DOCUMENT RESUME ED 048 213 SP 007 125 Elements of Electrical

Total Page:16

File Type:pdf, Size:1020Kb

DOCUMENT RESUME ED 048 213 SP 007 125 Elements of Electrical DOCUMENT RESUME ED 048 213 SP 007 125 TITLE Elements of Electrical Technology, Grades 11 and 12. Curriculum S-27B and Supplement. INSTITUTION Cntario rept. of Education, Toronto. PUB LATE 68 NOTE 169 p. BEES PRICE EJRS Price MF-$0.65 HC-$6.58 DESCRITTORS *Curriculum Guides, *Electromechanical 'echnology, *Grade 11, *Grade 12, *Trade and Industrial Education ABSTRACT GRADES OR AGES: Grades 11 and 12. SUBJECT MATTER: Electrical technology. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two volumes. The first volume gives a brief outline of the course, breaking it down into divisions, units, and subunits. The second volume gives a detailed description of each subunit in a seven-column layout across two pages. The first volume is offset printed and staple-bound with a paper cover; the second. volume is offset printed and edition bound with a soft cover. OBJECTIVES AND ACTIVITIES: Gensial objectives for the course are outlined briefly it the first volume. Each subunit description in the second volume lists several activities and teaching tips. A letter coding classifies each activity as experimental, problem-solving, application study, or project.All introductory section presents several different methods for organization and timing of the units and subunits. INSTRUCTIONAL MATERIALS: No mention. STUDENT ASSESSMENT: No mention. (RT) ,=2...... 1,- U S DEPARTMENT OF HEALTH EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO DIKED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR °PIN IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE Of EDU CATION POSITION OR POI ICY 1 Al A CONTENTS FOREWORD 2 AIMS AND OBJECTIVES 2 SAFETY 3 ORGANIZATION 3 DIVISION 1: Theory and Test 4 DIVISION 2: Electronics 6 oivistoN 3: Installation and Maintenance 8 LABORATORY SKILLS AND TECHNIQUES 10 2 FOREWORD An integrated technical course is one in which two or chronological sequence is the responsibility of the in- morn disciplines that have common or complementary structors who are presenting the course. content are combined into one technology. This course Students should feel that they are taking one tech- outline in Elements of Electrical Technology represents nical subject. This may be accomplished by innumer- an integration of subject content in the electrical field. able arrangements and varieties of presentation. To The outline consists of three Divisions: Theory and Test illustrate the manner in which a given topic relates to Electronics, and Installation and Maintenance. Itis sections inall divisions, one might consider Trans- intended for use in Grades 11 and 12. forme-s (Section 17.1). Without any selection as to At the secondary school level, we are concerned sequence or to depth of treatment, Transformers can with fundamentals rather than the treatment in depth be related to the following: which characterizes the tertiary levels of education. An 11.1 Direct current integrated approach is desirable because students under- 11.2Magnetism stand basic principles best if they are able to relate them to several subjects. The relation of various tech- 13.1 D.C. generators nical subjects to mathematics, science, English and 15.1 Alternating current history should be stressed repeatedly. In this way the 15.2Inductance technical subjects become effective educational vehicles 16.1 Three-phase fundamentals as sell as ^ means of learning skills. 17.3Three-phase induction motors Since the course is a two-year entity, the teachers must decide the extent to which any unit will be studied 21.5Transformers (electronic components) in either Grade 11 or Grade 12. Althou3h the arrange- 23.1Power supplies ment of the outline is logical, it is not chronological: it 23.2Circuits using amplifying devices is an analysis of subject content, not a synthesis. No attempt has been made to arrange the topics in a 24.1Mdio amplifiers teaching sequence r.or has any attempt been made to 24.3Radio transmitters and receivers integrate the topics of the ft.-et divisions: these tasks 34.4Transformer installations are reserved for the professional teacher. The need for 34.5Transformer protection frequent consultation among the participating teachers 34.6Transformer tesang and maintenance is imperative. If possible, one or two periods per week should be set aside so that course construction, lesson 35.5Reduced voltage starters planning, and evaluation can be pursued as a team This list illustrates the fact that the course outline effort. offers an organization of content, but does not inhibit The course outline was prepared on the understand- teachers from developing a coherent sequence related to the particular requirements of their classes and the ing that a total of si!.. hun,'red hours was available for facilities at hand. implementation: of this time allotment, about thirty- five per cent should be devoted to Division 1, forty per cent to Division 2, and twenty-five per cent to Division 3. Teachers may alter these ratios somewhat, and may omit optional topics (marked "0") in favour of other AIMS AND OBJECTIVES material. The primary aims ol technical education are identical Approximately sixty per cent of the available time with those of edrcation as a whole: developing each should be devoted to student activity that reinforces student's personality and ripabilities, and giving him theoretical aspects. Tne teacher may, however, increase constructive attitudes towards himself and society. this ratio by developing individualized, imaginative Any technical curriculum should be such that (1) it methods. The inductive, directed-discovery approach provides a sound educational base from which further should be implemented as frequently as possible. education or training may proceed, (2) it prepares for Since Division 1 forms a common cote for the entire employment by the development of basic technical course, any participating teacher may present any portion skills. of it. In order to avoid duplication of effort, teachers The specific objectives of Elements of Electrical must collaborate on a regular basis: the vertical or Technology are to develop the student's ability to: 2 3 ORGANIZATION Comprehend the impact of electrical technology upon DIVISION 1: THEORY AND TEST an industrialized society Define his vocational goals within the electrical and Units 1.1Fundamentals of Electricity and electronics industry Magnetism Understand the principles upon which the operation 1.2Electrical Measurement of electrical and electronic apparatus depends 1.3D.C. Machines Use simple mathematics pertinent to electrical theory, 1.4D.C. Mutor Controls and interpret such mathematical expressions in terms 1.5 Single-phase Circuits of physical realities 1.6Three-phase Circuits Prepare coherent, orderly laboratory reports 1.7A.C. Machines Do independent research for technical information from various sources DIVISION 2: ELECTRONICS Appreciate and practise sound safety procedures Units 2.1Standard Electronic Components Assume responsibility, and work independently of 2.2Electron Devices supervision 2.3Basic Electronic Circuits Interpret service information and use it intelligently 2.4Electronic Systems 2.5Test Equipment Relate schematic diagrams to actual circuitry 2.6Servicing and Test Procedures Select and utilize a wide variety of electrical measur- 2.7Construction Methods and ing equipment Techniques Diagnose faults, and service a diversity el electrical equipment, working from first principles. DIVISION 3: INSTALLATION AND MAINTENANCE Units 3.1Trade Requirements 3.2Ontario Electrical Code SAFETY 3.3Electrical Wiring Systems 3.4Distribution Systems The responsibility for safety consciousness rests with 3.5 A.C. Motor Controls the teachers of Elements of Electrical Technology. Not 3.6Electrical Maintenance only should they describe potential dangers and possible unsound procedures clearly before any practical student activities, but they must also lead students to "think safety" at all times. Representatives of recognized industrial safety organ- izations should be invitedto inspect the technical department shops in order to assess equipment and routines. In addition, these representatives might be asked to speak to students and/or teachers on modern safety practice. 3 DIVISION 1: THEORY AND TEST INTRODUCTION UNIT 1.1 FUNDAMENTALS OF ELECTRICITY This division should be considered basic to the entire AND MAGNETISM course. The concepts and principles relating to circuits, Direct Current components, and machines will constantly serve as a foundation for the study of Divisions 2 and 3. This is Electron Theory Electrical Charge.. not to imply that Division1 should be taught as a Methods of Producing EMF whole, but rather to indicate that portions of it should Electrical Circuits be introduced prior to related studies in other divisions. Electrical Conductors and Insulators The teacher must determine the exact chronological Electrical Power and Energy sequence of the material in a manner which he con- Magnetism siders to be most viable in an educational sense. This Theory of Magnetism arrangement of content should, as far as possible, Magnetic Fields involve student activities that can be described as Magnetic Properties of Materials "learning experiences". To achieve this, a program less Efectromagnetism rigidly structured than the traditional should be con- Magnetic Circuits sidered. UNIT 1.2 The emphasis in Division1 should, for the most part, be on underlying principles, not on hardware or ELECTRICAL MEASUREMEN1' its manipulation. The studies
Recommended publications
  • Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical
    Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical Machines-II UNIT-I 1. Why a 3-phase synchronous motor will always run at synchronous speed? Because of the magnetic coupling between the stator poles and rotor poles the motor runs exactly at synchronous speed. 2. What are the two classification synchronous machines? The classification synchronous machines are: i. Cylindrical rotor type ii. Salient pole rotor type 3. What are the essential features of synchronous machine? i. The rotor speed is synchronous with stator rotating field. ii. Varying its field current can easily vary the speed. iii. It is used for constant speed operation. 4. Mention the methods of starting of 3-phase synchronous motor. a. A D.C motor coupled to the synchronous motor shaft. b. A small induction motor coupled to its shaft.(pony method) c. Using damper windings –started as a squirrel cage induction motor. 5. What are the principal advantages of rotating field system type of construction of synchronous machines? · Form Stationary connection between external circuit and system of conditions enable the machine to handle large amount of volt-ampere as high as 500 MVA. · The relatively small amount of power required for field system can be easily supplied to the rotating field system via slip rings and brushes. · More space is available in the stator part of the machine for providing more insulation to the system of conductors. · Insulation to stationary system of conductors is not subjected to mechanical stresses due to centrifugal action. · Stationary system of conductors can easily be braced to prevent deformation.
