Hurricanes in Hawaii Hurricanes Impacting Hawaii

Total Page:16

File Type:pdf, Size:1020Kb

Hurricanes in Hawaii Hurricanes Impacting Hawaii Hurricanes in Hawaii • Hurricane climatology - when and where • Hurricane impact 1 Hurricanes Impacting Hawaii 2 Hawaii Hurricane History • No “Hawaiian Term” actually no surprise terms such as Hurricane and Typhoon arise from local terms for the winds observed. • David Malo (1843) defined five different Kona Winds. 3 Human Impacts • Economy - To-date cost of Iniki • $2.8 Billion • FY2005 Estimated General Fund Tax Revenues • $3.6 Billion 4 More Iniki Impacts ! 90% of structures on Kauai affected ! 14,118 damaged or destroyed ! 30% telephone poles down ! 3 years later unemployment 12% ! Social fabric altered-10% move away ! REMEMBER: This coincided with the bursting of the Japan Bubble Economy of the late 1980’s. 5 Typical Questions/Comments 1. It never happened before 2. Only Kauai gets hit 3. It can’t happen again 4. Mountains protect us 5. There is no Hawaiian word for hurricane 6 Hawaii Hurricane Climatology Hurricane tracks in the centr al Pacific from 1949-1998 7 Hawaii Hurricane Impacts Tropical Cyclone tracks within 200 miles of the Hawaiian Islands since 1949. 8 Hawaii Hurricane Climatology Number of hurricanes per month in the central Pacific. 9 Hurricane Impact • Energy of winds = wind velocity squared: E = V2 • A doubling of the wind speed from (e.g., from 70 to 140 mph) results in four times the destructive energy. 10 Saffir/Simpson Hurricane Scale Category 1 74 - 95 mph Storm surge 4 - 5 ft Category 2 96 - 110 mph Storm surge 6 - 8 ft Category 3 111 - 130 mph Storm surge 9 - 12 ft Category 4 131 - 155 mph Storm surge 13 - 18 ft Category 5 > 155 mph Storm surge > 18 ft Energy of winds = wind velocity squared: E = V2 A doubling of the wind speed from (e.g., from 70 to 140 mph) results in four times the destructive energy. 11 Triple Threat High winds Flash Floods flying debris Storm Surge Large Surf 12 Anamometer Trace Wind Speed in hurricane Celia as it passed Gregory, TX. 13 Hurricane Hazards The storm surge and storm waves are greatest just to the right of the storm track. Why? 14 Hurricane Gilbert In what direction is Gilbert moving? Answer: In direction of strongest wind: Westward 15 Hurricane Hazards in Hawaii The storm surge and storm waves are greatest just to the right of the storm track. Wind hazard is greatest on exposed ridges and mountain slopes. Flash flood hazard is greatest near steam beds. 16 TRIPLE THREAT FROM TROPICAL CYCLONES TRIPLE THREAT Injuries and Loss of Life Structural Damage Destruction of vegetation/crops Storm Surge Flooding of coastal areas (winds & low pressure) Erosion of Beaches Saline Intrusion–loss of fertility High Winds Loss of Power/Communications Fires - Urban and Brush Contamination of Water Supply Heavy Rains Land Subsidence Flooding of Inland Areas Mud and Landslides 17 Past Hurricane Impact The record is dominated by a few extreme events: Galveston hurricane of 1900, Iniki and Andrew in 1992. 18 Storm Surge - Elevated Sea-Level Flooding of coastal areas Erosion of Beaches Saline Intrusion–loss of fertility 19 Storm Surge Storm surges are historically responsible for the greatest numbers of deaths and they cause some of the worst damage. 20 Storm Surge Debris line from Iniki storm surge 21 Storm Surge 6000 people died in the storm surge 22 Storm Surge Storm surge, before and after hurricane Camille. 23 Ivan Aftermath • 52 deaths in US • 70 deaths in Caribbean Storm Surge 24 Ivan Aftermath Storm Surge Storm Surge Storm Surge Storm Surge 25 Hurricane Wind Damage High Winds 26 Iniki Wind Damage 27 Hurricane Wind Damage Wind damage to Darwin, Australia from hurricane Tracy. Similar wind damage occurred in Andrew. 