CS 4311 Flight Planning and Management System Software

Total Page:16

File Type:pdf, Size:1020Kb

CS 4311 Flight Planning and Management System Software CS 4311 Flight Planning and Management System Software Requirements Specification Version <1.0> 2/20/2015 2001 CS 4311 Software Requirements Specification Document Control Approval The Guidance Team and the customer shall approve this document. Document Change Control Initial Release: 1.0 Current Release: 1.0 Indicator of Last Page in Document: * Date of Last Review: 2/16//2015 Date of Next Review: 3/16/2015 Target Date for Next Update: 3/16/2015 Distribution List This following list of people shall receive a copy of this document every time a new version of this document becomes available: Guidance Team Members: Dr. Ann Gates Elsa Tai Yadira Jacquez Customer: Dr. Calvin Han Software Team Members: CS 4311 Change Summary The following table details changes made between versions of this document Version Date Modifier Description 1.0 1/13/2015 Yadira Jacquez Initial version Software Requirements Specification Date Page 2/20/2015 10:07 AM ii Software Requirements Specification TABLE OF CONTENTSDOCUMENT CONTROL ................................................................................ II APPROVAL .................................................................................................................................................... II DOCUMENT CHANGE CONTROL ................................................................................................................... II DISTRIBUTION LIST ...................................................................................................................................... II CHANGE SUMMARY ..................................................................................................................................... II 1. INTRODUCTION ................................................................................................................................. 4 1.1. PURPOSE AND INTENDED AUDIENCE ................................................................................................ 4 1.2. SCOPE OF PRODUCT .......................................................................................................................... 4 1.3. DEFINITIONS , ACRONYMS , AND ABBREVIATIONS ............................................................................. 4 1.3.1. Definitions ............................................................................................................................... 4 1.3.1. Acronyms ................................................................................................................................. 7 1.3.2. Abbreviations ........................................................................................................................... 7 1.4. OVERVIEW ....................................................................................................................................... 7 1.5. REFERENCES .................................................................................................................................... 8 2. GENERAL DESCRIPTION ................................................................................................................. 8 2.1. PRODUCT PERSPECTIVE .................................................................................................................... 8 2.2. PRODUCT FEATURES ........................................................................................................................ 9 2.3. USER CHARACTERISTICS ................................................................................................................ 10 2.4. GENERAL CONSTRAINTS ................................................................................................................ 10 2.5. ASSUMPTIONS AND DEPENDENCIES ................................................................................................ 10 3. SPECIFIC REQUIREMENTS ........................................................................................................... 11 3.1. EXTERNAL INTERFACE REQUIREMENTS ......................................................................................... 11 3.1.1. User Interfaces ...................................................................................................................... 11 3.1.2. Manage Flight Plans Screen ................................................................................................. 14 3.1.3. Manage Resources ................................................................................................................. 14 3.1.4. Start Flight ............................................................................................................................. 17 3.1.5. Google Glass Screen ............................................................................................................. 17 3.1.6. Hardware Interfaces .............................................................................................................. 18 3.1.7. Software Interfaces ................................................................................................................ 18 3.1.8. Communications Interfaces ................................................................................................... 18 3.2. BEHAVIORAL REQUIREMENTS ........................................................................................................ 18 3.2.1. Same Class of User ................................................................................................................ 18 3.2.2. Related Real-world Objects ................................................................................................... 18 3.2.3. Stimulus ................................................................................................................................. 21 3.2.4. Related Features .................................................................................................................... 26 3.2.5. Functional .............................................................................................................................. 26 3.3. NON -BEHAVIORAL REQUIREMENTS ................................................................................................ 26 3.3.1. Performance Requirements ................................................................................................... 26 3.3.2. Qualitative Requirements ...................................................................................................... 