    [Show full text]
  • DC Uncontrolled Rectifier by Using Phase- Shifting Transformer
    University of Halabja (UoH) College of Science Physics Department Undergraduate’s Last year Project 2020-2021 ‘’Harmonics Cancellation from AC- DC Uncontrolled Rectifier by using Phase- Shifting Transformer.’’ Prepared by: Supervised by: Shilan Ali Faraj Mr .Farhad Muhsin Mahmood Bushra Ahmad Abdulla Nada Jaba Hassan 1 [‘’Harmonics Cancellation from AC- DC Uncontrolled Rectifier by using Phase-Shifting Transformer.’’] By Shilan Ali Faraj Bushra Ahmad Abdulla Nada Jaba Hassan A thesis submitted to the College of Science, University of Halabja In partial fulfillment of the requirements For the degree of Bachelor of Physics Graduate Program in Physics Written under the direction of [Mr. Farhad M. Mahmood] [May, 2021] 2 Contents Abstract ......................................................................................................................................................... 4 Chapter one (History and background) ........................................................................................................ 5 Background and history of Rectifier. ........................................................................................................ 5 1.1 Rectifier : ............................................................................................................................................. 5 1.2. Inverter :............................................................................................................................................. 7 Chapter two (introduction) ........................................................................................................................
    [Show full text]
  • HY-5948A Hydrogen Triode Thyratron
    SUNSTAR传感与控制 http://www.sensor-ic.com/ TEL:0755-83376549 FAX:0755-83376182E-MAIL: [email protected] HY-5948A Hydrogen Triode Thyratron Description The HY-5948A is a hydrogen-filled, triode thyratron. The hydrogen gas fill facilitates reliable operation at moderately-high pulse repetition rates when compared to similar deuterium filled thyratrons. The reservoir is designed to be operated at a nominal setting of 4.0 Vac. High pulse currents are achievable using only free or forced air convection cooling. The tube may be mounted by its mounting flange in any position. Specifications Absolute Ratings (Maximum)(Non-Simultaneous) epy, Peak Forward Anode Voltage (Notes 1, 2, 3) ...................................................................... 25 kV ib, Peak Forward Anode Current (Notes 4, 5) .............................................................................. 5 Ka ibx, Peak Reverse Anode Current (Note 6) .................................................................................. .1 ib epx, Peak Reverse Anode Voltage (Note 6) ............................................................................... 25 kV epy, Min, Minimum Anode Supply Voltage ..............................................................................1 k Vdc tp, Anode Current Pulse Duration (Note 5) ............................................................................. 10μsec Ib, Average Anode Current .................................................................................................... 2.2 Adc Ip, RMS Average Current (Note 9) ........................................................................................47.5
    [Show full text]
  • The Evolution of the Hydrogen Thyratron C.A.Pirrie and H
    The Evolution of the Hydrogen Thyratron C.A.Pirrie and H. Menown Marconi Applied Technologies Ltd Chelmsford, U.K. Abstract and Introduction. as for the hydrogen thyratron. The CV22, rated to 20 kV and 50 amps, was used extensively in early British radars, as were The evolution of the hydrogen thyratron from its early other Hg vapour thyratrons like the CV12, which was rated to beginnings to the present day is presented from the perspective 15kV and 200 amps. These devices suffered from several of one manufacturer. Radar requirements drove the drawbacks however. Firstly, mercury vapour pressure is a development of the hydrogen thyratron as a repetitive, high sensitive function of temperature, and thus the entire envelope power line-type modulator switch. Before the invention of the needed kept at a controlled temperature, generally around hydrogen thyratron, line-type radar modulators used a variety 60oC. Secondly, the energy at which Hg ions destroy the oxide of switches. It is worthwhile considering one of these in cathode is relatively low, and cathode bombardment was often particular, the mercury vapour thyratron, because this device the cause of end of life (if grid emission did not get there first). contained many of the necessary design features that were to Thirdly, they had a de-ionisation time by virtue of the ionic be incorporated into the hydrogen thyratron. mass that limited repetition rates to a few hundred pulses per second. Their ability to withstand inverse voltage was poor The Mercury Vapour Thyratron. and thus if the magnetron should arc, not an infrequent occurrence, the Hg thyratron would arc-back, to its own An example of an Hg vapour thyratron is shown in figure 1.