28 Hurricane Rains and Flooding 29 Ivan Aftermath Heavy rains & Flooding in NC 30 North Carolina Flooding Slo w moving tropical cyclones result in very large rainfalls. 31 Hurricane Forecasting Hurricane Andrew Hurricane forecasting involves predicting the future track and intensity of a hurricane. 32 Hurricane Advisories • Hurricane Watch - Hurricane may threaten the coast. Issued ~ 36 hours in advance • Hurricane Warning - Hurricane conditions are expected within 24 hours. Issued ~12-24 hours in advance. 33 Hurricane Forecasting Hurricane forecasting involves predicting the track and intensity of a hurricane. Hurricane tracks are erratic and difficult to predict. A combination of observations, numerical model output, and climate data are used to forecast hurricane tracks. 34 Hurricane Forecasting More progress has been made in hurricane track forecasting than in forecasting hurricane intensity change. 35 Cloud Drift Winds IR Imagery from Bonnie 8/25/98 1145 UTC (Blue Rings at 100 and 350 km Radius) 36 Satellite Rainfall Measurement 37 Hurricane Forecasting Radar Observed Rainfall 48-h model forecast with satellite observations 48-h model forecast without satellite observations 38 Hurricane Jimena 39 Locating Hurricane Jimena 40 Layer-Mean Winds Steer the Storm 41 Track Forecast 42 Sea Surface Temperature Important Factor for Hurricane Strength 43 Wind Shear Weakens Storm 44 Thunderstorms and Flooding 45 Thunderstorms and Flooding Rains turned out to be moderate and mostly beneficial to drought stricken Big Island. The heaviest rainfall was in Upper Puna, where 8.43 inches were recorded in Glenwood and 6.09 inches in Mountain View in the 24 hours ending at 2 p.m. yesterday. Pi'ihonua recorded 5.75 inches, while Waiakea Uka had 5.79 inches. 46 Winds in Hurricane Jimena Officials with Hawai'i Electric Light Co. scrambled to repair downed power lines and remove tree branches tangled in lines, especially in Puna and Waimea. 47 Questions? 48.
Recommended publications
  • NOAA Technical Memorandum NWSTM PR-51 2003 Central North Pacific Tropical Cyclones Andy Nash Tim Craig Robert Farrell Hans Rosen
    NOAA Technical Memorandum NWSTM PR-51 2003 Central North Pacific Tropical Cyclones Andy Nash Tim Craig Robert Farrell Hans Rosendal Central Pacific Hurricane Center Honolulu, Hawaii February 2004 TABLE OF CONTENTS Acknowledgements Overview Remnants of Tropical Storm Guillermo Tropical Depression 01-C Hurricane Jimena Acronyms ACKNOWLEDGMENTS Appreciation is extended to Sam Houston for assisting with developing the best track data and to Treena Loos, who created the best track figures. Finally, it must be acknowledged that the writeup of Hurricane Jimena owes much to the work by Richard Pasch of the TPC. Overview of the 2003 Central North Pacific Tropical Cyclone Season Total tropical activity for the season was below normal, with two named systems occurring within the area of responsibility of the Central Pacific Hurricane Center (CPHC). One tropical cyclone (01-C) developed within the central Pacific, with one system (Jimena) moving into the area from the eastern Pacific. A third tropical system, Guillermo, weakened to a remnant low just to the east of CPHC's area of responsibility, and although CPHC issued one advisory on the system it will not be considered in the final count of tropical activity for the central Pacific for the season. The season was generally quiet, but Hurricane Jimena still managed to take the spotlight. Jimena, at one point a category two hurricane, was the first direct threat to Hawaii in several years. Although it ended up passing about 100 nm south of the Big Island as a rapidly weakening tropical storm, it had the potential of coming closer as a hurricane. As a final note, this was the first year that CPHC tropical cyclone track and intensity forecasts went out 5 days, or 120 hours.