26 3.4. OTHER REQUIREMENTS .................................................................................................................. 26 Software Requirements Specification Date Page 2/20/2015 10:07 AM iii Software Requirements Specification 1. Introduction 1.1. Purpose and Intended Audience The purpose of this document is to outline the requirements, both functional and non-functional, of the Flight Planning and Management System. The document serves as a communication medium and a contract between the developers and the stakeholders; the system must adhere to all the requirements that are listed. The intended audience for this document includes Dr. Han, the guidance team, the software engineering team, and all other entities who may have an interest in the FPMS. 1.2. Scope of Product The software product to be developed is the Flight Planning and Management System (FPMS). The software is intended to address the pilot’s problem of having to look away from the trajectory to view information that can help guide him or her during flights on the iPad. The customer identified an additional need for the system to assist in flight planning and management of an aircraft from a departure airport to an arrival airport. The FPMS has the potential to improve safety by displaying in-flight information on the Google Glass directly to the pilot’s sight. The Google Glass is a device that can communicate with the iPad; therefore, there is no need to create new hardware or develop an interface for communication between the iPad and the Google Glass. The software will provide the following capabilities to the pilot: • create and edit flight plans prior to a flight • support decision-making in case of a reroute during flight • track in-flight status of relevant information in real-time • maintain a repository with information that can be used in defining new flight plans or rerouting during flights. Ultimately, the system only provides decision making support to the pilot. It is capable of suggesting flight plans and generating alerts if it detects that a reroute is needed, but the pilot decides which flight plan to use and whether or not to reroute. However, the system will ensure that any decision made by the pilot does not conflict with other flight plans created by different pilots by utilizing an external system to approve flight plans. In providing in-flight information or any information relevant to creating a flight plan, the system is not responsible for generating data. It will gather in-flight data, such as weather information and aircraft location, from other devices that are part of the larger system it is embedded into. Additional data that is taken into considered when creating a flight plan, such as aircraft characteristics and waypoint information, is acquired from external resources. The FPMS will only manipulate the data as needed to present the information in the correct format to the pilot. 1.3. Definitions, Acronyms, and Abbreviations 1.3.1. Definitions Active Flight Plan A flight plan for which the departure
Recommended publications
  • Chapter: 2. En Route Operations
    Chapter 2 En Route Operations Introduction The en route phase of flight is defined as that segment of flight from the termination point of a departure procedure to the origination point of an arrival procedure. The procedures employed in the en route phase of flight are governed by a set of specific flight standards established by 14 CFR [Figure 2-1], FAA Order 8260.3, and related publications. These standards establish courses to be flown, obstacle clearance criteria, minimum altitudes, navigation performance, and communications requirements. 2-1 fly along the centerline when on a Federal airway or, on routes other than Federal airways, along the direct course between NAVAIDs or fixes defining the route. The regulation allows maneuvering to pass well clear of other air traffic or, if in visual meteorogical conditions (VMC), to clear the flightpath both before and during climb or descent. Airways Airway routing occurs along pre-defined pathways called airways. [Figure 2-2] Airways can be thought of as three- dimensional highways for aircraft. In most land areas of the world, aircraft are required to fly airways between the departure and destination airports. The rules governing airway routing, Standard Instrument Departures (SID) and Standard Terminal Arrival (STAR), are published flight procedures that cover altitude, airspeed, and requirements for entering and leaving the airway. Most airways are eight nautical miles (14 kilometers) wide, and the airway Figure 2-1. Code of Federal Regulations, Title 14 Aeronautics and Space. flight levels keep aircraft separated by at least 500 vertical En Route Navigation feet from aircraft on the flight level above and below when operating under VFR.
    [Show full text]
  • Adaptive Trajectory Planning for Flight Management Systems
    From: AAAI Technical Report SS-01-06. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. Adaptive Trajectory Planning for Flight Management Systems Igor Alonso-Portillo Ella M. Atkins Aerospace Engineering Department University of Maryland College Park, MD 20742 {alonsoip, atkins}@glue.umd.edu Abstract This paper describes an adaptive trajectory planner capable of computing new flight paths that take into Current Flight Management Systems (FMS) can account flight plan goals as well as system failures that autonomously fly an aircraft from takeoff through landing but may not provide robust operation to anomalous events. affect aircraft performance. We propose feedback of We present an adaptive trajectory planner capable of changing flight dynamics from the lower level control dynamically adjusting its world model and re-computing systems to the high level path-planning module. This feasible flight trajectories in response to changes in aircraft information can be crucial when there are variations in the performance characteristics. To demonstrate our approach, flight envelope of the aircraft that invalidate the presumed we consider the class of situations in which an emergency model. Based on dynamic parameter feedback, our path landing at a nearby airport is desired (or required) for planner adapts its performance model. Then, it either safety considerations. Our system incorporates a verifies that current trajectories are still safe or else constraint-based search engine to select and prioritize generates a new trajectory that allows continued emergency landing sites, then it synthesizes a waypoint- autonomous operation during post-failure flight. This based trajectory to the best airport based on post-anomaly flight dynamics.