    [Show full text]
  • Electronic Instrumentation for Measuring Detonation in Spark And
    AN ABSTRACT OF TEE TEES IS OF for (Naine) (Degree) (Majr'r) Date Thesis presented-__Qa.iL-- T itle - .'42 _ _f.2W.0 -------------------------------------------------- Redacted for privacy Abstract Approved: ------------------ (Major Professor) Th. extreie1y transient nature of the mgtn. cn)n1tiOn roceec rsq.res th9t spocial intruiîtaticri be used to ittx1y the e.rociitoi ihezoitienn. Tho nethoda wKioh hwvo been used to sti.c1y 1ne propogation and cyli.rder pressure sra 1oacrbed and the 1iaitattorB cf the present istrw'ïmtRtion are pointed out, A r.c trpø cnCire irliuiCOEtor drro1ope in the laborntories of tho Stardard Oil Corpftny of California onployir the *noto-s;r1otion prino-tp).c is dAcribd. Thie engine indicator oonii5te essentially of a rnioto8trictivo nickel alloy red sur- rowed by two coilt of rire and hold fïrtt1'- agarist diaphrrn which is exposed to the oylincicr recure, To oie coil a voltße 13 r-i11od from a f1athliht b&tt.rjr. The seoon coil i5 C1ìCOt(d 'rouh a loti gain ar-:].tfior to the vertieal plMes of 1 cat'ode ray osoiUnraph. Tho cylinder preaure ii trans.t±ed to the rod end the longitudinal 3tre resu1tin changoß the r.ant1e pernability so that t ae is gorierated i th 8GCOI2J 0011 whiO) 16 directly nroportirnial fo rate of pressure ohene within the erine oylinder. OsoilloCrar8 XO presented bovin rete preesuro change va. tine diagrams of the combustion ?rOOeS hi n high speed Diosel engine, Ot1r asurent msde ou both Diesol eni3 aso1ino engines dth the "aneto-ttriotion enìine indicntor are ':i van, In addition to thu emïne jidioator several other cleotronic deyioec usad in itudyinC engine coution aro deeoribod cd illuatratod by photographs.
    [Show full text]
  • Electrical Machines-II 2015-16(ODD)
    A Course Material on Electrical Machines-II 2015-16(ODD) By Mrs. M.Latha Assistant Professor DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM – 638 056 QUALITY CERTIFICATE This is to certify that the e-course material Subject Code : EE6504 Subject : Electrical Machines -II Class : III YEAR EEE Being prepared by me and it meets the knowledge requirement of the university curriculum. Signature of the Author Name: M.Latha Designation: AP This is to certify that the course material being prepared by Mrs.M.Latha is of adequate quality. She has referred more than five books among them minimum one is from aboard author. Signature of HD Name: SEAL Syllabus EE6504 Electrical Machines -II UNIT I SYNCHRONOUS GENERATOR Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance –Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power angle characteristics– Two reaction theory –slip test -short circuit transients - Capability Curves UNIT II SYNCHRONOUS MOTOR Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves – Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power developed-Hunting – natural frequency of oscillations – damper windings- synchronous condenser. UNIT III THREE PHASE INDUCTION MOTOR Constructional details – Types of rotors –- Principle of operation – Slip –cogging and crawling- Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor.