    [Show full text]
  • Eastern North Pacific Hurricane Season of 1997
    2440 MONTHLY WEATHER REVIEW VOLUME 127 Eastern North Paci®c Hurricane Season of 1997 MILES B. LAWRENCE Tropical Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, Miami, Florida (Manuscript received 15 June 1998, in ®nal form 20 October 1998) ABSTRACT The hurricane season of the eastern North Paci®c basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline's rainfall ¯ooding killed more than 200 people in the Acapulco, Mexico, area. Linda became the strongest hurricane on record in this basin with 160-kt 1-min winds. 1. Introduction anomaly. Whitney and Hobgood (1997) show by strat- Tropical cyclone activity was near normal in the east- i®cation that there is little difference in the frequency of eastern Paci®c tropical cyclones during El NinÄo years ern North Paci®c basin (east of 1408W). Seventeen trop- ical cyclones reached at least tropical storm strength and during non-El NinÄo years. However, they did ®nd a relation between SSTs near tropical cyclones and the ($34 kt) (1 kt 5 1nmih21 5 1852/3600 or 0.514 444 maximum intensity attained by tropical cyclones. This ms21) and nine of these reached hurricane force ($64 kt). The long-term (1966±96) averages are 15.7 tropical suggests that the slightly above-normal SSTs near this storms and 8.7 hurricanes. Table 1 lists the names, dates, year's tracks contributed to the seven hurricanes reach- maximum 1-min surface wind speed, minimum central ing 100 kt or more. pressure, and deaths, if any, of the 1997 tropical storms In addition to the infrequent conventional surface, and hurricanes, and Figs.
    [Show full text]
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • Hurricane Ignacio
    HURRICANE TRACKING ADVISORY eVENT™ Hurricane Ignacio Information from CPHC Advisory 21, 5:00 PM HST Saturday August 29, 2015 The Hawaiian Islands remain vulnerable as Major Hurricane Ignacio continues moving steadily northwest. On the forecast track, Ignacio is expected to pass northeast of the Big Island on Monday. Maximum sustained winds are near 140 mph with higher gusts. Ignacio is a category four hurricane on the Saffir-Simpson Hurricane Scale. Little change in intensity is expected tonight and a weakening trend is expected to begin on Sunday. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 140 mph Position Relative to 525 miles ESE of Hilo, HI Speed: (category 4) Land: 735 miles ESE of Honolulu, HI Est. Time & Region: n/a Min Central Pressure: 952 mb Coordinates: 17.0 N, 147.6 W Trop. Storm Force Est. Max Sustained Wind 140 miles Bearing/Speed: NW or 315 degrees at 9 mph n/a Winds Extent: Speed: Forecast Summary The CPHC forecast map (below left) shows Ignacio passing northeast of the Hawaiian Islands at hurricane strength with maximum sustained winds of 74 mph or greater. The map also shows the main Hawaiian Islands are not within Ignacio’s potential track area. The windfield map (below right) is based on the CPHC’s forecast track which is shown in bold black. The map shows Ignacio’s tropical storm force and greater winds passing just northeast of the Hawaiian Islands. To illustrate the uncertainty in Ignacio’s forecast track, forecast tracks for all current models are shown in pale gray.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Corpus Christi Storm Surge Is an Abnormal Rise of Water Generated by a Storm, Over and Above the Predicted Inundation Astronomical Tides
    About Hurricanes TEXAS DEPARTMENT OF PUBLIC SAFETY Hurricanes form over warm 5805 N LAMAR BLVD • BOX 4087 • AUSTIN, TEXAS 78773-0001 ocean waters, like those 512/424-2000 www.dps.texas.gov found in the Gulf of Mexico. The hurricane season starts June 1 and ends November STEVEN C. McCRAW COMMISSION DIRECTOR A. CYNTHIA LEON, CHAIR 30. The peak threat for DAVID G. BAKER MANNY FLORES ROBERT J. BODISCH, SR. FAITH JOHNSON the Texas coast exists from DEPUTY DIRECTORS STEVEN P. MACH RANDY WATSON August through September. Dear Colleagues: However, hurricanes can Hurricanes are deadly and destructive threats to communities along the Texas coastline. Along with high and have struck the Texas winds, tropical systems can produce