15 3 Simple AST Graph Generator 19 4 AST Whole Graph Generator 23 5 Advanced AST Graph Generation 29 6 AST PDF Generator 31 7 Introduction to AST Traversals 35 7.1 Input For Example Traversals............................. 35 7.2 Traversals of the AST Structure............................ 36 7.2.1 Classic Object-Oriented Visitor Pattern for the AST............ 37 7.2.2 Simple Traversal (no attributes)....................... 37 7.2.3 Simple Pre- and Postorder Traversal.................... -
Basic Compiler Algorithms for Parallel Programs *
Basic Compiler Algorithms for Parallel Programs * Jaejin Lee and David A. Padua Samuel P. Midkiff Department of Computer Science IBM T. J. Watson Research Center University of Illinois P.O.Box 218 Urbana, IL 61801 Yorktown Heights, NY 10598 {j-lee44,padua}@cs.uiuc.edu [email protected] Abstract 1 Introduction Traditional compiler techniques developed for sequential Under the shared memory parallel programming model, all programs do not guarantee the correctness (sequential con- threads in a job can accessa global address space. Communi- sistency) of compiler transformations when applied to par- cation between threads is via reads and writes of shared vari- allel programs. This is because traditional compilers for ables rather than explicit communication operations. Pro- sequential programs do not account for the updates to a cessors may access a shared variable concurrently without shared variable by different threads. We present a con- any fixed ordering of accesses,which leads to data races [5,9] current static single assignment (CSSA) form for parallel and non-deterministic behavior. programs containing cobegin/coend and parallel do con- Data races and synchronization make it impossible to apply structs and post/wait synchronization primitives. Based classical compiler optimization and analysis techniques di- on the CSSA form, we present copy propagation and dead rectly to parallel programs because the classical methods do code elimination techniques. Also, a global value number- not account.for updates to shared variables in threads other ing technique that detects equivalent variables in parallel than the one being analyzed. Classical optimizations may programs is presented. By using global value numbering change the meaning of programs when they are applied to and the CSSA form, we extend classical common subex- shared memory parallel programs [23]. -
A Compiler-Compiler for DSL Embedding
A Compiler-Compiler for DSL Embedding Amir Shaikhha Vojin Jovanovic Christoph Koch EPFL, Switzerland Oracle Labs EPFL, Switzerland {amir.shaikhha}@epfl.ch {vojin.jovanovic}@oracle.com {christoph.koch}@epfl.ch Abstract (EDSLs) [14] in the Scala programming language. DSL devel- In this paper, we present a framework to generate compil- opers define a DSL as a normal library in Scala. This plain ers for embedded domain-specific languages (EDSLs). This Scala implementation can be used for debugging purposes framework provides facilities to automatically generate the without worrying about the performance aspects (handled boilerplate code required for building DSL compilers on top separately by the DSL compiler). of extensible optimizing compilers. We evaluate the practi- Alchemy provides a customizable set of annotations for cality of our framework by demonstrating several use-cases encoding the domain knowledge in the optimizing compila- successfully built with it. tion frameworks. A DSL developer annotates the DSL library, from which Alchemy generates a DSL compiler that is built CCS Concepts • Software and its engineering → Soft- on top of an extensible optimizing compiler. As opposed to ware performance; Compilers; the existing compiler-compilers and language workbenches, Alchemy does not need a new meta-language for defining Keywords Domain-Specific Languages, Compiler-Compiler, a DSL; instead, Alchemy uses the reflection capabilities of Language Embedding Scala to treat the plain Scala code of the DSL library as the language specification. 1 Introduction A compiler expert can customize the behavior of the pre- Everything that happens once can never happen defined set of annotations based on the features provided by again. -
How to Write a File Copy Program in Standard C? #Include <Stdio.H>
Files How to write a file copy program in standard C? #include <stdio.h> FILE *fopen(const char *path, const char *mode); size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream); int fclose(FILE *fp); We can also use character-based functions such as: #include <stdio.h> int fgetc(FILE *stream); int fputc(int c, FILE *stream); With either approach, we can write a C program that will work on any operating system as it is in standard C. What is the difference between the two approaches? /* lab/stdc-mycp.c */ /* appropriate header files */ #define BUF_SIZE 65536 int main(int argc, char *argv[]) { FILE *src, *dst; size_t in, out; char buf[BUF_SIZE]; int bufsize; if (argc != 4) { fprintf(stderr, "Usage: %s <buffer size> <src> <dest>\n", argv[0]); exit(1); } bufsize = atoi(argv[1]); if (bufsize > BUF_SIZE) { fprintf(stderr,"Error: %s: max. buffer size is %d\n",argv[0], BUF_SIZE); exit(1); } src = fopen(argv[2], "r"); if (NULL == src) exit(2); dst = fopen(argv[3], "w"); if (dst < 0) exit(3); while (1) { in = fread(buf, 1, bufsize, src); if (0 == in) break; out = fwrite(buf, 1, in, dst); if (0 == out) break; } fclose(src); fclose(dst); exit(0); } POSIX/Unix File Interface The system call interface for files in POSIX systems like Linux and MacOSX. A file is a named, ordered stream of bytes. I open(..) Open a file for reading or writing. Also allows a file to be locked providing exclusive access. I close(..) I read(..) The read operation is normally blocking. -
Wind River Diab Compiler