    [Show full text]
  • Electrical Energy Utilisation
    Jacek F. Gieras Izabella A.Gieras Electrical Energy Utilisation Wydawnictwo Adam Marszalek Contents Preface ........................................................VII 1 ENERGY AND DRIVES .................................. 1 1.1 Electrical energy . 1 1.2 Conservation of electrical energy . 2 1.3 Classification of electric motors . 4 1.4 Applications of electric motor drives . 5 1.5 Trends in the electric-motor and drives industry . 11 1.6 How many motors are used in affluent homes ? . 11 1.7 Fundamentals of mechanics of machines . 12 1.7.1 Torque and power . 12 1.7.2 Simple gear trains . 12 1.7.3 Efficiency of a gear train . 14 1.7.4 Equivalent moment of inertia . 14 1.8 Torque equation . 18 1.9 Mechanical characteristics of machines . 19 Problems . 21 2 D.C. MOTORS ............................................ 23 2.1 Construction . 23 2.2 Fundamental equations. 24 2.2.1 Terminal voltage . 24 2.2.2 Armature winding EMF . 25 2.2.3 Magnetic flux . 25 2.2.4 Electromagnetic (developed) torque . 25 2.2.5 Electromagnetic power . 26 2.2.6 Rotor and commutator linear speed . 26 2.2.7 Input and output power . 26 2.2.8 Losses . 27 2.2.9 Armature line current density . 28 2.3 D.c. shunt motor . 28 VI Contents 2.4 D.c. series motor . 30 2.5 Compound-wound motor . 31 2.6 Starting . 32 2.7 Speed control of d.c. motors . 34 2.8 Braking . 36 2.8.1 Braking a shunt d.c. motor . 37 2.8.2 Braking a series d.c. motor . 37 2.9 Permanent magnet d.c.
    [Show full text]
  • Shaded-Pole Single-Phase Motors Written By: Shankar • Edited By: Kennethsleight • Updated: 8/31/2009
    Shaded-Pole Single-Phase Motors written by: shankar • edited by: KennethSleight • updated: 8/31/2009 We know that single phase induction motors are not self-starting. Inorder to make single phase motor a self-starting one, a certain arrangement must be provided so that the stator flux produced becomes a rotating one rather than alternating one.Such an arrangement is provided by shaded pole motors. Introduction Shaded pole motor is one of the types of single phase induction motors, which are used for producing a rotating stator flux in order to make the single phase induction motor a self starting one. Let us discuss the constructional details, diagrams and working of shaded pole motors in detail. Shaded-Pole SIngle-Phase Motors Like any other motors the shaded pole induction motor also consists of a stator and rotor. The stator is of salient pole type and the rotor is of squirrel cage type. The poles of shaded pole induction motor consist of slots, which are cut across the laminations. The smaller part of the slotted pole is short-circuited with the help of a coil. The coils are made up of copper and it is highly inductive in nature. This coil is known as shading coil. The part of the pole which has the coil is called the shaded part and the other part of the pole is called unshaded part. Now let us consider that an alternating current is passed through the excited winding which surrounds the pole. Due to the presence of shading coil, the axis of the pole shift from unshaded part to shaded part.
    [Show full text]
  • Outline (Motors)
    ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ Products or specifications on the catalog are 〈Warranty Coverage〉 subject to be changed without notice. Please If any malfunctions should occur due to our inquire our sales agents for our latest fault, NIDEC COPAL ELECTRONICS warrants specifications. We require an acknowl edgment any part of our product within one year from the of specification documents for product use date of delivery by repair or replacement at beyond our specifications, and conditions free of charge. However, warranty is not appli- needing high reliability, such as nuclear reactor cable if the causes of defect should result control, railroads, aviation, automobile, from the following con ditions: combustion, medical, amusement, • Failure or damages caused by inappropriate Disaster prevention equipment and etc. use, inappropriate conditions, and Furthermore, we ask you to perform a swift inappropriate handling. incoming inspection for delivered products and • Failure or dam ages caused by inappropriate we wouldalso appreciate if full attention is given mod i fi cations, adjustment, or repair. to the storage conditions of the product. • Failure or damage caused by technically and sci en tif i cally unpredictable factors. 〈Warranty Period〉 • Failure or damage caused by natural disaster, The Warranty period is one year from the date fire or unavoid able factors. of delivery. The warranty is only applicable to the product itself, not applic a ble to con sumable products such as batteries and etc. STEPPING MOTORS OUTLINE (MOTORS) COPAL ELECTRONICS handles motors marked by the Induction motors Induction motors make use of the rotation of a basket placed in a rotating magnetic field. Three phase AC is used to produce the rotating magnetic field, so most large output motors in factories are of this type.