immense storm surge, violent tornados, and dangerous flooding. coast during every month of the hurricane season. In order to help citizens prepare, the National Weather Service has once again collaborated with local nonprofit organizations and the Texas Department of Public Safety’s Division of Emergency Management to bring you the Official Texas Hurricane Guide. It is especially crucial for coastal residents to plan and prepare for each type of hurricane hazard to prevent and reduce the loss of life and property and improve community resilience. Above: High resolution satellite image of Hurricane Ike This guide is an up-to-date, easy-to-use resource that will help you and your family better understand what over the northwest Gulf of Mexico. Image--NASA to do before, during and after a storm. It will also assist your family with the preparation of a family emergency plan, checklists and a disaster supply kit.
    [Show full text]
  • Mexico: Hurricane Jimena MDRMX003
    DREF operation n° MDRMX003 Mexico: Hurricane GLIDE TC-2009-000167-MEX Update n° 1 22 September 2009 Jimena The International Federation’s Disaster Relief Emergency Fund (DREF) is a source of un-earmarked money created by the Federation in 1985 to ensure that immediate financial support is available for Red Cross and Red Crescent response to emergencies. The DREF is a vital part of the International Federation’s disaster response system and increases the ability of national societies to respond to disasters. Period covered by this update: 15 to 17 September 2009. Summary: CHF 331,705 (USD 319,632 or EUR 219,302) was allocated from the Federation’s Disaster Relief Emergency Fund (DREF) to support the Mexican Red Cross (MRC) in delivering immediate assistance to some 3,000 families on 15 September 2009. The budget was revised to CHF 193,476 since the American Red Cross provided a bilateral contribution to the MRC consisting of 3,000 kitchen kits and 1,840 hygiene kits. Therefore, CHF MRC personnel carrying out assessments in the 133,730 will be reimbursed to DREF. community of Santa Rosalia. Source: Mexican Red Cross The Canadian Red Cross kindly contributed 48,314 Swiss francs (CAD 50,000) to the DREF in replenishment of the allocation made for this operation. The major donors to the DREF are the Irish, Italian, Netherlands and Norwegian governments and ECHO. Details of all donors can be found on http://www.ifrc.org/what/disasters/responding/drs/tools/dref/donors.asp On 3 September 2009, Hurricane Jimena hit the coast of Baja California, Mexico as a category two hurricane.
    [Show full text]
  • A LOOK AHEAD NOAA Expects Busy Atlantic Hurricane Season
    NWS Corpus Christi, TX 2010 Summer Edition HURRICANE SEASON IS HERE - HAVING A PLAN COULD SAVE YOUR LIFE! By John Metz — Warning Coordination Meteorologist It’s been 40 years since the last hurricane struck the Coastal Bend area directly in 1970. Her name was Celia and she was classified as a major hurri- cane with wind speeds of 125 mph and gusts to 160 mph. Tens of thousands of homes were damaged or destroyed in the coastal bend by the winds in Celia and 15 people lost their lives. Hurricanes are a big deal and can change your life forever. Yet most of the residents of the coastal bend have never been through a major storm. In fact a couple generations of citizens have grown up in this community that have never experienced a major Hurricane. With hurricane season under- way, we need to take this time understand what hurricanes are all about and prepare so that we can not only survive these incredible storms but recover and resume our lives as quickly as possible. There are four hazards associated with Hurricanes including: Storm Surge, Damaging Winds, Flooding, and Tornadoes. Historically storm surge is the deadliest. Over 1,800 people lost their lives in Hurricane Katrina primarily due to storm surge and the subsequent flooding. The 1900 Galveston Storm claimed 8,000 lives. To under- stand the power of storm surge, you only need to look at the before and after photo’s of the Upper Texas Coast, when Hurricane Ike struck in 2008. Inside this issue: Hurricane force winds can also be very damaging.