    [Show full text]
  • Effective Flight Plans Can Help Airlines Economize
    While flight plan calculations are necessary for safety and regulatory compliance, they also provide airlines with an opportunity for cost optimization. Effective Flight Plans Can Help Airlines Economize By Steve Altus, Ph.D., Senior Scientist, Airline Operations Product Development, Jeppesen Every commercial airline flight begins with a flight plan. Over time, small adjustments to each flight plan can add up to substantial savings across a fleet. Optimal overall performance is influenced by many factors, including dynamic route optimization, accurate flight plans, optimal use of redispatch, and dynamic airborne replanning. While all airlines use computerized flight planning systems, investing in a higher-end system — and in the effort to use it to its full capability — has significant impact on both profitability and the environment. An operational flight plan is required to This article provides a brief overview of and lost revenue from payload that can’t ensure an airplane meets all of the flight planning and discusses ways that flight be carried. These variations are subject to operational regulations for a specific flight, planning systems can be used to reduce airplane performance, weather, allowed to give the flight crew information to help operational costs and help the environment. route and altitude structure, schedule them conduct the flight safely, and to constraints, and operational constraints. coordinate with air traffic control (ATC). FLIGHT PLanninG FUndaMentaLS Computerized systems for calculating OptiMIZinG FLIGHT PLans flight plans have been widely used for A flight plan includes the route the crew will decades, but not all systems are the fly and specifies altitudes and speeds.I t also While flight plan calculations are necessary same.
    [Show full text]
  • ATP IFR Flight Planning Training Supplement
    IFR Flight Planning Training Supplement ATPFlightSchool.com Revised 2018-12-03 Revised 2018-12-03 Copyright © 2018 Airline Transport Professionals. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical or otherwise, without the prior written permission of Airline Transport Professionals. To view recent changes to this supplement, visit: atpflightschool.com/changes/supp-ifr Contents Introduction .................................... 1 Pre- Planning Preparation .............. 2 Overview ..................................................... 2 Weather ....................................................... 3 NOTAMs ...................................................... 5 Preferred Routes ....................................... 5 Departure Segment Planning........ 6 Departure Airport Information ................... 6 Takeoff Minimums ...................................... 6 Departure Procedure ................................. 6 Top of Climb Calculations ........................... 7 Arrival Segment Planning .............. 8 Arrival Procedure ....................................... 8 Descent Planning ....................................... 9 Arrival Airport Information .......................10 Choosing an Alternate ..............................10 Enroute Segment Planning .......... 11 Federal Airway Routing .............................11 Direct Routing Between Navaids or Fixes 12 IFR Altitudes .............................................12 Cruise Performance
    [Show full text]
  • Operator's Flight Safety Handbook, Issue 2
    THIS PAGE INTENTIONALLY LEFT BLANK CEO STATEMENT ON CORPORATE SAFETY CULTURE COMMITMENT Corporate Safety Culture Commitment i June 2000 Issue 1 CORE VALUES Among our core values, we will include: l Safety, health and the environment l Ethical behaviour l Valuing people FUNDAMENTAL BELIEFS Our fundamental safety beliefs are: l Safety is a core business and personal value l Safety is a source of our competitive advantage l We will strengthen our business by making safety excellence an integral part of all flight and ground activities l We believe that all accidents and incidents are preventable l All levels of line management are accountable for our safety performance, starting with the Chief Executive Officer (CEO)/Managing Director CORE ELEMENTS OF OUR SAFETY APPROACH The five core elements of our safety approach include: Top Management Commitment l Safety excellence will be a component of our mission l Senior leaders will hold line management and all employees accountable for safety performance l Senior leaders and line management will demonstrate their continual commitment to safety Responsibility & Accountability of All Employees l Safety performance will be an important part of our management/employee evaluation system l We will recognise and reward flight and ground safety performance l Before any work is done, we will make everyone aware of the safety rules and processes as well as their personal responsibility to observe them Clearly Communicated Expectations of Zero Incide nts l We will have a formal written safety goal, and we
    [Show full text]
  • Quantifying the Impact of Flight Predictability on Strategic and Operational Airline Decisions
    Quantifying the Impact of Flight Predictability on Strategic and Operational Airline Decisions by Lu Hao A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Civil and Environmental Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Mark Hansen, Chair Professor Joan Walker Professor Rhonda Righter Spring 2015 Abstract Quantifying the Impact of Flight Predictability on Strategic and Operational Airline Decisions by Lu Hao Doctor of Philosophy in Engineering – Civil and Environmental Engineering University of California, Berkeley Professor Mark Hansen, Chair In this thesis, we examine how the predictability of travel time affects both the transportation service providers’ strategic and operational decisions, in the context of air transportation. Towards this end, we make three main contributions. The first is the development of accurately measuring predictability of travel time in air transportation to best model airline decision behavior. The measure is sensitive to the different nature that’s driving the decision. The second is an empirical investigation of the relationship between the best-measured travel time predictability and the transportation service providers’ strategic and operational decisions to gain insights into the significance of the impact of predictability. The third contribution is proposing an algorithm to improve predictability in order to save cost in the strategic decision process through re-sequencing the departure queue at the airport. We consider the strategic decision as the setting of the scheduled travel time for each trip that typically happened six months before the travel date. On the operational side, we investigate into the decision of the amount of fuel loaded to each flight in the daily operation.