    [Show full text]
  • ADJUSTABLE SPEED DRIVES By: Richard D
    Service Application Manual SAM Chapter 620-130 Section 6A ADJUSTABLE SPEED DRIVES By: Richard D. Beard P.E. Consultant, RSES Manufacturers’ Service Advisory Council INTRODUCTION Many commercial and industrial machines and processes require adjustable speed. Adjustable speed usually makes a machine more universally compatible and increases its versatility. Adjustable-speed drives also are being used in residential equipment, including air conditioners, refrigerators, heat pumps, furnaces, and other devices driven by motors. These drives optimize speed and torque, making them generally more efficient than non-adjustable-speed drives. An adjustable-speed motor is one in which the speed can be varied gradually over a wide range—but, once adjusted, it remains nearly unaffected by the load. A variable-speed motor is one in which the speed varies with the load, usually decreasing when the load increases. The term "adjustable speed" implies that some external adjustment, which is independent of load, will cause the speed to change. A variable-frequency inverter drive is an example. The term "variable speed" describes a drive in which load changes inherently cause significant changes in speed. A direct current series motor, for example, exhibits this characteristic. An adjustable variable-speed motor is one in which the speed can be adjusted gradually. However, once adjusted for a given load, the speed will vary with changes in the load. A multispeed motor is one that can be operated at any one of two or more definite speeds, each being practically independent of the load. The multispeed motor is neither an adjustable-speed nor a variable-speed drive. Multispeed motors usually have two, three, or four definite operating speeds.
    [Show full text]
  • Thyratron-PFN, IGBT Hybrid, and Direct Switched Modulator R&D As It Effects Klystron Protection
    SLAC-PUB-8475 June 2000 Thyratron-PFN, IGBT Hybrid, and Direct Switched Modulator R&D As it Effects Klystron Protection S. L. Gold Stanford Linear Accelerator Center* Stanford University, Stanford, CA 94309 Invited Talk Presented at The 2000 24th International Power Modulator Symposium Norfolk, Virginia June 26th – June 29th *Work supported by Department of Energy contract DE-AC03-76SF00515 Thyratron-PFN, IGBT Hybrid, and Direct Switched Modulator R&D As it Effects Klystron Protection S. L. Gold Stanford Linear Accelerator Center* P.O. Box 4349 Stanford, CA 94309 Abstract Modulator development is an ongoing program at Line-type modulators also tend to be about 50% SLAC. The Stanford Linear Accelerator with its efficient. The NLC program requires modulators approximately 240 klystrons and modulators of higher efficiency and excellent reliability. operates for 6000 plus hours a year. This operation gives SLAC an important insight into The initial cost model modulator for the NLC was component and system reliability in the High a conventional line-type, thyratron modulator Voltage environment. The planned NLC is optimized to operate two 500kV PPM-klystrons approximately 10 times the size of SLAC and the with an overall modulator efficiency of between High Voltage Modulator Klystron systems are one 60 and 65%. The relatively compact modulator, of the largest cost drivers. This paper will contain built in a single oil tank for the klystrons and a brief progress report on the optimized Line modulator was designed for depot maintenance. Modulator and touch on Solid-State advances, Due to funding issues, and the selection of a solid which make Solid State, High Power pulse state design for the NLC, this modulator is just modulators the wave of the future.
    [Show full text]
  • Variation of Control Characteristics of Power Thyratron Tubes With
    Variation of control characteristics of power thyratron tubes with frequency by H W Snyder A THESIS Submitted to the Graduate committee In partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Montana State University © Copyright by H W Snyder (1949) Abstract: A study was made of the variation in the control characteristics of three electrode thyratron tubes operation at frequencies up to 1080 cycles per second. Tests were made on thyratron tubes in half-wave rectification with magnitude d-c grid voltage control. The existence of two control characteristics, a starting control characteristic and an extinguishing control characteristic, at higher-than-power frequencies was confirmed. The starting control characteristic was determined to be dependent uoon frequency of spoiled anode voltage, lnterolectrode capacitance, and tube "dark" currents which are determined by geometry of electrode structures. Extinguishing control characteristic was found to be a tube deionization phenomenon. VA IATION 07 CO-T OL GHA . 4CT2BI3 TIC5 OF 'OmLA THYKATAOw TJDGJ AlTH FRGQJZNCY by H. - . 'JYDaR A THESIS Submitted to the Graduate Committee In partial fulfillm ent of the requirements for the degree of Master of Science in Electrical Engineering a t Montana State College Ap roved: In Charge of Major Work Bozeman, Montana Ju n e9 19^9 V s l ^ l 8 , Cu- i X - 2 - TABLE OF CONTENTS Abstract e ................................................................................................ ....... Introduction ....................................................................................... 4 Historical Survey .............................. 5 D escription of Test Equipment and Procedure . 7 Pest Results, Starting Characteristics . .................... 9 Rxtingulal lng C h a r a c te r is tic s ........................ 20 Conclusions .............................................................................................24 Appendix I ...................................................
    [Show full text]