    [Show full text]
  • HURRICANE CELIA (EP042016) 6 – 15 July 2016
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE CELIA (EP042016) 6 – 15 July 2016 Daniel P. Brown National Hurricane Center Chris Jacobson Central Pacific Hurricane Center 25 January 20171 VISIBLE IMAGE OF CELIA NEAR PEAK INTENSITY AT 2205 UTC 11 JULY FROM THE SUOMI NATIONAL POLAR- ORBITING PARTNERSHIP (NPP) SATELITE. IMAGE COURTESY OF THE NASA GODDARD RAPID RESPONSE TEAM. Celia was a category 2 hurricane (on the Saffir-Simpson Hurricane Wind Scale) that remained over the open waters of the eastern North Pacific Ocean. 1 Original report dated 25 January 2017. Updated 6 June 2019 to correct intensity at 0600 UTC 10 July in Table 1. Hurricane Celia 2 Hurricane Celia 6 – 15 JULY 2016 SYNOPTIC HISTORY Celia developed from a tropical wave that departed the west coast of Africa on 22 June and crossed the Atlantic Ocean and Caribbean Sea with limited shower activity. The wave crossed Central America on 1 July and moved over the far eastern North Pacific Ocean shortly thereafter, where a favorable phase of the Madden Julian Oscillation (MJO) was passing through. The positive MJO phase helped to cause a gradual increase in convection near the wave during the next few days. On 5 July, a broad area of low pressure developed in association with the wave several hundred n mi south of Manzanillo, Mexico. The low became better defined early the next day, when thunderstorm activity increased and became better organized and a tropical depression formed around 1800 UTC 6 July, about 475 n mi south-southwest of Manzanillo. The “best track” chart of the tropical cyclone’s path is given in Fig.
    [Show full text]
  • GPM Satellite Shows Double Eye-Wall in Hurricane Jimena 1 September 2015, by Rob Gutro
    GPM satellite shows double eye-wall in Hurricane Jimena 1 September 2015, by Rob Gutro "Enhanced infrared images and an earlier microwave overpass from the Global Precipitation Measurement satellite continue to show the presence of a double eyewall structure with evidence of erosion of Jimena's inner eyewall in the southern portion. Since the overall presentation reveals decay of the eyewall, the initial intensity is lowered to 105 knots." On September 1 at 5 a.m. EDT (0900 UTC), the eye of Hurricane Jimena was located near latitude 16.4 North and longitude 139.1 West. That's about 1,075 miles (1,730 km) east of Hilo, Hawaii. Maximum sustained winds remained near 130 mph (215 kph) and Jimena is a category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. The National Hurricane Center expects slow weakening during the next two days. Jimena was moving toward the west near 13 mph (20 kph). A turn toward the west-northwest is This GPM satellite image of Hurricane Jimena shows the expected later on September 1. The estimated presence of a double eye-wall structure. Heaviest rainfall minimum central pressure is 948 millibars. in red and pink. Cloud imagery from NOAA's GOES- West satellite. Credit: NASA/JAXA/NRL/NOAA Jimena has moved into the Central Pacific basin, so the Central Pacific Hurricane Center will take over forecasting for this storm. The Global Precipitation Measurement or GPM core satellite showed a double eye-wall in Hurricane Jimena on September 1 as it moved through the Eastern Pacific and into the Central Pacific Ocean.