    [Show full text]
  • ATP VFR Flight Planning Training Supplement Will Guide You Through the Flight Planning Process
    VFR Flight Planning Training Supplement ATPFlightSchool.com Revised 2018-12-03 Revised 2018-12-03 Copyright © 2018 Airline Transport Professionals. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical or otherwise, without the prior written permission of Airline Transport Professionals. Introduction The ATP VFR Flight Planning Training Supplement will guide you through the flight planning process. It will utilize the resources available to you as an ATP student. This supplement is designed as an exercise to demonstrate that you understand the important relationships and concepts of VFR flight planning. The contents of this supplement apply to all ATP aircraft types, but performance from the C172S Model will be used for all sample charts. Required Items Prerequisites • Successful completion of the iPad ATP Private Pilot Self-Study Course through Module 12 • Thorough understanding of all concepts involved in VFR flight planning iPad • ForeFlight App with DUATS login and WiFi Access • ATP Flight School App Books & Publications • Cessna 172S Model POH (iPad) • Airport Facility Directory (AF/D) (iPad) • Current paper sectional for areas of flight - ForeFlight sectionals are not acceptable for this exercise • 3 copies of the ATP Nav Log • ATP Weight & Balance Form (if in PA-44 Seminole) • ATP’s Airworthiness Checklist • VFR Flight Planning Supplement Worksheet Tools • Plotter • E6B computer • Calculator • Scratch paper and pencil For Your Checkride • The POH for your n-numbered checkride aircraft • The maintenance logbook for your n-numbered checkride aircraft Introduction • 1 SECTION 1 Initial Planning Overview Resources • ForeFlight • POH • Scratch paper and pencil Complete Table 1.1 on the VFR Flight Planning Supplement Worksheet.
    [Show full text]
  • FAA ICAO Flight Planning Interface Reference Guide Version 2.1
    En Route and Oceanic Services Aeronautical Information and Flight Planning Enhancements FAA ICAO Flight Planning Interface Reference Guide Version 2.1 Federal Aviation Administration November 15, 2012 Air Traffic Organization En Route and Oceanic Services, ATO-E Technical Performance Support Group , AJE- 36 FAA ICAO Flight Planning Interface Reference Guide Table of Contents 1. Introduction ................................................................................................................................... 7 1.1 Scope ........................................................................................................................... 7 1.2 Background ................................................................................................................ 7 1.3 FAA FPL Services ...................................................................................................... 8 1.4 Document Organization ........................................................................................... 8 2. Operational Use of Flight Planning Messages .......................................................................... 8 2.1 Initial FPL Filing ........................................................................................................ 8 2.1.1 Flights Remaining Entirely within U.S. Domestic Airspace ............................... 8 2.1.2 Flights Leaving U.S. Domestic Airspace ................................................................ 9 2.1.3 Flights Entering U.S. Domestic Airspace (from or Through
    [Show full text]
  • Flight Planning Made Easy
    Flight planning made easy. SM ARINCDirect FLIGHT PLANNING Our ARINCDirectSM desktop and mobile flight support service applications offer you a complete suite of tools and support services to efficiently and effectively operate your flight department and aircraft. Create and file electronic flight plans anywhere worldwide, using aircraft performance data and the latest atmospheric forecasts for the most precise fuel burns and time calculations. Run flight plans. Check weight and balance. Track flights. Monitor weather conditions. Manage fuel costs via our tankering functionality. And much more. All from the industry leader in business aviation technology and unparalleled in customer service. Flight planning features Weather services > Flight plan computation and filing > Integrated flight risk assessment tool > Mapping application with worldwide enroute > Flight hazard alerting charts and weather overlays > Worldwide managed NOTAMs > Weight and balance computations/load manifest > Passenger weather briefings with company logo > Aircraft performance calculations > Web – text and graphical weather > Runway analysis including obstacle data > Flight deck – text and graphical weather > FlightRisk and Vector SMS real-time assessment and analysis tools Live flight tracking > Critical fuel summaries/ETP calculations > Graphical aircraft tracking tool (FlightAware) > Multi-leg tankering computations > Air Traffic Control data from over 50 countries > Route cost comparison > Aircraft data link position reports > Recently and frequently cleared routes