WIND RIVER DIAB COMPILER Boost application performance, reduce memory footprint, and produce high-quality, standards-compliant object code for embedded systems with Wind River® Diab Compiler. Wind River has a long history of providing software and tools for safety-critical applications requiring certification in the automotive, medical, avionics, and industrial markets. And it’s backed by an award-winning global support organization that draws on more than 25 years of compiler experience and hundreds of millions of successfully deployed devices. TOOLCHAIN COMPONENTS Diab Compiler includes the following programs and utilities: • Driver: Intelligent wrapper program invoking the compiler, assembler, and linker, using a single application • Assembler: Macro assembler invoked automatically by the driver program or as a complete standalone assembler generating object modules – Conditional macro assembler with more than 30 directives – Unlimited number of symbols – Debug information for source-level debugging of assembly programs • Compiler: ANSI/ISO C/C++ compatible cross-compiler – EDG front end – Support for ANSI C89, C99, and C++ 2003 – Hundreds of customizable optimizations for performance and size – Processor architecture–specific optimizations – Whole-program optimization capability • Low-level virtual machine (LLVM)–based technology: Member of the LLVM commu- nity, accelerating inclusion of new innovative compiler features and leveraging the LLVM framework to allow easy inclusion of compiler add-ons to benefit customers • Linker: Precise -
Compilers History Wikipedia History Main Article: History of Compiler
Compilers History Wikipedia History Main article: History of compiler construction Software for early computers was primarily written in assembly language for many years. Higher level programming languages were not invented until the benefits of being able to reuse software on different kinds of CPUs started to become significantly greater than the cost of writing a compiler. The very limited memory capacity of early computers also created many technical problems when implementing a compiler. Towards the end of the 1950s, machine-independent programming languages were first proposed. Subsequently, several experimental compilers were developed. The first compiler was written by Grace Hopper, in 1952, for the A-0 programming language. The FORTRAN team led by John Backus at IBM is generally credited as having introduced the first complete compiler in 1957. COBOL was an early language to be compiled on multiple architectures, in 1960. In many application domains the idea of using a higher level language quickly caught on. Because of the expanding functionality supported by newer programming languages and the increasing complexity of computer architectures, compilers have become more and more complex. Early compilers were written in assembly language. The first self-hosting compiler — capable of compiling its own source code in a high-level language — was created for Lisp by Tim Hart and Mike Levin at MIT in 1962. Since the 1970s it has become common practice to implement a compiler in the language it compiles, although both Pascal and C have been popular choices for implementation language. Building a self-hosting compiler is a bootstrapping problem—the first such compiler for a language must be compiled either by hand or by a compiler written in a different language, or (as in Hart and Levin's Lisp compiler) compiled by running the compiler in an interpreter. -
Operating System Lab Manual
OPERATING SYSTEM LAB MANUAL BASICS OF UNIX COMMANDS Ex.No:1.a INTRODUCTION TO UNIX AIM: To study about the basics of UNIX UNIX: It is a multi-user operating system. Developed at AT & T Bell Industries, USA in 1969. Ken Thomson along with Dennis Ritchie developed it from MULTICS (Multiplexed Information and Computing Service) OS. By1980, UNIX had been completely rewritten using C langua ge. LINUX: It is similar to UNIX, which is created by Linus Torualds. All UNIX commands works in Linux. Linux is a open source software. The main feature of Linux is coexisting with other OS such as windows and UNIX. STRUCTURE OF A LINUXSYSTEM: It consists of three parts. a)UNIX kernel b) Shells c) Tools and Applications UNIX KERNEL: Kernel is the core of the UNIX OS. It controls all tasks, schedule all Processes and carries out all the functions of OS. Decides when one programs tops and another starts. SHELL: Shell is the command interpreter in the UNIX OS. It accepts command from the user and analyses and interprets them 1 | P a g e BASICS OF UNIX COMMANDS Ex.No:1.b BASIC UNIX COMMANDS AIM: To study of Basic UNIX Commands and various UNIX editors such as vi, ed, ex and EMACS. CONTENT: Note: Syn->Syntax a) date –used to check the date and time Syn:$date Format Purpose Example Result +%m To display only month $date+%m 06 +%h To display month name $date+%h June +%d To display day of month $date+%d O1 +%y To display last two digits of years $date+%y 09 +%H To display hours $date+%H 10 +%M To display minutes $date+%M 45 +%S To display seconds $date+%S 55 b) cal –used to display the calendar Syn:$cal 2 2009 c)echo –used to print the message on the screen. -
Compilers and Compiler Generators
Compilers and Compiler Generators an introduction with C++ © P.D. Terry, Rhodes University, 1996 [email protected] This is a set of Postcript® files of the text of my book "Compilers and Compiler Generators - an introduction with C++", published in 1997 by International Thomson Computer Press. The original edition is now out of print, and the copyright has reverted to me. The book is also available in other formats. The latest versions of the distribution and details of how to download up-to-date compressed versions of the text and its supporting software and courseware can be found at http://www.scifac.ru.ac.za/compilers/ The text of the book is Copyright © PD Terry. Although you are free to make use of the material for academic purposes, the material may not be redistributed without my knowledge or permission. File List The 18 chapters of the book are filed as chap01.ps through chap18.ps The 4 appendices to the book are filed as appa.ps through appd.ps The original appendix A of the book is filed as appa0.ps The contents of the book is filed as contents.ps The preface of the book is filed as preface.ps An index for the book is filed as index.ps. Currently (January 2000) the page numbers refer to an A4 version in PCL® format available at http://www.scifac.ru.ac.za/compilers/longpcl.zip. However, software tools like GhostView may be used to search the files for specific text. The bibliography for the book is filed as biblio.ps Change List 18-October-1999 - Pre-release 12-November-1999 - First official on-line release 16-January-2000 - First release of Postscript version (incorporates minor corrections to chapter 12) Compilers and Compiler Generators © P.D.