    [Show full text]
  • (May 2008 to April 2010): Climate Variability and Weather Highlights
    1 2 The "Year" of Tropical Convection (May 2008 to April 2010): 3 Climate Variability and Weather Highlights 4 5 6 7 Duane E. Waliser1, Mitch Moncrieff2, David Burrridge3, Andreas H. Fink4, Dave Gochis2, 8 B. N. Goswami2, Bin Guan1, Patrick Harr6, Julian Heming7, Huang-Hsuing Hsu8, Christian 9 Jakob9, Matt Janiga10, Richard Johnson11, Sarah Jones12, Peter Knippertz13, Jose Marengo14, 10 Hanh Nguyen10, Mick Pope9, Yolande Serra15, Chris Thorncroft10, Matthew Wheeler16, 11 Robert Wood17, Sandra Yuter18 12 13 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 14 2National Center for Atmospheric Research, Boulder, CO, USA 15 3THORPEX International Programme Office, World Meteorological Office, Geneva, Switzerland 16 4der Universitaet zu Koeln, Koeln, Germany 17 5Indian Institute of Tropical Meteorology, Pune, India 18 6Naval Postgraduate School, Monterey, CA, USA 19 7United Kingdom Meteorological Office, Exeter, England 20 8National Taiwan University, Taipei, Taiwan 21 9Melbourne University, Melbourne, Australia 22 10State University of New York, Albany, NY, USA 23 11Colorado State University, Fort Collins, CO, USA 24 12 Karlsruhe Institute of Technology, Karlsruhe, Germany 25 13University of Leeds, Leeds, England 26 14Centro de Previsão de Tempo e Estudos Climáticos, Sao Paulo, Brazil 27 15University of Arizona, Tucson, AZ, USA 28 16Centre for Australian Weather and Climate Research, Melbourne, Australia 29 17University of Washington, Seattle, USA 30 18North Caroline State University, Raleigh, NC, USA 31 32 33 34 Submitted to the 35 Bulletin of the American Meteorological Society 36 November 2010 37 38 Corresponding author: Duane Waliser, [email protected], Jet Propulsion Laboratory, MS 39 183-505, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 40 1 1 Abstract 2 The representation of tropical convection remains a serious challenge to the skillfulness of our 3 weather and climate prediction systems.
    [Show full text]
  • Historical Perspective
    kZ ­­_!% L , Ti Historical Perspective 2.1 Introduction CROSS REFERENCE Through the years, FEMA, other Federal agencies, State and For resources that augment local agencies, and other private groups have documented and the guidance and other evaluated the effects of coastal flood and wind events and the information in this Manual, performance of buildings located in coastal areas during those see the Residential Coastal Construction Web site events. These evaluations provide a historical perspective on the siting, design, and construction of buildings along the Atlantic, Pacific, Gulf of Mexico, and Great Lakes coasts. These studies provide a baseline against which the effects of later coastal flood events can be measured. Within this context, certain hurricanes, coastal storms, and other coastal flood events stand out as being especially important, either Hurricane categories reported because of the nature and extent of the damage they caused or in this Manual should be because of particular flaws they exposed in hazard identification, interpreted cautiously. Storm siting, design, construction, or maintenance practices. Many of categorization based on wind speed may differ from that these events—particularly those occurring since 1979—have been based on barometric pressure documented by FEMA in Flood Damage Assessment Reports, or storm surge. Also, storm Building Performance Assessment Team (BPAT) reports, and effects vary geographically— Mitigation Assessment Team (MAT) reports. These reports only the area near the point of summarize investigations that FEMA conducts shortly after landfall will experience effects associated with the reported major disasters. Drawing on the combined resources of a Federal, storm category. State, local, and private sector partnership, a team of investigators COASTAL CONSTRUCTION MANUAL 2-1 2 HISTORICAL PERSPECTIVE is tasked with evaluating the performance of buildings and related infrastructure in response to the effects of natural and man-made hazards.
    [Show full text]