    [Show full text]
  • Wind Estimation and Effects of Wind on Waypoint Navigation of Uavs
    Wind Estimation and Effects of Wind on Waypoint Navigation of UAVs by Anandrao Shesherao Biradar A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved April 2014 by the Graduate Supervisory Committee: Srikanth Saripalli, Co-Chair Spring Berman, Co-Chair Jekan Thanga ARIZONA STATE UNIVERSITY May 2014 ABSTRACT The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in the field of Unmanned Aerial Systems (UAVs), various aerial platforms and corresponding; autonomous systems for them. This technology has advanced to such a stage that UAVs can be used for specific designed missions and deployed with reliability. But in some areas like missions requiring high maneuverability with greater efficiency is still under research area. This would help in increasing reliability and augmenting range of UAVs significantly. One of the problems addressed through this thesis work is, current autopilot systems have algorithm that handles wind by attitude correction with appropriate Crab angle. But the real time wind vector (direction) and its calculated velocity is based on geometrical and algebraic transformation between ground speed and air speed vectors. This method of wind estimation and prediction, many a times leads to inaccuracy in attitude correction. The same has been proved in the following report with simulation and actual field testing. In later part, new ways to tackle while flying windy conditions have been proposed.
    [Show full text]
  • Cross County Flight Planning
    For Training Only CROSS COUNTRY FLIGHT PLANNING (FLIGHT PROFILE) The purpose of a flight profile is to allow you to complete your cross-country flight while avoiding an off-field landing. In the first part of a flight profile you determine the altitude you need at different points along the way to glide back home. Eventually you will reach a position where you have both enough altitude to glide back home and enough altitude to glide to your destination. This position is called the decision point or the go / no-go point. The completed flight profile will look something like this example: The flight profile is prepared as part of your flight planning before you take off. It Is not something that can be done in flight. Your Check Ride: Preparing a cross-country profile is a required task for your check ride. You will be expected to draw the flight profile before your check ride for a cross- country flight on that day. You will not actually fly the cross country flight; however, the examiner will ask you questions about planning and executing a cross country flight. Your cross-country flight will have two legs. As an example, planning to fly from Crystal to Big Bear City (46CN to L35) via Hesperia (L26). There are six steps in preparing a cross-country profile: I) Use the aeronautical chart to plot the cross county flight, 2) Calculate two glide ratios over the ground (one flying into a headwind, the other flying with a tailwind), 3) Find the wind speed and direction aloft 4) Determine how much altitude you need to fly one mile with each glide ratio, 5) Prepare a table of altitudes needed in one-mile increments to glide to each airfield 6) Plot the flight profile.
    [Show full text]
  • Flight Planning Using an Aeronautical Chart
    Flight Planning Using an Aeronautical Chart By Laura Million INTRODUCTION When a driver in an automobile takes a trip, one hops in the car and drives. Signs along the highway will point the way to the final destination. When a pilot flies to a location, there are not signs to tell him where to go or roads to help avoid obstacles. A pilot must rely on an aeronautical chart for information to plan the route safely. Getting lost in an aircraft is not an option. Weather, darkness, fuel starvation can all result in a dangerous situation for a pilot not prepared with a specific route, destination and alternative destinations. Pilots often forgo this step in flight planning because either they feel confident in their knowledge of the area or belief they can just “wing it.” This lesson will introduce the aeronautical chart to the students as well as all the useful information that can be found on the chart while planning a flight or during a flight. OVERVIEW This packet includes several steps on how to plan a successful flight using an aeronautical chart. Many pilots ignore this portion of flight preperation, especially when flying through familiar airspace to familiar airports. Proper flight planning is not only a smart safety precaution, but FAR 91.103 states that “Each pilot in command shall, before beginning a flight, become familiar with all available information concerning that flight.” (Code of Federal Regulations, Title 14: Aeronautics and Space). Aviation charts present a large amount of useful information in a small area. Aeronautic charts are portable and required during a flight.
    [Show full text]